Pollen Grain Germination and Fruit Set in 'Brazilian Seedless' Sugar Apple (Annona Squamosa

Total Page:16

File Type:pdf, Size:1020Kb

Pollen Grain Germination and Fruit Set in 'Brazilian Seedless' Sugar Apple (Annona Squamosa NOTE Pollen grain germination and fruit set in ‘Brazilian seedless’ sugar apple (Annona squamosa L.) Crop Breeding and Applied Biotechnology 12: 277-280, 2012 Brazilian Society of Plant Breeding. Printed in Brazil NOTE Pollen grain germination and fruit set in ‘Brazilian seedless’ sugar apple (Annona squamosa L.) Hellenn Thallyta Alves Mendes1, Márcia Regina Costa1, Silvia Nietsche1*, João Alison Alves Oliveira1 and Marlon Cristian Toledo Pereira1 Received 2 May 2012 Accepted 2 August 2012 Abstract - The purpose of this study was to evaluate fruit set and pollen grain germination of ‘Brazilian seedless’ sugar apple. Two experiments were performed: 1) one in a completely randomized design with three treatments (natural and artificial pollination and self-fertilization), with three replications of 10 flowers per plot, 2) and the other in a completely randomized design with three treat- ments: pollen grains of a seeded wild-type, ‘Brazilian seedless’ and atemoya (hybrid of sugar apple and cherimoya) ‘Gefner’, with five replications. A fruit set of 100% was achieved by artificial pollination. No fruit formation was observed after self-fertilization. The percentage of pollen grain germination in vitro was highest for ‘Brazilian seedless’ (52.5%) and lowest for cultivar Gefner (5.9%). Preliminary results indicated that pollen grains of ‘Brazilian seedless’ are viable and that natural or artificial pollination is essential for fruit set. Key words: Seedless fruit, atemoya, artificial pollination. INTRODUCTION to the authors, this mutant represents a particular case of stenospermocarpy, resulting in a failure in seed development In Brazil there are few well-established breeding pro- as the ovules or embryos get aborted (Lora et al. 2011). grams for sugar apple (also known as custard apple). Several cultivars have been developed including ‘Thai Lessard’ (a Despite being morphologically perfect, neither self or green type), ‘Purple’ or ‘Red’, ‘Kampong Mauve’ (purplish- cross-pollination takes place effectively in Annona spp.. Self- red types), and spontaneous seedless types known under pollination is hindered by the presence of protogyny, whereas different names, e.g., ‘Thai seedless’, ‘Cuban seedless’ and cross-pollination by insects is limited because the flowers ‘Brazilian seedless’ (Crane et al. 2005). According to Lora are not brightly colored and lack fragrance and nectar (Kahn et al. (2011), as Annona fruits do not normally develop et al. 1994, Pena et al. 2002).The low fruit set observed in parthenocarpically, hand pollination is commonly used to species of the Annonaceae family is associated with aspects ensure complete fertilization in commercial production. involving source of pollen grains and pollen grains viability (Saaveedra 1977, Rosell et al. 1999). Several studies have The absence of seeds in fruits can be a result of two shown how strongly pollination with viable pollen grains af- biologically distinct processes: parthenocarpy and steno- fects the physical and chemical characteristics of cherimoya, spermy (Revers 2006). Parthenocarpy may occur in cases custard apple and atemoya (Sulikeri et al. 1975, Kishirsagar where the ovary is able to develop without fertilization of the et al. 1976, Soria et al. 1990, Pereira et al. 2003). oosphere, whereas stenospermy is reported in cases where pollination and fertilization are required, but embryos are Considering the total absence of scientific studies on either not formed or are aborted before complete seed for- ‘Brazilian seedless’ mutant sugar apple, this work was mation (Stout 1946, Varoquaux et al. 2000). A recent study performed with the objective of evaluating the fruit set described the unique case of seedless fruit production in a by natural, artificial and self-fertilization and studying the mutant of Annona squamosa, ‘Thai seedless’. According pollen grain germination in this mutant. 