Herbivory, Phenotypic Variation, and Reproductive Barriers in Fucoids

Total Page:16

File Type:pdf, Size:1020Kb

Herbivory, Phenotypic Variation, and Reproductive Barriers in Fucoids Herbivory, phenotypic variation, and reproductive barriers in fucoids Helena Forslund ©Helena Forslund, Stockholm University 2012 Cover illustration: Helena Forslund ISBN 978-91-7447-538-8 Printed in Sweden by US-AB, Stockholm 2012 Distributor: Department of Botany, Stockholm University Live your life filled with joy and wonder Live your life filled with joy and thunder - R.E.M. Doctoral dissertation Helena Forslund Department of Botany Stockholm University SE-106 91 Stockholm Sweden Herbivory, phenotypic variation, and reproductive barriers in fucoids Abstract. Along the shores of the Northern hemisphere Fucus (Phaeophyceae) species are a prominent presence, providing substrate, shelter, and food for many species. Fucus evanescens, a non-indigenous species (NIS) in Sweden, and F. radicans, a recently described species that so far has only been found inside the species poor Baltic Sea, are the focus of this thesis. Interactions with enemies (e.g. predators, herbivores, parasites) have been shown to play a role in the success of NIS. The low consumption of Fucus evanescens by the generalist gastropod Littorina littorea in Sweden was found to depend on high levels of chemical defense in the introduced population, not the failure of the herbivore to recognize F. evanescens as suitable food. A survey of the relative abundance of F. radicans and F. vesiculosus and the most common associated fauna along the Swedish Bothnian Sea coast showed that F. radicans and F. vesiculosus are equally abundant throughout the range of F. radicans. The most common associated fauna were found to be more abundant on F. radicans compared to F. vesiculosus. In Sweden, where F. radicans had lower levels of defense chemicals than F. vesiculosus, F. radicans was grazed more than F. vesiculosus in bioassays. This could, together with other factors, influence the range of F. radicans. Fucus radicans and F. vesiculosus are closely related, recently separated, and growing sympatrically, therefore, possible reproductive barriers between F. radicans and F. vesiculosus were studied. In Estonia F. radicans and F. vesiculosus reproduces at different times of the year. No such clear reproductive barrier was found between the two species in Sweden where they reproduce at the same time and fertilization success and germling survival were the same for hybrids as for F. vesiculosus. Since the high clonality of F. radicans means that the gentic diversity in F. radicans populations is low I investigated how genetic diversity translates to phenotypic diversity in nine traits. Phlorotannin levels, recovery after desiccation, and recovery after freezing showed inherited variation, while the other six traits showed no variation related to genetic diversity. Phenotypic variation in populations of F. radicans will be higher in populations with higher genetic diversity and this might be beneficial to the community. Keywords – Non-indigenous species; Enemy Release Hypothesis; Asexual reproduction; Phlorotannins; Distribution List of papers This thesis is based on the following papers, which are referred to by their roman numerals in the text: I. Forslund H, Eriksson O, Kautsky L (2012). Grazing and geographic range of the Baltic seaweed Fucus radicans (Phaeophyceae). Marine Biology Research 8:322-330. II. Forslund H, Wikström SA, Pavia H (2010). Higher resistance to herbivory in introduced compared to native populations of a seaweed. Oecologia 164:833-840. III. Forslund H, Kautsky L. Reproduction and reproductive isolation in Fucus radicans (Phaeophyceae). Accepted for publication in Marine Biology Research. IV. Johannesson K, Forslund H, Capetillo NÅ, Kautsky L, Johansson D, Pereyra R, Råberg S (2012). Phenotypic variation in sexually and asexually recruited individuals of the Baltic Sea endemic macroalga Fucus radicans: in the field and after growth in a common-garden. BMC Ecology 12. In paper I I planned and performed the study and experiments as well as wrote the paper and did the statistical analyses. For paper II I planned and performed experiments and studies, wrote most of the paper and did the statistical analyses. For paper III I planned and performed the experiments and studies, wrote the text and performed statistical analyses. For paper IV I planned and performed studies and experiments. Paper I and III is reprinted with permission from Taylor and Francis. Paper II is reprinted with kind permission from Springer Science and Business Media. Paper IV is reprinted with permission from BMC Ecology. Content Foreword ........................................................................................................... 10 Introduction ....................................................................................................... 11 The Fucus species studied ............................................................................. 11 Objectives of the thesis ................................................................................. 13 The associated flora and fauna of seaweed beds ......................................... 13 Herbivory and herbivory defense in fucoid algae ......................................... 