Radio-Frequency Heating of Magnetic Nanoparticles
Total Page:16
File Type:pdf, Size:1020Kb
Radio-Frequency Heating of Magnetic Nanoparticles A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science by Mohammud Zafrullah JAGOO BSc., University of Mauritius, 2009 2012 Wright State University Wright State University School of Graduate Studies March 16, 2012 I hereby recommend that the thesis prepared under my supervision by Mohammud Zafrullah Jagoo entitled RF Heating of Magnetic Nanoparticles be accepted in partial fulfillment of the requirements for the degree of Master of Science. Gregory Kozlowski, Ph.D. Thesis Director Lok C. Lew Yan Voon, Ph.D. Chair, Department of Physics Committee on Final Examination Gary Farlow, Ph.D. Jerry Clark, Ph.D. Andrew Hsu, Ph.D. Dean, Graduate School Z. Jagoo Jagoo, Mohammud Zafrullah. M.S., Department of Physics, Wright State University, 2012. Radio-Frequency Heating of Magnetic Nanopar- ticles. Abstract In the present study, a power supply capable of converting a direct current into an alternating current was built. The frequency of oscillation of the output current could be varied from 174.8 kHz to 726.0 kHz by setting a set of capacitors in resonance. To this power supply is attached a 20-turns copper coil in the shape of a spiral. Because of the high heat generated in the coil, the latter has to be permanently water-cooled. A vacuum pump removes the air between the sample holder and the coil. A fiber optic temperature sensor with an accuracy of 0.001 ◦C was used to measure the temperature of the nanoparticles. Four ferromagnetic nanoparticles (CoFe2O4, NiFe2O4, Ni0.5Zn0.5Fe2O4, Co0.4Ni0.4Zn0.2Fe2O4) with different magnetic properties were subjected to heat- ing. The heating performance is given by the specific power loss (SPL) which was calculated from the initial slope of the heating curve whereby there is minimum heat loss to the surroundings and the highest SPL was obtained when magnetic field and frequency were highest at 2.06 10−5 T and 348.0 kHz, respectively. × When the frequency was changed from 174.8 to 348.0 kHz, the SPL value was double indicating a one-to-one relationship between the frequency and the SPL. No such relationships were found when the magnetic field was increased from 1.38 10−5 T to 2.06 10−5 T. There is also a coercivity and remanent mag- × × netization dependence on the SPL and both of them obey an inverse law. We 2 found that the SPL for Ni0.5Zn0.5Fe2O4 (GPZ4) was 1.09 0.02 W/g . Moreover, ± 3 the sample CoFe2O4 (GPZ11) with the highest power loss density (12250 J/m ) measured by the variable sample magnetometer was found to have the lowest SPL (0.135 0.002 W/g2) in the lot. The magnetic field inside the coil is only a ± fraction the VSM, so when the low magnetic field was turned on, the hysteresis loop opened only to the extent of the minor loop. iii Contents 1 Introduction 1 1.1 ImportanceofNanoparticles . 1 1.2 Nanotechnology: The Plastics of the 21st Century? . 3 1.3 AimsoftheProject.......................... 3 1.4 StructureofReport. .. .. 4 2 Nanoparticles 5 2.1 Nanostructures ............................ 5 2.2 Nanoparticles as Intermediate Systems . 5 2.3 OriginsofMagnetism. 6 2.3.1 Constituent Equations in Magnetism . 9 2.4 MagnetisminMatter . .. .. 9 2.4.1 DiamagneticMaterials . 9 2.4.2 ParamagneticMaterials . 10 2.4.3 FerromagneticMaterials . 11 2.4.3.1 MagneticAnisotropy . 14 2.4.3.2 DomainStructure . 16 iv CONTENTS Z. Jagoo 2.5 Nanomagnetism............................ 18 2.5.1 Single-DomainParticles . 18 2.5.1.1 Coercivity of Single-Domain Particles . 19 2.5.2 Superparamagnetism . 20 2.5.2.1 ZFC-FC Measurement . 24 2.6 SummaryofChapter2 . .. .. 26 3 Magnetic Heating 30 3.1 Hysteresis ............................... 30 3.2 NeelandBrownRelaxation . 32 3.3 FrictionalLosses ........................... 34 3.4 ChapterSummary .......................... 35 4 AMF System 36 4.1 SpecificPowerLoss .......................... 36 4.2 TemperatureMeasurement . 37 4.2.1 TemperatureProbes . 37 4.2.2 ChoiceofThermometer . 40 4.2.3 FISO Inc. FOT-L Temperature Sensor . 41 4.3 FrequencyofOperation. 43 4.3.1 MagneticField ........................ 47 4.3.1.1 DesignofCoil. 48 4.3.2 AMF Power Supply . 50 4.3.3 OptimizationoftheSystem . 54 4.3.4 End-Product ......................... 56 4.3.5 Commercially Available Systems . 56 4.3.5.1 Comparison with Commercially Available System 58 4.4 ChapterSummary .......................... 59 5 Results 61 5.1 MagneticNanoparticles. 61 5.2 MassMeasurement .......................... 63 5.3 HoldingContainer .......................... 63 5.4 TestMeasurement .......................... 65 v CONTENTS Z. Jagoo 5.5 ResonanceFrequency . 68 5.6 WSUMagneticField ......................... 69 5.6.1 SimulatedField . 70 5.6.2 Measured Magnetic Field . 70 5.7 MagneticHeating........................... 