1 Universidade Estadual de Montes Claros, Departamento de Ciências Agrárias, Campus de Janaúba, Reinaldo Viana 2630, 39.440-000, Janaúba, MG, Brazil. *E-mail: [email protected] Crop Breeding and Applied Biotechnology 12: 277-280, 2012 277 Hellenn Thallyta Alves Mendes, Márcia Regina Costa, Silvia Nietsche, João Alison Alves Oliveira and Marlon Cristian Toledo Pereira HTA Mendes et al. MATERIAL AND METHODS KNO3 H3BO (Brewbaker and Kwack 1963) at pH 7.0 and 100 g L-1 sucrose. After autoclaving the medium (121 oC), ‘Brazilian seedless’ mutant sugar apple, a wild-type 10 mL aliquots were distributed on Petri dishes. The pollen sugar apple accession (P2), and atemoya (a hybrid of sugar grains of each genotype were distributed on the surface of apple (Annona squamosa) and cherimoya (Annona cheri- the medium with a brush (number one) to promote a uni- mola) cultivar Gefner) were planted on an experimental form distribution. Then, the Petri dishes were placed in a farm in March 2004. Plants and rows were spaced 3 m and biological oxygen demand (BOD) incubator, in the dark, 4 m apart, respectively, and irrigated by a micro sprinkler at controlled temperature (25 ± 1 oC) for 6 hours. After this system. All recommended cultural practices were applied period, 100 pollen grains were counted per Petri dish with throughout the growth period. a magnifying glass (Ken-A-Vision-3310). Pollen grains The experiments were performed during March and April, were considered germinated when the tube length was 2009. The plants were properly identified and the flowers equal to or greater than the diameter of the pollen grain. covered with paper bags before reaching the pistillate stage. The experimental design was completely randomized with The artificial pollination was performed when the flowers three genotypes, five replications and two Petri dishes per of ‘Brazilian seedless’ sugar apple reached the pistillate plot. The data were subjected to analysis of variance at 5% stage. Then, pollen grains were collected in the staminate probability, using the statistical program SAEG (Euclydes stage and artificially pollinated with a brush number two, 1983). Averages of temperature, air humidity and time of from 8:00 to 9:00 am. Thereafter, the flowers were covered pollen grain collection are described in Table 1. again to keep pollinating insects away. For self-pollination, the flowers were wrapped in paper bags before reaching RESULTS AND DISCUSSION the pistillate stage and maintained in the wrapping until the No fruit set was observed when flowers of ‘Brazilian end of the period of pistillate flowers. The natural pollina- seedless’ sugar apple (Table 2) were self-pollinated. Souza tion was performed by tagging pistillate flowers that were et al. (2010) also reported the absence of fruit set after self- left without any protection to allow insect pollination. All pollination in seedless sugar apple. treatments were applied in the same plant. The experimental design was completely randomized with three treatments The results of this study and of others published by (self-pollination, natural pollination and artificial pollination), Souza et al. (2010) and Lora et al. (2011) suggest that for with three replications. A total of 30 flowers per treatment fruit production, the mutant seedless sugar apple depends were evaluated. The percentage of fruit set was obtained by on the stimulation by natural or artificial pollination. counting the total number of fruits 20 days after pollination. Artificial and natural pollination promoted higher levels The physiochemical characteristics of fruits were not per- of fruit set, 100% and 90%, respectively (Table 2). Differ- formed due to the high incidence of fruit borer (Cerconota ent percentages of fruit set were observed in Annona spp. annonela) that attacked and damaged the fruits. In A. cherimola, the fruit set was 84% to 96% with self- Five flowers of each genotype were harvested. Pollen pollen, but a reduction was observed with mixed pollen, grains from ‘Brazilian seedless’ sugar apple, a wild-type 38% to 