Chapter 8 Frequency Modulation (FM) Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
3 Characterization of Communication Signals and Systems
63 3 Characterization of Communication Signals and Systems 3.1 Representation of Bandpass Signals and Systems Narrowband communication signals are often transmitted using some type of carrier modulation. The resulting transmit signal s(t) has passband character, i.e., the bandwidth B of its spectrum S(f) = s(t) is much smaller F{ } than the carrier frequency fc. S(f) B f f f − c c We are interested in a representation for s(t) that is independent of the carrier frequency fc. This will lead us to the so–called equiv- alent (complex) baseband representation of signals and systems. Schober: Signal Detection and Estimation 64 3.1.1 Equivalent Complex Baseband Representation of Band- pass Signals Given: Real–valued bandpass signal s(t) with spectrum S(f) = s(t) F{ } Analytic Signal s+(t) In our quest to find the equivalent baseband representation of s(t), we first suppress all negative frequencies in S(f), since S(f) = S( f) is valid. − The spectrum S+(f) of the resulting so–called analytic signal s+(t) is defined as S (f) = s (t) =2 u(f)S(f), + F{ + } where u(f) is the unit step function 0, f < 0 u(f) = 1/2, f =0 . 1, f > 0 u(f) 1 1/2 f Schober: Signal Detection and Estimation 65 The analytic signal can be expressed as 1 s+(t) = − S+(f) F 1{ } = − 2 u(f)S(f) F 1{ } 1 = − 2 u(f) − S(f) F { } ∗ F { } 1 The inverse Fourier transform of − 2 u(f) is given by F { } 1 j − 2 u(f) = δ(t) + . -
Microwave Frequency Demodulation Using Two Coupled Optical Resonators with Modulated Refractive Index
PHYSICAL REVIEW APPLIED 15, 034056 (2021) Microwave Frequency Demodulation Using two Coupled Optical Resonators with Modulated Refractive Index Adam Mock * School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan 48859, USA (Received 16 October 2020; revised 1 February 2021; accepted 10 February 2021; published 18 March 2021) Traditional electronic frequency demodulation of a microwave frequency voltage is challenging because it requires complicated phase-locked loops, narrowband filters with fixed passbands, or large footprint local oscillators and mixers. Herein, a different frequency demodulation concept is proposed based on refractive index modulation of two coupled microcavities excited by an optical wave. A frequency- modulated microwave frequency voltage is applied to two photonic crystal microcavities in a spatially odd configuration. The spatially odd perturbation causes coupling between the even and odd supermodes of the coupled-cavity system. It is shown theoretically and verified by finite-difference time-domain sim- ulations how careful choice of the modulation amplitude and frequency can switch the optical output from on to off. As the modulating frequency is detuned from its off value, the optical output switches from off to on. Ultimately, the optical output amplitude is proportional to the frequency deviation of the applied voltage making this device a frequency-modulated-voltage to amplitude-modulated-optical- wave converter. The optical output can be immediately detected and converted to a voltage that would result in a frequency-demodulated voltage signal. Or the optical output can be fed into a larger radio- over-fiber optical network. In this case the device presents a compact, low power, and tunable route for multiplexing frequency-modulated voltages with amplitude-modulated optical communication systems. -
Lecture 25 Demodulation and the Superheterodyne Receiver EE445-10
EE447 Lecture 6 Lecture 25 Demodulation and the Superheterodyne Receiver EE445-10 HW7;5-4,5-7,5-13a-d,5-23,5-31 Due next Monday, 29th 1 Figure 4–29 Superheterodyne receiver. m(t) 2 Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0 1 EE447 Lecture 6 Synchronous Demodulation s(t) LPF m(t) 2Cos(2πfct) •Only method for DSB-SC, USB-SC, LSB-SC •AM with carrier •Envelope Detection – Input SNR >~10 dB required •Synchronous Detection – (no threshold effect) •Note the 2 on the LO normalizes the output amplitude 3 Figure 4–24 PLL used for coherent detection of AM. 4 Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. All rights reserved. 0-13-142492-0 2 EE447 Lecture 6 Envelope Detector C • Ac • (1+ a • m(t)) Where C is a constant C • Ac • a • m(t)) 5 Envelope Detector Distortion Hi Frequency m(t) Slope overload IF Frequency Present in Output signal 6 3 EE447 Lecture 6 Superheterodyne Receiver EE445-09 7 8 4 EE447 Lecture 6 9 Super-Heterodyne AM Receiver 10 5 EE447 Lecture 6 Super-Heterodyne AM Receiver 11 RF Filter • Provides Image Rejection fimage=fLO+fif • Reduces amplitude of interfering signals far from the carrier frequency • Reduces the amount of LO signal that radiates from the Antenna stop 2/22 12 6 EE447 Lecture 6 Figure 4–30 Spectra of signals and transfer function of an RF amplifier in a superheterodyne receiver. 13 Couch, Digital and Analog Communication Systems, Seventh Edition ©2007 Pearson Education, Inc. -
