How to Keep Challenging Your Brain to Maximize Recovery

Total Page:16

File Type:pdf, Size:1020Kb

How to Keep Challenging Your Brain to Maximize Recovery “What’s Next?” How to Keep Challenging Your Brain to Maximize Recovery KERRI SUTLEY M.S., CCC-SLP LEAD SPEECH PATHOLOGIST ENCOMPASS HEALTH REHABILITATION [email protected] 1. Provide a brief overview of common cognitive, communication, and swallowing difficulties that stroke survivors and caregiver's can Learning encounter. Objectives 2. Offer tips, techniques, and technology based resources to help facilitate continued recovery What is a Speech- Language Pathologist and how can we help? What is a Speech-Language Pathologist and how can we help? A Speech-Language Pathologist is an individual trained in the assessment and management of difficulties with communication, cognition (thinking skills), voice, and swallowing. A Speech-Language Pathologist is trained to treat children and adults, however my specialty is adult rehabilitation therefore that will be the area of focus during this presentation. Common diagnosis that I see are those with Stroke, brain injury, Parkinson's and other neurologic conditions. Communication skills include: listening, The most common types speaking, reading, of communication writing, conversation, disorders are Aphasia, and non-verbal Apraxia, and Dysarthria. communication skills Communication Aphasia Aphasia is a disorder that results from damage to portions of the brain responsible for language. Aphasia can develop suddenly as the result of a stroke or head injury, or gradually as the result of a brain tumor or infection. It can also be a symptom of a degenerative dementing illness such as Alzheimer's. It is estimated that 18-38% of stroke survivors have aphasia. According to the America Heart Association in 2017 Aphasia Approximately 795,000 strokes occurred in the U.S. each year and about 1/3 of those result in aphasia. There are many types of aphasias. We will discuss three of the most common: Wernicke’s Broca’s Global. Wernicke’s FLUENT/RECEPTIVE APHASIA Wernicke’s area in the brain Fluent/Receptive Wernicke's aphasia occurs when there is damage in the posterior region of the temporal lobe in an individual’s dominant hemisphere of the brain. In fluent aphasia, an individual may be able to speak with normal rate and intonation but speech may have little or no real meaning because the individual’s sentences are lacking content words or may contain "made up" words (paraphasias). Paraphasia Types: Semantic Phonemic Neologisms The person may The person may The person may have substitute one word for substitute one sound or speech characterized another. For example, syllable for another. For as “jargon.” For example an individual may say example, an individual an individual may use “watch” for “clock” may say “dock” for words that are “made “clock” up.” For example saying “smire” for “clock.” Individuals with fluent aphasia are often unaware of their mistakes and can have some degree of difficulty with comprehension. They tend to lose focus when background noise is present or Fluent/Receptive when more than one person is speaking. Reading can also be impacted. The individual may be able to read a headline but not comprehend the text in the body of an article. Broca’s NON-FLUENT/EXPRESSIVE APHASIA Broca’s area in the brain Non-Fluent/Expressive Aphasia Broca's aphasia is the most common type of non-fluent aphasia. In this type of aphasia, damage is primarily in the dominant inferior frontal lobe of the left hemisphere (Broca’s Area). When there is a lesion in Broca’s Area, there can be a breakdown between one’s thoughts and one’s language abilities. Thus individuals will report they know what they want to say but are unable to produce the words. Speech is often produced in short phrases and with great effort. The individual may have difficulty Non- producing the right sounds or finding Fluent/Expressive the right words to communicate. Aphasia Sentence structures are typically simplified and often missing linking words or conjunctions: "drink water" for "I want a drink of water.” Non-Fluent/Expressive Aphasia Those with Broca’s aphasia generally comprehend fairly well, however understanding may break down with more complicated sentence structures. For example: "Joe gave Cindy a flower" may be easy for the individual to interpret, however "The flower was given to Cindy by John" may result in a breakdown in comprehension. Those with Broca's aphasia may be able to read but have limited writing ability. Global RECEPTIVE/EXPRESSIVE APHASIA Global Aphasia Global aphasia is the most severe form of aphasia. It results from damage to multiple language-processing areas of the brain. In global aphasia, individuals can typically produce little to no spoken language or the language they can produce may be incomprehensible. Comprehension skills are impaired even with very simplified sentence structures. These individuals are also often not able to read or write. While we have only covered three of the more common types of aphasia, Other Types more types do exist. Other types of aphasia include: mixed