69% (Richardson and Anderson 1996). Duarte and sugar apple accession (P2), and atemoya cultivar Gefner Escobar (1998) showed a 4,7% of fruit set in cherimoya were collected from staminate flowers at 7:00 am and im- when pollen grain from atemoya was used. Studies con- mediately placed in plastic bags and sent to the laboratory ducted by Melo et al. (2002) in São Paulo state, which of Biotechnology. The in vitro germination tests were per- evaluated the natural and artificial pollination of cherimoya -1 formed in culture medium (5g L agar, 1.27 mMCa (NO3) flowers, reports percentages of fruit set of 61.2 and 19.6%, 2 4H2O, 0.87 mM MgSO4 7H2O, 0.99 mM and 1.62 mM respectively. Cavalcante et al. (2009) obtained fruit set rates Table 1. Percentage of pollen germination of the ‘Brazilian seedless’, sugar apple accession (P2), and atemoya cultivar Gefner Cultivars Pollen Germination (%) Temperature (oC) Humidity (%) Time of pollen collection Brazilian Seedless 52.5a 27.2 43 7:00 Sugar apple (P2) 38.5a 26.0 44 7:00 Gefner 5.9b 26.0 44 7:00 CV 27.49 Averages followed by the same letter do not differ from each other by the Tukey test at 5% probability. 278 Crop Breeding and Applied Biotechnology 12: 277-280, 2012 Pollen grain germination and fruit set in ‘Brazilian seedless’ sugar apple (Annona squamosa L.) of 31.1%, 4.65% and 0% by artificial, natural and self- pollen grains from flowers of ‘Gefner’ and sugar apple. pollination in Annona crassiflora. The high percentage of According to Saavedra (1977) Annona pollen presented a fruit set by natural and artificial pollination observed in this good proportion of dyads and tetrads intermingled among study may be related to environmental conditions such as individual viable and non-viable pollen grains, and the tetrads the high temperatures during the experiment, presence of were incapable of germinating on the stigmatic surface in pollinating insects and pollen viability. cherimoya. The authors conclude that the high concentra- tion of tetrads observed in atemoya is probably due to their Table 2. Percentage of fruit set and number of flowers in ‘Brazilian seed- less’ sugar apple that were pollinated naturally, artificially and by selfing interspecific constitution.
Recommended publications
  • Mineral Composition, Nutritional Properties, Total Phenolics and Flavonoids Compounds of the Atemoya Fruit (Annona Squamosa L
    Anais da Academia Brasileira de Ciências (2016) (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201620150537 www.scielo.br/aabc Mineral composition, nutritional properties, total phenolics and flavonoids compounds of the atemoya fruit (Annona squamosa L. x Annona cherimola Mill.) and evaluation using multivariate analysis techniques WALTER N.L. DOS SANTOS1,2,4, MARIA CELESTE S. SAUTHIER1, DANNUZA D. CAVALCANTE2, CLÍCIA M.J. BENEVIDES1, FÁBIO S. DIAS3 and DANIELE C.M.B. SANTOS1 1Universidade do Estado da Bahia/UNEB, Departamento de Ciências Exatas e da Terra, Rua Silveira Martins, 2555, Cabula, 41195-001 Salvador, BA, Brasil 2Universidade Federal da Bahia/UFBA, Departamento de Química Analítica, Campus de Ondina, Av. Adhemar de Barros, s/n, Ondina, 40170-290 Salvador, BA, Brasil 3Universidade Federal do Recôncavo Baiano/UFRB, Departamento de Química, Rua Rui Barbosa, s/n, Centro, 44380-000 Cruz das Almas, BA, Brasil 4Instituto Nacional de Ciência e Tecnologia/INCT, de Energia e Ambiente, Campus de Ondina, Av. Adhemar de Barros, s/n, Ondina, 40170-290 Salvador, BA, Brasil Manuscript received on July 17, 2015; accepted for publication on May 27, 2016 ABSTRACT The atemoya is a hybrid fruit obtained by crossing of cherimoya (Annona cherimola Mill.) with sweet sop (Annona squamosa L.). The information about chemical composition of atemoya is scarce. The mineral composition was evaluated employing Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES) and the centesimal composition and the physico-chemical parameters were assessed employing procedures described in the AOAC methods. The total phenolic compounds (TPC) and total flavonoids (TF) were determined using spectroanalytical methods.