14 Non-indigenous species and marine introductions ....................................... 15 Reproduction and reproductive isolation in Fucus species ........................... 17 Effects of genetic diversity on resilience and biodiversity in the Fucus community ..................................................................................................... 18 Study area ...................................................................................................... 19 The herbivores ............................................................................................... 21 Studies ............................................................................................................... 21 Surveys of relative abundance of F. radicans and F. vesiculosus and diversity and abundance of the associated fauna ....................................................... 21 Herbivore defense and phlorotannins .......................................................... 22 Reproductive effort and reproductive isolation of F. radicans and F. vesiculosus ..................................................................................................... 24 Genetic diversity and variation in traits in F. radicans .................................. 24 Results and discussion ....................................................................................... 25 Acknowledgements ........................................................................................... 30 References ......................................................................................................... 31 Svensk sammanfattning .................................................................................... 42 Tack! .................................................................................................................. 47 Appendix 1 ......................................................................................................... 49 Foreword Under the surface of the ocean, where this thesis will take you, an alien world meets us. More people have walked on the surface of the moon than in the deepest trenches in the oceans. I hope and expect that we will be endlessly awed by the mysteries that are uncovered as scientists continue to learn more, but also that we will never learn everything there is to know. My astronomy and astrophysics professor would spend hours explaining a single theory for us, only to end the lecture by saying, “Or at least this is what the scientists are saying right now. If you have a better theory I’m willing to listen - what we know might change in a year anyway.” I would step out from the university building into the night and walk home, looking up at the stars and feeling awed by the thought of both everything we do not know and everything we will never understand. Studying biology only increased this sense of wonder but this time the focus was much closer than the stars: my cells, the bacteria on my skin, and the trees outside of my window - each no less amazing or unknown than the cosmos. Over the last decades we have learned that organisms in the ocean that seem to be among the simplest forms of life, the algae, have intricate systems that can measure the moon’s phases, sense light, send warning messages and sense how much the water is moving. We have found that a single genetic individual can be spread over a large area – it is as though thousands of copies of you were living in an area so wide that it would take more than a week to bike through. This thesis focuses on a genus of seaweeds – the Fucus – that are present along temperate shores on the northern hemisphere. Living under water, they exist in an environment that is so foreign to us that it is hard to imagine. They are so different from us that intuition and common sense do not apply to them. They synthesize energy from the sun, they cannot move, and while they might seem like a simple slimy presence along the shores they have intricate systems to sense and react to their environment. 10 Introduction The Fucus species studied Seaweeds of the genus Fucus (Phaeophyceae) are a group of large, perennial brown seaweeds. They are found in temperate and arctic waters on the northern hemisphere. On intertidal rocky shores they usually form a belt with different fucoid species dominating at different shore levels. Pelvetia canaliculata (L.)
Recommended publications
  • Colour Polymorphism and Genetic Variation in <Emphasis Type="Italic">Idotea Baltica</Emphasis> Populations
    The Ecological Distribution of British Species of Idotea (Isopoda) STOR E. Naylor The Journal of Animal Ecology, Vol. 24, No. 2. (Nov., 1955), pp. 255-269. Stable URL: http://links.jstor.org/sici?sici=0021-8790%28195511%2924%3A2%3C255%3ATEDOBS%3E2.0.CO%3B2-%23 The Journal of Animal Ecology is currently published by British Ecological Society. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/joumals/briteco.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact [email protected]. http://www.j stor.org/ Tue Oct 3 15:24:28 2006 VOLUME 24, No. 2 NOVEMBER 1955 THE ECOLOGICAL DISTRIBUTION OF BRITISH SPECIES OF IDOTEA (ISOPODA) BY E. NAYLOR Marine Biological Station, Port Erin (With 4 Figures in the Text) INTRODUCTION Descriptions of the ecology of Idotea are often generalized, and there appears to be no comprehensive work on the habits of individual species.