transcortical, of Aphasia transcortical motor, transcortical sensory, conduction, and anomic aphasia. Additional types of Aphasia Apps for Aphasia Apraxia MOTOR SPEECH DISORDER Apraxia Apraxia is a motor speech disorder that affects the brain pathways involved in planning the sequence of movements for producing speech. Just as in aphasia, apraxia can be mild to severe. Apraxia however, can happen in conjunction with other Apraxia speech and language problems (such as aphasia or dysarthria). In apraxia errors are often inconsistent and speech may be slow and halting or the individual may “grope” for sounds. An individual may be able to say everyday phrases and greetings with little effort especially when relaxed, Apraxia however longer and more complex sentences are difficult. An individual may also struggle more when asked to repeat a word or phrase vs. spontaneous production. Apps for Apraxia Tips for Improving Communication Interactions Have the individual keep a card they can show Improving or someone in case of emergency explaining that Compensating they have aphasia and/or apraxia and how that impacts their communication and for Aphasia understanding. Keep pertinent emergency contact and Apraxia information accessible or with the individual at all times. Improving or Compensating for Aphasia and Apraxia Do not “talk around” the person with aphasia/apraxia. Include them in the conversation. Many people with aphasia/apraxia feel that family, friends, doctors, etc., bypass them and communicate directly with the caregiver. While this may be necessary to a point to ensure that important information gets conveyed accurately, it is also important for the individual to feel included in these interactions. Improving or Compensating for Aphasia and Apraxia Do not talk FOR the person with aphasia/apraxia. Although word finding may be difficult for an individual, it's important for you to be patient when they are attempting to speak or communicate. Ask permission before you help or speak for them. Sometimes interrupting an individuals train of thought can actually make it harder and more frustrating for them to communicate. Improving or Compensating for Aphasia and Apraxia Minimize distractions and noise level. Turn off the TV or radio or other background noise and move to a quieter location if you can. This can help the person focus on the conversation at hand. Improving or Slow down YOUR rate of speech and make eye contact when Compensating speaking whenever possible. This for Aphasia can help the person with aphasia/apraxia better understand and Apraxia what you are saying. Improving or Compensating for Aphasia and Apraxia When you ask the individual questions use simple yes/no for basic needs and preferences. Try to limit open-ended questions: "What would you like for dinner?" Instead ask the question and provide simple/clear choices: "Would you like steak or chicken for dinner?" Improving or Compensating for Aphasia and Apraxia When giving instructions, break them down into simple steps and gesture if necessary. Allow plenty of time for the individual to process and respond. Improving or Compensating for Aphasia and Apraxia If the individual is struggling, try to encourage them to say their message another way or rephrase it. Also break down longer, more complex words into shorter segments. Try singing. Using melody can often make it easier to articulate words. Try tapping out the syllables in a word or tap your finger for each word in a sentence. Improving or Compensating for Aphasia and Apraxia BEST APPROACH: Use multimodal communication strategies. An individual will have much greater success when communicating by using a combination of speaking, gesturing, writing, sketching and/or the use of either low or high tech augmentative communication systems. Augmentative Communication Low Tech High Tech Does NOT require electronics of DOES use electronics to any kind and can include supplement communication. things such as picture boards , These can include the use of letter boards, word boards and computer programs, tablet any combination of the three. computers with APPS, and specially designed augmentative devices that can not only assist with communication but can be accessed multiple ways (pointing, vocalizing, eye gaze) Improving or compensating for aphasia and apraxia SOCIALIZE!!! This is often a scary one for those struggling with aphasia/apraxia but it is likely one of the most important things for brain recovery. Individuals with aphasia can feel very isolated and this can limit their desire to attempt to communicate. Try to get involved regularly with friends or family. Get involved in your church or other organization. Join a stoke survivors support group. How can you expect language and communication skills to recover if you don't USE them? Dysarthria MOTOR SPEECH DISORDER Dysarthria is weakness in the muscles used for speech including those of the lips, tongue, throat, and muscles for breathing. Dysarthria differs from aphasia. The individual with aphasia may have difficulty understanding speech Dysarthria (comprehension), using the right words or poor sentence structure.