    [Show full text]
  • Cherimoya and Guanabana in the Archaeological Record of Peru
    Journal of Ethnobiology 17(2):235-248 Winter 1997 CHERIMOYA AND GUANABANA IN THE ARCHAEOLOGICAL RECORD OF PERU THOMAS POZORSKI AND SHELIA POZORSKI Department of Psychology and Anthropology University of Texas-Pan American Edinburg, TX 78539 ABSTRACT.-Most researchers commonly assume that both cherimoya (Annona cherimolia) and guanabana (Annona muricata) have long been a part of the prehistoric record of ancient Peru. However, archaeological and ethnohistoric research in the past 25years strongly indicates that cherimoya was not introduced into Peru until ca. A.D. 1630 and that guanabana is only present after ca. A.D. 1000and is mainly associated with sites of the Chimu culture. RESUMEN.-La mayorfa de los investigadores suponen que tanto la chirimoya (Annona cherimola)como la guanabana (Annona muricata) han sido parte del registro prehist6rico del antiguo Peru por largo tiempo . Sin embargo, las in vestigaciones arqueol6gicas y etnohist6ricas de los ultimos veinticinco afios indican fuertemente que la chirimoya no fue introducida al Peru sino hasta 1630 D.C., Y que la guanabana esta presente s610 despues de aproximadamente 1000 D.C., Y esta asociada principalmente con sitios de la cultura chirmi. RESUME.- La plupart des chercheurs supposent couramment qu'une espece de pomme cannelle (Annonacherimolia)et le corossol (Annona muricata) ont faitpartie, pendant une longue periode, de l'inventaire prehistorique du Perou. Toutefois, les recherches archeologiques et ethnohistoriques des vingt-cinq dern ieres annees indiquent fortement que la pomme cannelle A. cherimolia ne fut introduite au Perou qu'aux environs de 1630 apr. J.-c. et la presence du corossol n'est attestee qu'en 1000apr.
    [Show full text]
  • The Cherimoya in Argentina
    California Avocado Society 1942 Yearbook 26: 122-123 The Cherimoya in Argentina Ing. Hernando de Irmay (Translation) The cultivation of the cherimoya in this country is very old. According to data which I have been able to gather, the cherimoyas were brought here from Bolivia, possibly from the region of Tarija or Santa Cruz de la Sierra. There is no record that named varieties of cherimoyas were imported from the exterior, and the existing orchards are almost all of seedlings grown from seeds of the better fruits. In the regions of Salta, Tucuman, and Jujuy, where about 95% of the orchards are located, the method of budding that has been and is still in use is the "umbonata como pie" (bent like a foot, or bent at right angle) which method, up to the present time, has given the best results. At the present time we have in Salta a selection of the best varieties of cherimoya— varieties which have been chosen for their excellent fruits, good production, and greatest resistance to frost. This selection consists of nine varieties, and the distribution of these varieties has already begun. The difficulties which we have in extending on a larger scale the cultivation of the cherimoya consist of the small production of the trees under cultivation and of the poor resistance to occasional freezes in the areas being cultivated. ROLINIA ROOT-STOCK INCREASES HARDINESS In regard to increasing the resistance to frost, the writer started years ago to experiment with the Rolinia emarginata (Rolinia is a plant belonging to the botanical family "Annonaceae") a species which grows wild in Misiones, Formosa, and other areas bordering Paraguay, where it has resisted temperatures as low as 10° centigrade below freezing, on certain occasions, without injury.
    [Show full text]
  • Annona× Atemoya Mabb.)