7.3.7 Video Cassette Recorders (VCR) 7.3.8 Video Disk Recorders
/7 7.3.5 Fiber-Optic Cables (FO) 7.3.6 Telephone Company Unes (TELCO) 7.3.7 Video Cassette Recorders (VCR) 7.3.8 Video Disk Recorders 7.4 Transmission Security 8. Consumer Equipment Issues 8.1 Complexity of Receivers 8.2 Receiver Input/Output Characteristics 8.2.1 RF Interface 8.2.2 Baseband Video Interface 8.2.3 Baseband Audio Interface 8.2.4 Interfacing with Ancillary Signals 8.2.5 Receiver Antenna Systems Requirements 8.3 Compatibility with Existing NTSC Consumer Equipment 8.3.1 RF Compatibility 8.3.2 Baseband Video Compatibility 8.3.3 Baseband Audio Compatibility 8.3.4 IDTV Receiver Compatibility 8.4 Allows Multi-Standard Display Devices 9. Other Considerations 9.1 Practicality of Near-Term Technological Implementation 9.2 Long-Term Viability/Rate of Obsolescence 9.3 Upgradability/Extendability 9.4 Studio/Plant Compatibility Section B: EXPLANATORY NOTES OF ATTRIBUTES/SYSTEMS MATRIX Items on the Attributes/System Matrix for which no explanatory note is provided were deemed to be self-explanatory. I. General Description (Proponent) section I shall be used by a system proponent to define the features of the system being proposed. The features shall be defined and organized under the headings ot the following subsections 1 through 4. section I. General Description (Proponent) shall consist of a description of the proponent system in narrative form, which covers all of the features and characteris tics of the system which the proponent wishe. to be included in the public record, and which will be used by various groups to analyze and understand the system proposed, and to compare with other propo.ed systems. -
Additive Synthesis, Amplitude Modulation and Frequency Modulation
Additive Synthesis, Amplitude Modulation and Frequency Modulation Prof Eduardo R Miranda Varèse-Gastprofessor [email protected] Electronic Music Studio TU Berlin Institute of Communications Research http://www.kgw.tu-berlin.de/ Topics: Additive Synthesis Amplitude Modulation (and Ring Modulation) Frequency Modulation Additive Synthesis • The technique assumes that any periodic waveform can be modelled as a sum sinusoids at various amplitude envelopes and time-varying frequencies. • Works by summing up individually generated sinusoids in order to form a specific sound. Additive Synthesis eg21 Additive Synthesis eg24 • A very powerful and flexible technique. • But it is difficult to control manually and is computationally expensive. • Musical timbres: composed of dozens of time-varying partials. • It requires dozens of oscillators, noise generators and envelopes to obtain convincing simulations of acoustic sounds. • The specification and control of the parameter values for these components are difficult and time consuming. • Alternative approach: tools to obtain the synthesis parameters automatically from the analysis of the spectrum of sampled sounds. Amplitude Modulation • Modulation occurs when some aspect of an audio signal (carrier) varies according to the behaviour of another signal (modulator). • AM = when a modulator drives the amplitude of a carrier. • Simple AM: uses only 2 sinewave oscillators. eg23 • Complex AM: may involve more than 2 signals; or signals other than sinewaves may be employed as carriers and/or modulators. • Two types of AM: a) Classic AM b) Ring Modulation Classic AM • The output from the modulator is added to an offset amplitude value. • If there is no modulation, then the amplitude of the carrier will be equal to the offset. -
En 300 720 V2.1.0 (2015-12)
Draft ETSI EN 300 720 V2.1.0 (2015-12) HARMONISED EUROPEAN STANDARD Ultra-High Frequency (UHF) on-board vessels communications systems and equipment; Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU 2 Draft ETSI EN 300 720 V2.1.0 (2015-12) Reference REN/ERM-TG26-136 Keywords Harmonised Standard, maritime, radio, UHF ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI. -
Of Single Sideband Demodulation by Richard Lyons
Understanding the 'Phasing Method' of Single Sideband Demodulation by Richard Lyons There are four ways to demodulate a transmitted single sideband (SSB) signal. Those four methods are: • synchronous detection, • phasing method, • Weaver method, and • filtering method. Here we review synchronous detection in preparation for explaining, in detail, how the phasing method works. This blog contains lots of preliminary information, so if you're already familiar with SSB signals you might want to scroll down to the 'SSB DEMODULATION BY SYNCHRONOUS DETECTION' section. BACKGROUND I was recently involved in trying to understand the operation of a discrete SSB demodulation system that was being proposed to replace an older analog SSB demodulation system. Having never built an SSB system, I wanted to understand how the "phasing method" of SSB demodulation works. However, in searching the Internet for tutorial