Recommended publications
  • Cerebral Localization
    CEREBRAL LOCALIZATION PRESENTED BY: HARSHIT MISHRA Definition 1. The diagnosis of the location in the cerebrum of a brai n lesi on, made either from the signs and symptoms manifested by the patient or from an investigation modality. 2. The mapping of the cerebral cortex into areas, and the correlation of these areas with cerebral function. Functional Localization of Cerebral Cortex ‐‐‐ HISTORY Phrenology of Gall ((17811781))andand Spurzheim Phrenology: Analysis of the shapes and lumps of the skull would reveal a person’s personality and intellect. Identified 27 basic faculties like imitation, spirituality Paul Broca (1861): Convincing evidence of speech laterality “Tan” : Aphasic patient Carl Wernicke (1874): TTemporal lesion disturbs comprehension. Connectionism model of language Predicated conduction aphasia Experimental evidences Fritsch and Hitzig (1870 (1870)) ‐‐‐ motor cortex von Gudden (1870 (1870)) ‐‐‐‐ visual cortex Ferrier (1873 (1873)) ‐‐‐‐ auditory cortex BASED ON CYTOARCHITECTONIC STUDIES Korbinian Brodmann (1868-1918): ¾ Established the basis for comparative cytoarchitectonics of the mammalian cortex. ¾ 47 areas ¾ most popular Vogt and Vogt (1919) - over 200 areas von Economo (1929) -- 109 areas HARVEY CUSHING:-CUSHING:- Mapped the human cerebral cortex with faradic electrical stimulation in the conscious patient. PENFIELD & RASMUSSEN:- Outlined the motor & sensory Homunculus. Brodmann’s Classification Cerebral Dominance (Lateralization, Asymmetry) Dominant Hemisphere (LEFT) Language – speech, writing Analytical and
    [Show full text]
  • Case Study 1 & 2
    CASE Courtesy of: STUDY Mitchell S.V. Elkind, MD, Columbia University 1 & 2 and Shadi Yaghi, MD. Brown University CASE 1 CASE 1 A 20 year old man with no past medical history presented to a primary stroke center with sudden left sided weakness and imbalance followed by decreased level of consciousness. Head CT showed no hemorrhage, no acute ischemic changes, and a hyper-dense basilar artery. CT angiography showed a mid-basilar occlusion. CASE 1 CONTINUED Head CT showed no hemorrhage, no acute ischemic changes, and a hyper-dense basilar artery (Figure 1, arrow). CT angiography showed a mid-basilar occlusion (Figure 2, arrow). INFORMATION FOR PATIENTS Fig. 1 AND FAMILIESFig. 2 CASE 1 CONTINUED He received Alteplase intravenous tPA and was transferred to a comprehensive stroke center where angiography confirmed mid-basilar occlusion (Figure 3, arrow ). He underwent mechanical thrombectomy (Figure 4) with recanalization of the basilar artery. His neurological exam improved and he was discharged to home after 2 days. At his 3 month follow up, he was back to normal and returned to college. Fig. 3 Fig. 4 CASE 2 CASE 2 A 62 year old woman with a history of hypertension and hyperlipidemia presented to a primary stroke center with sudden onset of weakness of the right side. On examination, she had a global aphasia, left gaze preference, right homonymous hemianopsia (field cut), right facial droop, dysarthria, and right hemiplegia (NIH Stroke Scale = 22). Head CT showed only equivocal hypodensity in the left middle cerebral artery territory (Figure 1 on next slide). CT angiography showed a left middle cerebral artery occlusion (Figure 2 on next slide, arrow).