    Journal of Agricultural Science; Vol. 11, No. 7; 2019 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Optimum Sample Size in the Germination of Atemoya Seeds (Annona× atemoya Mabb.) Rafaela Lanças Gomes1, José Raimundo de Souza Passos2, Juliana Iassia Gimenez1, Marília Caixeta Sousa1, Mariana de Fatima De-Pieri-Oliveira1, Carolina Ovile Mimi1 & Gisela Ferreira1 1 Department of Botany, ‘Júlio de Mesquita Filho’ São Paulo State University, Botucatu Campus, Botucatu, São Paulo, Brazil 2 Department of Biostatistics, ‘Júlio de Mesquita Filho’ São Paulo State University, Botucatu Campus, Botucatu, São Paulo, Brazil Correspondence: Rafaela Lanças Gomes, Department of Botany, IBB, ‘Júlio de Mesquita Filho’ São Paulo State University, Botucatu Campus, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n°, CEP: 18618-689, Botucatu, São Paulo, Brazil. Tel: 55-149-9759-3173. E-mail: [email protected] Received: February 11, 2019 Accepted: March 18, 2019 Online Published: May 31, 2019 doi:10.5539/jas.v11n7p239 URL: https://doi.org/10.5539/jas.v11n7p239 Abstract Atemoya currently has its seeds studied in several aspects, from the technological and physiological point of view. However, for the performance of the germination test, there is no standardization in relation to the number of seeds and replicates. Thus, this work aims to determine the optimal sample size for germination tests with atemoya seeds. A germination test was carried out with 5 treatments, considering 10, 20, 30 40 and 50 seeds per sampling unit with 50 replicates of each. Data were analyzed using logistic regression, non-linear Gompertz regression models, bootstrap simulation and graphs in the form of contour lines in order to be able to infer the best binomial of the number of seeds per sampling unit and the number of replicates.
    [Show full text]
  • Comparative Reproductive Biology of Two Florida Pawpaws Asimina Reticulata Chapman and Asimina Tetramera Small Anne Cheney Cox Florida International University
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-5-1998 Comparative reproductive biology of two Florida pawpaws asimina reticulata chapman and asimina tetramera small Anne Cheney Cox Florida International University DOI: 10.25148/etd.FI14061532 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biology Commons Recommended Citation Cox, Anne Cheney, "Comparative reproductive biology of two Florida pawpaws asimina reticulata chapman and asimina tetramera small" (1998). FIU Electronic Theses and Dissertations. 2656. https://digitalcommons.fiu.edu/etd/2656 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida COMPARATIVE REPRODUCTIVE BIOLOGY OF TWO FLORIDA PAWPAWS ASIMINA RETICULATA CHAPMAN AND ASIMINA TETRAMERA SMALL A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Anne Cheney Cox To: A rthur W. H arriott College of Arts and Sciences This dissertation, written by Anne Cheney Cox, and entitled Comparative Reproductive Biology of Two Florida Pawpaws, Asimina reticulata Chapman and Asimina tetramera Small, having been approved in respect to style and intellectual content, is referred to you for judgement. We have read this dissertation and recommend that it be approved. Jorsre E. Pena Steven F. Oberbauer Bradley C. Bennett Daniel F. Austin Suzanne Koptur, Major Professor Date of Defense: November 5, 1998 The dissertation of Anne Cheney Cox is approved.