SSB demodulation information I was shocked at how little information was available. The web's wikipedia 'single-sideband modulation' gives the mathematical details of SSB generation [1]. But SSB demodulation information at that web site was terribly sparse. In my Internet searching, I found the SSB information available on the net to be either badly confusing in its notation or downright ambiguous. That web- based material showed SSB demodulation block diagrams, but they didn't show spectra at various stages in the diagrams to help me understand the details of the processing. A typical example of what was frustrating me about the web-based SSB information is given in the analog SSB generation network shown in Figure 1. x(t) cos(ωct) + 90o 90o y(t) – sin(ωct) Meant to Is this sin(ω t) represent the c Hilbert or –sin(ωct) Transformer. -
Baseband Harmonic Distortions in Single Sideband Transmitter and Receiver System
Baseband Harmonic Distortions in Single Sideband Transmitter and Receiver System Kang Hsia Abstract: Telecommunications industry has widely adopted single sideband (SSB or complex quadrature) transmitter and receiver system, and one popular implementation for SSB system is to achieve image rejection through quadrature component image cancellation. Typically, during the SSB system characterization, the baseband fundamental tone and also the harmonic distortion products are important parameters besides image and LO feedthrough leakage. To ensure accurate characterization, the actual frequency locations of the harmonic distortion products are critical. While system designers may be tempted to assume that the harmonic distortion products are simply up-converted in the same fashion as the baseband fundamental frequency component, the actual distortion products may have surprising results and show up on the different side of spectrum. This paper discusses the theory of SSB system and the actual location of the baseband harmonic distortion products. Introduction Communications engineers have utilized SSB transmitter and receiver system because it offers better bandwidth utilization than double sideband (DSB) transmitter system. The primary cause of bandwidth overhead for the double sideband system is due to the image component during the mixing process. Given data transmission bandwidth of B, the former requires minimum bandwidth of B whereas the latter requires minimum bandwidth of 2B. While the filtering of the image component is one type of SSB implementation, another type of SSB system is to create a quadrature component of the signal and ideally cancels out the image through phase cancellation. M(t) M(t) COS(2πFct) Baseband Message Signal (BB) Modulated Signal (RF) COS(2πFct) Local Oscillator (LO) Signal Figure 1. -
Baseband Video Testing with Digital Phosphor Oscilloscopes
Application Note Baseband Video Testing With Digital Phosphor Oscilloscopes Video signals are complex pose instrument that can pro- This application note demon- waveforms comprised of sig- vide accurate information – strates the use of a Tektronix nals representing a picture as quickly and easily. Finally, to TDS 700D-series Digital well as the timing informa- display all of the video wave- Phosphor Oscilloscope to tion needed to display the form details, a fast acquisi- make a variety of common picture. To capture and mea- tion technology teamed with baseband video measure- sure these complex signals, an intensity-graded display ments and examines some of you need powerful instru- give the confidence and the critical measurement ments tailored for this appli- insight needed to detect and issues. cation. But, because of the diagnose problems with the variety of video standards, signal. you also need a general-pur- Copyright © 1998 Tektronix, Inc. All rights reserved. Video Basics Video signals come from a for SMPTE systems, etc. The active portion of the video number of sources, including three derived component sig- signal. Finally, the synchro- cameras, scanners, and nals can then be distributed nization information is graphics terminals. Typically, for processing. added. Although complex, the baseband video signal Processing this composite signal is a sin- begins as three component gle signal that can be carried analog or digital signals rep- In the processing stage, video on a single coaxial cable. resenting the three primary component signals may be combined to form a single Component Video Signals. color elements – the Red, Component signals have an Green, and Blue (RGB) com- composite video signal (as in NTSC or PAL systems), advantage of simplicity in ponent signals. -
Digital Baseband Modulation Outline • Later Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation
Digital Baseband Modulation Outline • Later Baseband & Bandpass Waveforms Baseband & Bandpass Waveforms, Modulation A Communication System Dig. Baseband Modulators (Line Coders) • Sequence of bits are modulated into waveforms before transmission • à Digital transmission system consists of: • The modulator is based on: • The symbol mapper takes bits and converts them into symbols an) – this is done based on a given table • Pulse Shaping Filter generates the Gaussian pulse or waveform ready to be transmitted (Baseband signal) Waveform; Sampled at T Pulse Amplitude Modulation (PAM) Example: Binary PAM Example: Quaternary PAN PAM Randomness • Since the amplitude level is uniquely determined by k bits of random data it represents, the pulse amplitude during the nth symbol interval (an) is a discrete random variable • s(t) is a random process because pulse amplitudes {an} are discrete random variables assuming values from the set AM • The bit period Tb is the time required to send a single data bit • Rb = 1/ Tb is the equivalent bit rate of the system PAM T= Symbol period D= Symbol or pulse rate Example • Amplitude pulse modulation • If binary signaling & pulse rate is 9600 find bit rate • If quaternary signaling & pulse rate is 9600 find bit rate Example • Amplitude pulse modulation • If binary signaling & pulse rate is 9600 find bit rate M=2à k=1à bite rate Rb=1/Tb=k.D = 9600 • If quaternary signaling & pulse rate is 9600 find bit rate M=2à k=1à bite rate Rb=1/Tb=k.D = 9600 Binary Line Coding Techniques • Line coding - Mapping of binary information sequence into the digital signal that enters the baseband channel • Symbol mapping – Unipolar - Binary 1 is represented by +A volts pulse and binary 0 by no pulse during a bit period – Polar - Binary 1 is represented by +A volts pulse and binary 0 by –A volts pulse. -
An Analysis of a Quadrature Double-Sideband/Frequency Modulated Communication System
Scholars' Mine Masters Theses Student Theses and Dissertations 1970 An analysis of a quadrature double-sideband/frequency modulated communication system Denny Ray Townson Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Electrical and Computer Engineering Commons Department: Recommended Citation Townson, Denny Ray, "An analysis of a quadrature double-sideband/frequency modulated communication system" (1970). Masters Theses. 7225. https://scholarsmine.mst.edu/masters_theses/7225 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. AN ANALYSIS OF A QUADRATURE DOUBLE- SIDEBAND/FREQUENCY MODULATED COMMUNICATION SYSTEM BY DENNY RAY TOWNSON, 1947- A THESIS Presented to the Faculty of the Graduate School of the UNIVERSITY OF MISSOURI - ROLLA In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 1970 ii ABSTRACT A QDSB/FM communication system is analyzed with emphasis placed on the QDSB demodulation process and the AGC action in the FM transmitter. The effect of noise in both the pilot and message signals is investigated. The detection gain and mean square error is calculated for the QDSB baseband demodulation process. The mean square error is also evaluated for the QDSB/FM system. The AGC circuit is simulated on a digital computer. Errors introduced into the AGC system are analyzed with emphasis placed on nonlinear gain functions for the voltage con trolled amplifier. -
The Complex-Baseband Equivalent Channel Model
ECE-501 Phil Schniter February 4, 2008 replacements Complex-Baseband Equivalent Channel: Linear communication schemes (e.g., AM, QAM, VSB) can all be represented (using complex-baseband mod/demod) as: wideband modulation demodulation channel s(t) r(t) m˜ (t) Re h(t) + LPF v˜(t) × × j2πfct w(t) j2πfct ∼ e ∼ 2e− It turns out that this diagram can be greatly simplified. First, consider the signal path on its own: s(t) x(t) m˜ (t) Re h(t) LPF v˜s(t) × × j2πfct j2πfct ∼ e ∼ 2e− Since s(t) is a bandpass signal, we can replace the wideband channel response h(t) with its bandpass equivalent hbp(t): S(f) S(f) | | | | 2W f f ...because filtering H(f) Hbp(f) s(t) with h(t) is | | | | equivalent to 2W filtering s(t) f ⇔ f with hbp(t): X(f) S(f)H (f) | | | bp | f f 33 ECE-501 Phil Schniter February 4, 2008 Then, notice that j2πfct j2πfct s(t) h (t) 2e− = s(τ)h (t τ)dτ 2e− ∗ bp bp − · # ! " j2πfcτ j2πfc(t τ) = s(τ)2e− h (t τ)e− − dτ bp − # j2πfct j2πfct = s(t)2e− h (t)e− , ∗ bp which means we can rewrit!e the block di"agr!am as " s(t) j2πfct m˜ (t) Re hbp(t)e− LPF v˜s(t) × × j2πfct j2πfct ∼ e ∼ 2e− j2πfct We can now reverse the order of the LPF and hbp(t)e− (since both are LTI systems), giving s(t) j2πfct m˜ (t) Re LPF hbp(t)e− v˜s(t) × × j2πfct j2πfct ∼ e ∼ 2e− Since mod/demod is transparent (with synched oscillators), it can be removed, simplifying the block diagram to j2πfct m˜ (t) hbp(t)e− v˜s(t) 34 ECE-501 Phil Schniter February 4, 2008 Now, since m˜ (t) is bandlimited to W Hz, there is no need to j2πfct model the left component of Hbp(f + f ) = hbp(t)e− : c F{ } Hbp(f) Hbp(f + fc) H˜ (f) | | | | | | f f f fc fc 2fc 0 B 0 B − − − j2πfct Replacing hbp(t)e− with the complex-baseband response h˜(t) gives the “complex-baseband equivalent” signal path: m˜ (t) h˜(t) v˜s(t) The spectrums above show that h (t) = Re h˜(t) 2ej2πfct .