    [Show full text]
  • Classification of Aphasic Phenomena
    LE JOURNAL CANAD1EN DES SCIENCES NEUROLOG1QUES Classification of Aphasic Phenomena ANDREW KERTESZ SUMMARY: A brief but comprehensive Most clinicians will agree that al­ tions cover the same phenomenon. survey of classifying aphasia reveals though aphasic disability is complex, In Table I the various terms are that most investigators describe at least many patients are clinically similar shown to overlap and those describ­ four major groups, conveniently labelled and may be classified into identifi­ ing the same disturbance appear un­ Broca's, Wernicke's, anomic and global. able groups. There are many classi­ derneath each other. Four columns Conduction and transcortical aphasias fications indicating that none is al­ appear to represent the entities that are less generally described and mod­ ality specific syndromes rarely, if ever, together satisfactory. Nevertheless, almost everybody identifies: exist purely. The controversy between this effort is useful and even neces­ 1. What Broca (1861) described as unifiers and splitters continues but ob­ sary to diagnose and treat aphasics aphemia, Wernicke (1874) called jective numerical taxonomy may solve and to understand the phenomena. motor aphasia. Marie (1906) did not some of the problems of classification. The opponents of classification consider Broca's aphemia true point out the numerous disagree­ aphasia. Pick (1913) labelled it ex­ ments among observers, the many pressive aphasia with agrammatism RESUME: Line etude breve, mais com­ exceptions that cannot be fitted into and Weisenburg & McBride (1935) prehensive, de la classification de categories and the frequent evolu­ popularized "expressive aphasia" I'aphasic revile que la plupart des cher- cheurs decrivent au moins 4 groupes tion of certain types into others.
    [Show full text]
  • Prospect for a Social Neuroscience
    Levels of Analysis in the Behavioral Sciences Prospect for a • Psychological Social Neuroscience – Mental structures and processes • Sociocultural – Social, cultural structures and processes Berkeley Social Ontology Group • Biophysical Spring 2014 – Biological, physical structures and processes 1 2 Levels of Analysis On Terminology in the Behavioral Sciences • Physiological Psychology (1870s) Sociocultural – Animal Research Social Psychology • Neuropsychology (1955, 1963) Social Cognition – Behavioral Analysis – Brain Insult, Injury, or Disease Psychological • Neuroscience (1963) – Interdisciplinary Cognitive Psychology • Molecular/Cellular Cognitive Neuroscience Social Neuroscience •Systems • Behavioral Biophysical 3 4 Towards a Social Neuropsychology The Evolution of Klein & Kihlstrom (1998) Social Neuroscience Neurology NEUROSCIENCE • Beginnings with Phineas Gage (1848) Neuroanatomy Molecular – Phrenology, Frontal Lobe, and Personality Integrative and • Neuropsychological Methods, Concepts Neurophysiology Cellular Cognitive – Neurological Cases – Brain-Imaging Methods Systems Affective • But Neurology Doesn’t Solve Our Problems Behavioral Conative(?) – Requires Psychological Theory Social – Adequate Task Analysis at Behavioral Level 5 6 1 The Rhetoric of Constraint “Rethinking Social Intelligence” Goleman (2006), p. 324 “Knowledge of the body and brain can The new neuroscientific findings on social life have usefully constrain and inspire concepts the potential to reinvigorate the social and behavioral sciences. The basic assumptions
    [Show full text]
  • A Young Woman with Sudden Hemiparesis
    f Clin al o ica rn l & ISSN : 2376-0249 u o M J e l d a i c n International Journal of a o l i Vol 5 • Iss 3• 1000601 Mar, 2018 t I m a n a r g e t i n n I g DOI: 10.4172/2376-0249.1000601 ISSN: 2376-0249 Clinical & Medical Images Case Report A Young Woman with Sudden Hemiparesis Monique Boukobza* and Jean-Pierre Laissy Department of Radiology, Assistance Publique-Hôpitaux de Paris, Bichat Hospital, Paris, France (1) (2) (3) (4) (5) (6) Figure 1: Diffusion weighted imaging (DWI) shows hyperintensity indicative of core infarction on MRI within less than 3 h after onset. Figure 2: Fluid-attenuated inversion recuperation imaging-Hyperintense vessels proximal to the sylvian fissure. Figure 3: Fluid-attenuated inversion recuperation imaging-Hyperintense vessels distal to the sylvian fissure. Figure 4: Magnetic resonance angiography-Severe vasospasm of the left internal carotid artery (short arrow) and middle cerebral artery (M1 segment) (long arrow). Figure 5: Digital subtraction angiography-Severe vasospasm (long arrow) and small aneurysm of the left anterior choroidal artery of 10 mm of diameter (short arrow). Figure 6: Magnetic resonance angiography follow-up-Exclusion of the aneurysm and normal caliber of the cerebral arteries. Abstract Stroke related to cerebral vasospasm may have the same appearance that ischemic stroke of other causes. The correct diagnosis is critical to avoid inappropriate treatments as thombolysis and anticoaglant therapy. In this case, a previous young healthy woman presented with acute onset of right-sided hemiplegia and expressive aphasia. Interpretation of Magnetic Resonance Images was challenging: acute ischemia, severe vasospasm, no signs of subarachnoid hemorrhage or intra-arterial thrombi, no evidence of cervical artery dissection.