    [Show full text]
  • Annona Muricata L. = Soursop = Sauersack Guanabana, Corosol
    Annona muricata L. = Soursop = Sauersack Guanabana, Corosol, Griarola Guanábana Guanábana (Annona muricata) Systematik Einfurchenpollen- Klasse: Zweikeimblättrige (Magnoliopsida) Unterklasse: Magnolienähnliche (Magnoliidae) Ordnung: Magnolienartige (Magnoliales) Familie: Annonengewächse (Annonaceae) Gattung: Annona Art: Guanábana Wissenschaftlicher Name Annona muricata Linnaeus Frucht aufgeschnitten Zweig, Blätter, Blüte und Frucht Guanábana – auch Guyabano oder Corossol genannt – ist eine Baumart, aus der Familie der Annonengewächse (Annonaceae). Im Deutschen wird sie auch Stachelannone oder Sauersack genannt. Inhaltsverzeichnis [Verbergen] 1 Merkmale 2 Verbreitung 3 Nutzen 4 Kulturgeschichte 5 Toxikologie 6 Quellen 7 Literatur 8 Weblinks Merkmale [Bearbeiten] Der Baum ist immergrün und hat eine nur wenig verzweigte Krone. Er wird unter normalen Bedingungen 8–12 Meter hoch. Die Blätter ähneln Lorbeerblättern und sitzen wechselständig an den Zweigen. Die Blüten bestehen aus drei Kelch- und Kronblättern, sind länglich und von grüngelber Farbe. Sie verströmen einen aasartigen Geruch und locken damit Fliegen zur Bestäubung an. Die Frucht des Guanábana ist eigentlich eine große Beere. Sie wird bis zu 40 Zentimeter lang und bis zu 4 Kilogramm schwer. In dem weichen, weißen Fruchtfleisch sitzen große, schwarze (giftige) Samen. Die Fruchthülle ist mit weichen Stacheln besetzt, welche die Überreste des weiblichen Geschlechtsapparates bilden. Die Stacheln haben damit keine Schutzfunktion gegenüber Fraßfeinden. Verbreitung [Bearbeiten] Die Stachelannone
    [Show full text]
  • Mineral Composition, Nutritional Properties, Total Phenolics and Flavonoids Compounds of the Atemoya Fruit (Annona Squamosa L
    Anais da Academia Brasileira de Ciências (2016) 88(3): 1243-1252 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201620150537 www.scielo.br/aabc Mineral composition, nutritional properties, total phenolics and flavonoids compounds of the atemoya fruit (Annona squamosa L. x Annona cherimola Mill.) and evaluation using multivariate analysis techniques WALTER N.L. DOS SANTOS1,2,4, MARIA CELESTE S. SAUTHIER1, DANNUZA D. CAVALCANTE2, CLÍCIA M.J. BENEVIDES1, FÁBIO S. DIAS3 and DANIELE C.M.B. SANTOS1 1Universidade do Estado da Bahia/UNEB, Departamento de Ciências Exatas e da Terra, Rua Silveira Martins, 2555, Cabula, 41195-001 Salvador, BA, Brasil 2Universidade Federal da Bahia/UFBA, Departamento de Química Analítica, Campus de Ondina, Av. Adhemar de Barros, s/n, Ondina, 40170-290 Salvador, BA, Brasil 3Universidade Federal do Recôncavo Baiano/UFRB, Departamento de Química, Rua Rui Barbosa, s/n, Centro, 44380-000 Cruz das Almas, BA, Brasil 4Instituto Nacional de Ciência e Tecnologia/INCT, de Energia e Ambiente, Campus de Ondina, Av. Adhemar de Barros, s/n, Ondina, 40170-290 Salvador, BA, Brasil Manuscript received on July 17, 2015; accepted for publication on May 27, 2016 ABSTRACT The atemoya is a hybrid fruit obtained by crossing of cherimoya (Annona cherimola Mill.) with sweet sop (Annona squamosa L.). The information about chemical composition of atemoya is scarce. The mineral composition was evaluated employing Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES) and the centesimal composition and the physico-chemical parameters were assessed employing procedures described in the AOAC methods.
    [Show full text]
  • Annona Cherimola Mill.) and Highland Papayas (Vasconcellea Spp.) in Ecuador
    Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Academiejaar 2001 – 2002 DISTRIBUTION AND POTENTIAL OF CHERIMOYA (ANNONA CHERIMOLA MILL.) AND HIGHLAND PAPAYAS (VASCONCELLEA SPP.) IN ECUADOR VERSPREIDING EN POTENTIEEL VAN CHERIMOYA (ANNONA CHERIMOLA MILL.) EN HOOGLANDPAPAJA’S (VASCONCELLEA SPP.) IN ECUADOR ir. Xavier SCHELDEMAN Thesis submitted in fulfilment of the requirement for the degree of Doctor (Ph.D.) in Applied Biological Sciences Proefschrift voorgedragen tot het behalen van de graad van Doctor in de Toegepaste Biologische Wetenschappen Op gezag van Rector: Prof. dr. A. DE LEENHEER Decaan: Promotor: Prof. dr. ir. O. VAN CLEEMPUT Prof. dr. ir. P. VAN DAMME The author and the promotor give authorisation to consult and to copy parts of this work for personal use only. Any other use is limited by Laws of Copyright. Permission to reproduce any material contained in this work should be obtained from the author. De auteur en de promotor geven de toelating dit doctoraatswerk voor consultatie beschikbaar te stellen en delen ervan te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting uitdrukkelijk de bron vermelden bij het aanhalen van de resultaten uit dit werk. Prof. dr. ir. P. Van Damme X. Scheldeman Promotor Author Faculty of Agricultural and Applied Biological Sciences Department Plant Production Laboratory of Tropical and Subtropical Agronomy and Ethnobotany Coupure links 653 B-9000 Ghent Belgium Acknowledgements __________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Acknowledgements After two years of reading, data processing, writing and correcting, this Ph.D. thesis is finally born. Like Veerle’s pregnancy of our two children, born during this same period, it had its hard moments relieved luckily enough with pleasant ones.