70 5.7.1 GPZ4 ............................. 74 5.7.2 GPZ5 ............................. 75 5.7.3 GPZ8 ............................. 76 5.7.4 GPZ11............................. 77 5.8 QUMagneticField .......................... 80 5.9 MagneticHeating........................... 80 5.9.1 GPZ4 ............................. 83 5.9.2 GPZ5 ............................. 84 5.9.3 GPZ8 ............................. 85 5.9.4 GPZ11............................. 86 5.10 ChapterSummary .......................... 87 6 Analysis and Discussion 88 6.1 HeatingRate ............................. 88 6.2 WSU.................................. 91 6.2.1 GPZ4 ............................. 91 6.2.2 GPZ5 ............................. 91 6.2.3 GPZ8 ............................. 94 6.2.4 GPZ11............................. 94 6.3 QU................................... 96 6.3.1 GPZ4 ............................. 96 6.3.2 GPZ5 ............................. 96 6.3.3 GPZ8 ............................. 98 6.3.4 GPZ11............................. 100 6.4 NormalizedSPL............................ 100 6.5 Magnetic Field Dependence of SPL . 107 6.5.1 Estimation of the Magnetic Field at Queen’s University . 109 6.6 Frequency Dependence of SPL . 109 vi CONTENTS Z. Jagoo 6.7 Magnetic Property Dependence of SPL . 111 6.7.1 RemanentMagnetization. 112 6.7.2 SaturationMagnetization . 113 6.7.3 CoerciveForces . 114 6.8 GrainSizeEffect ........................... 115 6.9 Discrepancy between Measured Values . 117 6.10 ChapterSummary .......................... 117 7 Conclusion 119 7.1 FutureWorks ............................. 120 A Procedure for using AMF System 122 A.1 AMFHardware ............................ 122 A.2 Testing................................. 122 References 124 vii List of Figures 1.1 Nanotechnology-related goods and services . 3 2.1 Band gap energy of molecules, nanoparticle and bulk materials . 7 2.2 Magnetization vs. applied magnetic field for a ferromagnetic sub- stance ................................. 12 2.3 Magnetization vs. temperature for a ferromagnetic substance . 13 2.4 Magneto-crystallineanisotropy. 15 2.5 Decrease of magnetic energy by domain splitting . 17 2.6 Domainwall.............................. 18 2.7 Fanningmechanism. .. .. 20 2.8 Curlingmechanism . .. .. 21 2.9 Energyofasuperparamagneticparticle . 22 2.10 Hysteresis loop of superparamagnetic particle . ..... 23 2.11 ZFC-FCmeasurements . 26 2.12 Hysteresis loops for paramagnetic, ferromagnetic and superparam- agneticmaterials ........................... 28 2.13 Size effect on ferromagnetic/superparamagnetic particles . 28 viii LIST OF FIGURES Z. Jagoo 3.1 Magnetizing and demagnetizing of ferromagnets . 31 4.1 FISOFOT-L ............................. 43 4.2 Electromagneticspectrum . 44 4.3 Powerdensity ............................. 46 4.4 Magneticfieldofsolenoid. 48 4.5 Tailor-madecoil............................ 49 4.6 Coilcoolingmechanism. 51 4.7 Schematic of power supply . 52 4.8 BKPrecision4011Afunctiongenerator . 53 4.9 Set-upassembly............................ 55 4.10 Completesystemsetup . 57 4.11 Ambrell EASYHEAT induction heater . 58 4.12CoilinBelfast............................. 59 5.1 Hysteresis loop, coercivity, and saturation magnetization . 62 5.2 Massbalance ............................. 64 5.3 WilmadNMRtubes ......................... 64 5.4 Probepositionrelativetopowder . 65 5.5 TestMeasurement .......................... 66 5.6 CROoutput.............................. 69 5.7 WSUfieldprofile ........................... 71 5.8 Inductioncoil ............................. 72 5.9 Magnetic field measurements . 72 5.10 TemperatureagainsttimeofGPZ4 . 74 5.11 TemperatureagainsttimeofGPZ5 . 75 5.12 TemperatureagainsttimeofGPZ8 . 76 5.13 TemperatureagainsttimeofGPZ11. 77 5.14QUfieldprofile ............................ 81 5.15 TemperatureagainsttimeofGPZ4 . 83 5.16 TemperatureagainsttimeofGPZ5 . 84 5.17 TemperatureagainsttimeofGPZ8 . 85 5.18 TemperatureagainsttimeofGPZ11. 86 ix LIST OF FIGURES Z. Jagoo 6.1 Heatingratecurve .......................... 89 6.2 Timeevolutionofgradient . 90 6.3 Heating of GPZ4 magnetic nanoparticles . 92 6.4 HeatingofGPZ5MNP........................ 93 6.5 HeatingofGPZ8MNP........................ 94 6.6 HeatingofGPZ11MNP . .. .. 95 6.7 HeatingofGPZ4MNP........................ 97 6.8 HeatingofGPZ5MNP........................ 98 6.9 HeatingofGPZ8MNP........................ 99 6.10 HeatingofGPZ11MNP . 101 6.11 Heat capacity vs. saturation magnetization . .... 103 6.12 Normalized SPL vs. current . 106 6.13 MagneticfieldeffectonSPL . 107 6.14 CurrenteffectonSPL . 108 6.15 FrequencyeffectonSPL . 109 6.16 Frequency significance on SPL . 110 6.17 SPL vs. remanent magnetization . 112 6.18 SPLvs. saturationmagnetization . 113 6.19 SPLvs.coercivity . .. .. 114 6.20 SPLvs.grainsize..........................