    [Show full text]
  • Speech-Oct-2011.Pdf
    10/11/2011 1 10/11/2011 PHYSIOLOGY OF SPEECH Dr Syed Shahid Habib MBBS DSDM FCPS Associate Professor Dept. of Physiology King Saud University 2 10/11/2011 OBJECTIVES At the end of this lecture the student should be able to: • Describe brain speech areas as Broca’s Area, Wernicke’s Area and Angular Gyrus • Explain sequence of events in speech production • Explain speech disorders like aphasia with its types and dysarthria 3 10/11/2011 Function of the Brain in Communication- Language Input and Language Output 1.1.1.Sensory1. Sensory Aspects of Communication. 2.2.2.Integration2. Integration 3.3.3.Motor3. Motor Aspects of Communication. 4.4.4.Articulation4. Articulation 4 10/11/2011 5 10/11/2011 BRAIN AREAS AND SPEECH 6 10/11/2011 PRIMARY, SECONDARY AND ASSOCIATION AREAS 7 10/11/2011 ASSOCIATION AREAS These areas receive and analyze signals simultaneously from multiple regions of both the motor and sensory cortices as well as from subcortical structures. The most important association areas are (1) Parieto-occipitotemporal association area (2) prefrontal association area (3) limbic association area. 8 10/11/2011 Broca's Area. A special region in the frontal cortex, called Broca's area, provides the neural circuitry for word formation. This area, is located partly in the posterior lateral prefrontal cortex and partly in the premotor area. It is here that plans and motor patterns for expressing individual words or even short phrases are initiated and executed. 9 10/11/2011 PARIETO-OCCIPITOTEMPORAL ASSOCIATION AREAS • 1. Analysis of the Spatial Coordinates of the Body.
    [Show full text]
  • Diseases of the Digestive System (KOO-K93)
    CHAPTER XI Diseases of the digestive system (KOO-K93) Diseases of oral cavity, salivary glands and jaws (KOO-K14) lijell Diseases of pulp and periapical tissues 1m Dentofacial anomalies [including malocclusion] Excludes: hemifacial atrophy or hypertrophy (Q67.4) K07 .0 Major anomalies of jaw size Hyperplasia, hypoplasia: • mandibular • maxillary Macrognathism (mandibular)(maxillary) Micrognathism (mandibular)( maxillary) Excludes: acromegaly (E22.0) Robin's syndrome (087.07) K07 .1 Anomalies of jaw-cranial base relationship Asymmetry of jaw Prognathism (mandibular)( maxillary) Retrognathism (mandibular)(maxillary) K07.2 Anomalies of dental arch relationship Cross bite (anterior)(posterior) Dis to-occlusion Mesio-occlusion Midline deviation of dental arch Openbite (anterior )(posterior) Overbite (excessive): • deep • horizontal • vertical Overjet Posterior lingual occlusion of mandibular teeth 289 ICO-N A K07.3 Anomalies of tooth position Crowding Diastema Displacement of tooth or teeth Rotation Spacing, abnormal Transposition Impacted or embedded teeth with abnormal position of such teeth or adjacent teeth K07.4 Malocclusion, unspecified K07.5 Dentofacial functional abnormalities Abnormal jaw closure Malocclusion due to: • abnormal swallowing • mouth breathing • tongue, lip or finger habits K07.6 Temporomandibular joint disorders Costen's complex or syndrome Derangement of temporomandibular joint Snapping jaw Temporomandibular joint-pain-dysfunction syndrome Excludes: current temporomandibular joint: • dislocation (S03.0) • strain (S03.4) K07.8 Other dentofacial anomalies K07.9 Dentofacial anomaly, unspecified 1m Stomatitis and related lesions K12.0 Recurrent oral aphthae Aphthous stomatitis (major)(minor) Bednar's aphthae Periadenitis mucosa necrotica recurrens Recurrent aphthous ulcer Stomatitis herpetiformis 290 DISEASES OF THE DIGESTIVE SYSTEM Diseases of oesophagus, stomach and duodenum (K20-K31) Ill Oesophagitis Abscess of oesophagus Oesophagitis: • NOS • chemical • peptic Use additional external cause code (Chapter XX), if desired, to identify cause.