    [Show full text]
  • To Down Load Appendix 1
    APPENDIX 1 Chapter 1 Pictures of dominant species ................................................................................................................................. 2 Species inventory of micro-invertebrate species found ....................................................................................... 16 Bathymetry Map of Pleasant Bay ........................................................................................................................ 18 Eelgrass Locations in Pleasant Bay ..................................................................................................................... 19 Sidescan Map of Pleasant Bay ............................................................................................................................. 20 Chapter 2 Species inventory of macro-invertebrate and fish species by gear type .............................................................. 21 Chapter 3 Prey otoliths and hard parts recovered during seal scat processing ..................................................................... 24 1 Pictures of dominant species Disclaimer: biological samples were treated with ethanol and Rose Bengal in the laboratory to preserve the samples. Rose Bengal is a stain commonly used in microscopy and stains cell tissue a bright pink. This is useful in the visual detection of microscopic animals in sediment samples. An overwhelming majority of micro invertebrate species do not have common names. The common names used here are listed in Pollock’s “A Practical Guide
    [Show full text]
  • New Records of Benthic Brown Algae (Ochrophyta) from Hainan Island (1990 - 2016)
    Titlyanova TV et al. Ochrophyta from Hainan Data Paper New records of benthic brown algae (Ochrophyta) from Hainan Island (1990 - 2016) Tamara V. Titlyanova1, Eduard A. Titlyanov1, Li Xiubao2, Bangmei Xia3, Inka Bartsch4 1National Scientific Centre of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia; 2Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 3Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China; 4Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany Corresponding author: E Titlyanov, e-mail: [email protected] Abstract This study reports on the intertidal and shallow subtidal brown algal flora from Hainan Island in the South China Sea, based on extensive sample collection conducted in 1990, 1992 and 2008−2016. The analysis revealed 27 new records of brown algae for Hainan Island, including 5 species which also constitute new records for China. 21 of these species are de- scribed with photographs and an annotated list of all species with information on life forms, habitat (localities and tidal zones) and their geographical distribution is provided. Keywords: Hainan Island, new records, seaweeds, brown algae Introduction et al. 1994; Hodgson & Yau 1997; Tadashi et al. 2008). Overall, algal species richness also changed. Hainan Island is located on the subtropical northern Partial inventory of the benthic flora of Hainan has periphery of the Pacific Ocean in the South China Sea already been carried out (Titlyanov et al. 2011a, 2015, 2016; (18˚10′-20˚9′ N, 108˚37′-111˚1′ E).
    [Show full text]
  • Hepatopancreatic Endosymbionts in Coastal Isopods (Crustacea: Isopoda)
    Marine Biology 2001) 138: 955±963 Ó Springer-Verlag 2001 M. Zimmer á J. P. Danko á S. C. Pennings A. R. Danford á A. Ziegler á R. F. Uglow á T. H. Carefoot Hepatopancreatic endosymbionts in coastal isopods Crustacea: Isopoda), and their contribution to digestion Received: 28 August 2000 / Accepted: 8 December 2000 Abstract Three isopod species Crustacea: Isopoda), phenolic compounds was most developed in one of the commonly found in the intertidal and supratidal zones more marine species, suggesting that this trait may have of the North American Paci®c coast, were studied with evolved independently in isopod species that consume a respect to symbiotic microbiota in their midgut glands phenolic-rich diet, whether in marine habitats or on hepatopancreas). Ligia pallasii Oniscidea: Ligiidae) land. contained high numbers of microbialsymbionts in its hepatopancreatic caeca. Numbers of endosymbionts were strongly reduced by ingestion of antibiotics. By contrast, Introduction the hepatopancreas of Idotea wosnesenskii Valvifera: Idoteidae) and Gnorimosphaeroma oregonense Sphae- Endosymbionts are well known to play a key role in the romatidea: Sphaeromatidae) did not contain any mic- digestive processes of many terrestrialspecies summa- robiota. Results of feeding experiments suggest that rized in Martin 1983; Slaytor 1992; Breznak and Brune microbialendosymbionts contribute to digestive pro- 1994); however, their role in marine invertebrate species cesses in L. pallasii, the most terrestrialof the three is poorly understood. While studies have shown that gut isopods that we studied. The acquisition of digestion- microbiota exist in some marine invertebrates, know- enhancing endosymbionts may have been an important ledge of their nutritional role is scanty cf.