    [Show full text]
  • (+)-Catechin and Quercetin from Pawpaw Pulp A
    Characterization of (+)-Catechin and Quercetin from Pawpaw Pulp A thesis presented to the faculty of the College of Health Sciences and Professions of Ohio University In partial fulfillment of the requirements for the degree Master of Science Jinsoo Ahn June 2011 © 2011 Jinsoo Ahn. All Rights Reserved. 2 This thesis titled Characterization of (+)-Catechin and Quercetin from Pawpaw Pulp by JINSOO AHN has been approved for the School of Applied Health Sciences and Wellness and the College of Health Sciences and Professions by Robert G. Brannan Assistant Professor of Applied Health Sciences and Wellness Randy Leite Interim Dean, College of Health Sciences and Professions 3 ABSTRACT AHN, JINSOO, M.S., June 2011, Human and Consumer Sciences, Food and Nutrition Characterization of (+)-Catechin and Quercetin from Pawpaw Pulp Director of Thesis: Robert G. Brannan This thesis investigates the concentration of total phenolics and total flavonoids in pulp extracts of pawpaw harvested in 2008, 2009, and 2010, and the concentration of (+)- catechin and quercetin flavonoids in 2010 pawpaw pulp extracts using high performance liquid chromatography (HPLC). Next, influence of frozen storage and air or vacuum packaging of pawpaw pulp on the concentration of (+)-catechin and quercetin flavonoids was examined. In addition, properties of pawpaw pulp such as moisture content, lipid content, percent sugar, color, and pH were measured. Total phenolics were determined using the Folin-Ciocalteu assay and reported as µmol gallic acid equivalent (GAE)/ g wet tissue. The concentration was observed in the order of 2009 sample (3.91 ± 1.61) < 2008 sample (11.19 ± 0.57) < 2010 sample (14.11 ± 1.90).
    [Show full text]
  • Evaluation of Certain Food Additives
    952 Food Additives WHO Technical Report Series WHO Technical Sixty-ninth report of the FOOD ADDITIVES Joint FAO/WHO Expert Committee on Food and Agriculture Organization of the United Nations S I N A P T A F I EVALUATION OF CERTAIN EVALUATION OF CERTAIN FOOD ADDITIVES WHO Technical Report Series 952 ISBN 978 92 4 120952 6 2,3-trimethylbutyramide (No. 1595) and N, , phytosterols, phytostanols and their esters, , calcium lignosulfonate (40–65), ethyl lauroyl arginate, paprika Pichia pastoris A. niger -unsaturated aldehydes, acids and related alcohols, acetals and esters; β , α expressed in niger Aspergillus L-monomenthyl glutarate (No. 1414). recommendations for intakes and Annexed to the report are tables summarizing the Committee’s toxicological evaluations of the food additives considered. aliphatic secondary alcohols, ketones and related esters; alkoxy-substituted allylbenzenes present in foods and essential oils and used as flavouring agents; esters of aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids; furan-substituted aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers; miscellaneous nitrogen-containing substances; monocyclic and bicyclic secondary alcohols, ketones and related esters; hydroxy- and alkoxy-substituted benzyl derivatives; and substances structurally related to menthol). Specifications for the following food additives were revised: canthaxanthin; carob bean gum and carob bean gum (clarified); chlorophyllin copper