    [Show full text]
  • Neurological Examination
    Neurology Examination Dr. Bandar Al Jafen, MD Head of Neurology Assistant Professor Consultant Neurologist and Epileptologist King Saud University, Riyadh Objectives • Understand neurological examination • Perform a neurological examination • Higher function • Cranial nerves • Motor system • Sensory system • Interpret neurological examination Examination of higher mental functions and sensory examination Examination of higher mental functions Mental Status • Handedness • Alertness • Attention • Orientation – Person, Place, Time • Cognitive function • Perception – Illusions = misinterpretations of real external stimuli – Hallucinations = subjective sensory perceptions in the absence of stimuli • Judgment • Memory – Short-term & long-term • Speech – Rate & rhythm – Spontaneity – Fluency – Simple vs. complex Testing Cognitive Function • Information & vocabulary – Common • Calculating – Simple math – Word problems • Abstract thinking – Proverbs – Similarities/differences • Construction – Copy figures of increasing difficulty (i.e. circle, clock) Bedside memory testing is limited! Testing requires alertness and is not possible in a confused or dysphasic patient! • Short-term memory – DIGIT SPAN TEST – ask the patient to repeat a sequence of 5, 6, or 7 random numbers. • Long-term memory – ask the patient to describe present illness, duration of hospital stay or recent events in the news (RECENT MEMORY), ask about events and circumstances occuring more than five years previously (REMOTE MEMORY). • Verbal memory – ask the patient to remember a sentence or a short story and test after 15 minutes. • Visual memory – ask the patient to remember objects on a tray and test after 15 minutes Memory episodic m. (autobiographic data) (mesiotemporal regions – hipp,entorh, perirh, GP) long-term m. (> 1 min) Explicite memory semantic m. (declarative) (encyclopedic knowledge) (more extensive reg. – MT+LT,P,O) (visual x verbal, recallF x recognition) short-term (working) m.
    [Show full text]
  • Eyes and Stroke: the Visual Aspects of Cerebrovascular Disease
    Open Access Review Stroke Vasc Neurol: first published as 10.1136/svn-2017-000079 on 6 July 2017. Downloaded from Eyes and stroke: the visual aspects of cerebrovascular disease John H Pula,1 Carlen A Yuen2 To cite: Pula JH, Yuen CA. Eyes ABSTRACT to the LGBs,1 5 6 the terminal anastomosis is and stroke: the visual aspects of A large portion of the central nervous system is dedicated vulnerable to ischaemia.7 Optic radiations cerebrovascular disease. Stroke to vision and therefore strokes have a high likelihood 2017; : originate from the lateral geniculate nucleus and Vascular Neurology 2 of involving vision in some way. Vision loss can be the e000079. doi:10.1136/svn- (LGN) and are divided into superior, inferior, 2017-000079 most disabling residual effect after a cerebral infarction. and central nerve fibres. The optic radiations Transient vision problems can likewise be a harbinger of are predominantly supplied by the posterior stroke and prompt evaluation after recognition of visual and middle cerebral arteries1 and the AChA.6 Received 12 March 2017 symptoms can prevent future vascular injury. In this review, Inferior fibres, known as Meyer’s Loop,6 travel Revised 30 May 2017 we discuss the visual aspects of stroke. First, anatomy and Accepted 2 June 2017 the vascular supply of the visual system are considered. to the temporal lobe, while the superior and Published Online First Then, the different stroke syndromes which involve vision central nerve fibre bundles travel to the pari- 6 July 2017 1 are discussed. Finally, topics involving the assessment, etal lobes. The termination of optic radia- prognosis, treatment and therapeutic intervention of vision- tions is located in the visual striate cortex (V1) specific stroke topics are reviewed.