    [Show full text]
  • Idotea Granulosa Rathke, 1843
    Idotea granulosa Rathke, 1843 AphiaID: 119044 ISÓPODE Animalia (Reino) >Arthropoda (Filo) >Crustacea (Subfilo) >Multicrustacea (Superclasse) >Malacostraca (Classe) >Eumalacostraca (Subclasse) > Peracarida (Superordem) > Isopoda (Ordem) > Valvifera (Subordem) > Idoteidae (Familia) Rainer Borcherding - Schutzstation Wattenmeer, via beachexplorer.org Estatuto de Conservação 1 Sinónimos Idotea cretaria Dahl, 1916 Referências additional source Schotte, M., B. F. Kensley, and S. Shilling. (1995-2017). World list of Marine, Freshwater and Terrestrial Crustacea Isopoda. National Museum of Natural History Smithsonian Institution: Washington D.C., USA [website archived on 2018-01-25]. [details] additional source Rappé, G. (1989). Annoted checklist of the marine and brackish-water Isopoda (Crustacea, Malacostraca) of Belgium, in: Wouters, K.; Baert, L. (Ed.) (1989). Proceedings of the Symposium “Invertebrates of Belgium”. pp. 165-168 [details] basis of record van der Land, J. (2001). Isopoda – excluding Epicaridea, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50: pp. 315-321 [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] original description Rathke, H. (1843). Beiträge zur Fauna Norwegens. Nova Acta Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum, Breslau & Bonn. 20: 1-264c., available online at https://doi.org/10.5962/bhl.title.11613 [details] additional source Dyntaxa.
    [Show full text]
  • Synidotea Laevidorsalis Potential in RI COASTAL WATERS Asian Isopod Invader
    GUIDE TO MARINE INVADERS Synidotea laevidorsalis Potential IN RI COASTAL WATERS Asian isopod Invader PHYSICAL DESCRIPTION • Small, flattened (from top to bottom), crustacean (Isopoda) • Body color mottled tan to brown • Body elongated, widest in middle (thorax), with females slightly wider than males • Blunt, concave tail (telson) • Can grow to 1.2 in (3 cm) in length eyes located on Synidotea laevidorsalis lateral surface (dorsal view, female) of head shown at 200% actual size SERTC / SCDNR SERTC Left: Dorsal view of female Above: Dorsal view of male body widest at central thorax HABITAT PREFERENCE 7 pairs of • Found in shallow, subtidal waters attached to docks, appendages pilings, ropes, and other submerged structures • Prefers calm, protected waters; brackish water to full seawater 1 cm concave telson • Often clings to algae and hydroids with 2 blunt points © Rob Gough, DFBW 1 2 3 4 5 6 7 8 GUIDE TO MARINE INVADERS Synidotea laevidorsalis Potential IN RI COASTAL WATERS Asian isopod Invader INVASION STATUS & ECOLOGICAL CONCERNS Synidotea laevidorsalis is native to the Western Pacific Ocean and has been introduced to Europe, South America, Australia, and the United States, including San Francisco Bay, South Carolina, and the Delaware Bayshore of New Jersey. A marine isopod, S. laevidorsalis must be submerged in water to breathe. S. laevidorsalis grows to about 3 cm in length and can be found on docks and pilings among seaweed and hydroids. This isopod is classified as an omnivorous scavenger, eating both dead and living material, particularly hydroids. The camouflage pattern on its body allows it to blend in with its environment, and the tiny claws on each leg help it cling to surfaces.