    [Show full text]
  • 7.98 25 Simply Juice Every Day! Points Selected Varieties Per Lb
    breakfast savings Hansen’s Apple Juice 64 oz. $ Cherimoya 2 for 4 This tropical fruit has the flavors of bananas, pineapple and strawberries in one delicious package! Sara Lee Grown in Mexico. Deluxe Bagels 15 or Oroweat points per lb. lb. English 5.99 20 Muffins save 1.00 lb. Selected varieties points 6 count Green, Red or Cineraria 10 Black Seedless In 6 Inch $ Wrapped Pot for points Grapes 7.99 2 5 Grown in Chile. 2.49 lb. save 50¢ lb. 5 Lb. Bag organic Organic Carrots Sweet Pineapple Grown in the U.S. Kellogg’s Kids’ Cereal, Enjoy a sweet taste Quaker Life or Cap ’n Crunch of the tropics with 10 5-Stem Royal Lilies Selected varieties this luscious golden $ Beautiful bunches 10.5 oz. to 20 oz. pineapple. Grown for points 2.49 ea. of color. in Costa Rica. 2 5 $ save 2.98 on 2 save 1.00 ea. 6.99 4 for 10 Nature Valley or Quaker Chewy Granola Bars Selected varieties 6 oz. to 8.9 oz. $ Exclusively at our stores! 4 for 10 Fresh Pacific Northwest Fresh Wild Caught Texas Steelhead Trout Gulf Shrimp FOLD 10 Fillets Raw • Jumbo Size lb. 16 to 25 count lb. Farm-raised 7.99 11.99 points FOLD Fresh seafood availability subject to weather and fishing conditions. While supplies last. Aunt Jemima Syrup or Mix Selected varieties 24 oz. to 32 oz. $ Save up to $3.01 lb. 4 for 10 2 steaks or more lb. 7.98 25 Simply Juice every day! points Selected varieties per lb.
    [Show full text]
  • Do Beetles Prefer the Odor of Female-Stage to Male-Stage Flowers in Atemoya, a Cantharophylous Protogynous Fruit Tree (Annonaceae)?
    J. Entomol. Res. Soc., 19(2): 43-52, 2017 ISSN:1302-0250 Do Beetles Prefer the Odor of Female-Stage to Male-Stage Flowers in Atemoya, a Cantharophylous Protogynous Fruit Tree (Annonaceae)? Morio TSUKADA1* Miki INUI1 Noritaka SUZAKI2 1 Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, JAPAN 2 Kinan Fruit Tree Science Branch, Mie Prefecture Agricultural Research Institute, Mihama, Mie 519-5202, JAPAN, e-mails: *[email protected] , [email protected] ABSTRACT The flowers of annonaceous fruit trees cherimoya (Annona cherimola) and atemoya (A. cherimola x squamosa) exhibit protogynous dichogamy. Their main pollinators are sap beetles (Coleoptera: Nitidulidae). However, pollination by beetles is usually not sufficient for commercial fruit production, so costly hand pollination is required in many areas. These beetles on cherimoya and atemoya are thought to visit the female-stage flower, remain inside it, and leave the flower when it has transitioned to the male stage; however, no study has yet directly elucidated the visiting behavior of the beetles. In this study, we examined this hypothesis using olfactometer testing in the field. Both male and female sap beetles, Carpophilus marginellus, were significantly attracted to the odor of female-stage flowers, but not to the odor of late male-stage flowers. We conclude that the beetles prefer the odor of female-stage flowers to that of late male-stage flowers. These findings support the above hypothesis describing beetle pollination behavior. Key words: Annonaceae, Nitidulidae, floral odor, beetle pollination, behavior. INTRODUCTION The custard apple, or cherimoya, Annona cherimola Miller, the sugar apple, A.
    [Show full text]