    [Show full text]
  • A Dictionary of Neurological Signs
    FM.qxd 9/28/05 11:10 PM Page i A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION FM.qxd 9/28/05 11:10 PM Page iii A DICTIONARY OF NEUROLOGICAL SIGNS SECOND EDITION A.J. LARNER MA, MD, MRCP(UK), DHMSA Consultant Neurologist Walton Centre for Neurology and Neurosurgery, Liverpool Honorary Lecturer in Neuroscience, University of Liverpool Society of Apothecaries’ Honorary Lecturer in the History of Medicine, University of Liverpool Liverpool, U.K. FM.qxd 9/28/05 11:10 PM Page iv A.J. Larner, MA, MD, MRCP(UK), DHMSA Walton Centre for Neurology and Neurosurgery Liverpool, UK Library of Congress Control Number: 2005927413 ISBN-10: 0-387-26214-8 ISBN-13: 978-0387-26214-7 Printed on acid-free paper. © 2006, 2001 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dis- similar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to propri- etary rights. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omis- sions that may be made.
    [Show full text]
  • Clinical Neuroanatomy Brain & Eyes
    Clinical Neuroanatomy Part I: Brain & Eyes Introduction Aliza Ben-Zacharia, DNP, ANP, MSCN The Corinne Goldsmith Dickinson Center for Multiple Sclerosis The Icahn School of Medicine Mount Sinai Medical Center Clinical Neuroanatomy Brain & Eyes Objectives •Identify the anatomical structures of the central nervous system in the Cerebral Hemispheres and structures involved in CNS function •Develop a rational, systematic approach to localization in clinical neurology •Recognize those areas of the Brain and Eyes involved in the development of common symptoms of multiple sclerosis Localization of Symptoms Cognitive loss Emotional disinhibition Tremor Ataxia Diplopia Vertigo Dysarthria Sensory symptoms L’Hermitte’s phenomenon Bladder Proprioception dysfunction Adapted from Miller AE. In: Cook SD, ed. Handbook of Multiple Sclerosis. New York, NY: Taylor & Francis Group: 2001:213-232. Localization Tips • The neurological approach to localization within the nervous system is: – Take note of all symptoms and signs – For each, consider what system(s) or pathway(s) is(are) implicated – For each, decide on the potential location a lesion could be & the side of the lesion; focal vs. multifocal – Adding up this analysis for each S/S, we then ask "Where in the nervous system can each of these localizations overlap?" The answer is the location of the current problem! One lesion vs. 2 or more lesions! Localization in Neurology • The principal of "garbage in-garbage out" does apply: if you fail to identify the clinical signs correctly, then you will be unable
    [Show full text]
  • Psychosis Or Wernicke's Aphasia, and Response of Speech Therapy in Wernicke's Aphasia: a Case Report
    Case Roport ERA’S JOURNAL OF MEDICAL RESEARCH VOL.6 NO.2 PSYCHOSIS OR WERNICKE'S APHASIA, AND RESPONSE OF SPEECH THERAPY IN WERNICKE'S APHASIA: A CASE REPORT Abdul Qadir Jilani, Anju Agarwal, Shantanu Bharti, Shrikant Srivastava* Department of Psychiatry, Department of Geriatric Mental Health* Era's Lucknow Medical College & Hospital, Sarfarazganj Lucknow, U.P., India-226003 King George's Medical University, Lucknow, U.P., India-226003* Received on : 10-02-2019 Accepted on : 04-04-2019 ABSTRACT Address for correspondence This case report describes a lady who developed sudden onset of speech disturbances mimicking thought disorders of primary psychotic Dr. Abdul Qadir Jilani disorder after 9 month of apparently improved right sided hemiplegia Department of Psychiatry following an event of cerebro-vascular accident about one year back Era’s Lucknow Medical College & with no particular cause evident on routine investigations. A 63-year-old Hospital, Lucknow-226003 woman presented with chief complaints of irrelevant answers, at times Email: [email protected] incomprehensible speech and talking nonsense. Presently problems Contact no: +91-9044817161 created the diagnostic dilemma between primary psychotic disorder predominantly with formal thought disorder and Wernicke's aphasia, in the absence of any apparent underlying neurological causes. The authors discuss the differentiating features for making correct diagnosis in accord with the ICD-10, Classification of Mental and Behavioral Disorders, Clinical descriptions and diagnostic guidelines, World Health Organization (ICD-I0) criteria, and a behavioral technique as the possible treatment option with beneficial outcome for Wernicke's aphasia, which comprised of audio-visual stimulus and reviewed the importance of considering this diagnosis in the setting of neuropsychiatric symptoms in the elderly and reported on a 63-year-old female with Wernicke aphasia mimicking formal thought disorder of psychosis.
    [Show full text]