    [Show full text]
  • Chapter 8 Benthic Assessment of Marine Areas of Particular
    Chapter 8 Benthic assessment of marine areas of particular ecological importance within the German Baltic Sea EEZ Michael L. Zettlera and Fritz Gosselckb a Baltic Sea Research Institute, Rostock b Institute for Applied Ecology, Broderstorf Abstract The Habitats Directive is one of the main legal tools of the European Union to preserve biodiversity by maintaining and restoring natural habitats, and establishing a network of protected sites (NATURA 2000). One point of interest is the characterisation of marine habitats to localise the areas that fulfil the protection targets. Of the habitats listed in Annex I of the Habitats Directive, mainly reefs and sandbanks are relevant in the case of German Baltic offshore waters. Along a strong salinity gradient (5 to 25 psu), four planned offshore Marine Protected Areas (MPAs) within the German Exclusive Economic Zone (EEZ) of the Baltic Sea were thoroughly investigated in this study. More than 250 locations were analysed using a combination of standard sampling methods, underwater video technique, and measurement of abiotic factors (salinity, oxygen, sediment parameters). The areas of interest were the Odra Bank (Oderbank), Adler Ground (Adlergrund), Kadet Trench (Kadetrinne), and Fehmarn Belt (Fehmarnbelt). The characteristic living communities (macrophytes, such as algae and sea grass, and macrozoobenthos such as worms, bivalves and crustaceans) for the different habitat types in these areas were characterised. Due to different salinity regimes, the benthic colonisation is different as well. In the Baltic Sea, with its decreasing salinity from west to east, the number of marine species declines, too. In the present study, altogether approximately 350 macrozoobenthic species and approximately 20 macrophytes were identified.
    [Show full text]
  • A Weight-And Temperature-Dependent Model of Respiration in Praunus
    JOURNAL OF PLANKTON RESEARCH j VOLUME 34 j NUMBER 7 j PAGES 642–645 j 2012 SHORT COMMUNICATION A weight- and temperature-dependent model of respiration in Praunus flexuosus (Crustacea, Mysidacea) Downloaded from https://academic.oup.com/plankt/article/34/7/642/1465303 by guest on 01 October 2021 MARTIN OGONOWSKI*, KRISTOFFER ANDERSSON AND STURE HANSSON DEPARTMENT OF SYSTEMS ECOLOGY, STOCKHOLM UNIVERSITY, SE-106 91 STOCKHOLM, SWEDEN *CORRESPONDING AUTHOR: [email protected] Received February 1, 2012; accepted in principle March 15, 2012; accepted for publication March 20, 2012 Corresponding editor: Marja Koski The mysid shrimp Praunus flexuosus is common in littoral habitats in the Baltic Sea and other marine areas, but its bioenergetic characteristics have not been studied. We present the first model of its routine respiration rate as a function of size and a natural temperature range. The model explained 87% of the variance in respir- ation, indicating that it could be useful in a larger modeling framework. Specific respiration rates and temperature dependence were consistent with previous reports for this and other littoral mysids at low-to-moderate temperatures. Respiration at higher temperatures was lower, indicating that previous reports may have been biased by residual SDA (specific dynamic action) effects. Increased res- piration due to SDA was detectable over a longer period than previously reported, 30 h. KEYWORDS: respiration; Praunus flexuosus; fasting; specific dynamic action; routine metabolism compared with what are available for fish (Hanson INTRODUCTION et al., 1997). One important component of such models Mysids are a significant component of aquatic ecosys- is respiration, since it constitutes a major component in tems and are important links between different trophic the energy budget.
    [Show full text]
  • Barcoding of Cryptic Stages of Marine Brown Algae Isolated from Incubated Substratum Reveals High Diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)1
    Cryptogamie, Algologie, 2015, 36 (1): 3-29 © 2015 Adac. Tous droits réservés Barcoding of cryptic stages of marine brown algae isolated from incubated substratum reveals high diversity in Acinetosporaceae (Ectocarpales, Phaeophyceae)1 Akira F. PETERS a*, Lucía COUCEIRO b, Konstantinos TSIAMIS c, Frithjof C. KÜPPER d & Myriam VALERO b aBezhin Rosko, 29250 Santec, France and FR2424, Station Biologique, 29682 Roscoff Cedex, France bUMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités UPMC, Station Biologique de Roscoff, 29688 Roscoff Cedex, France cHellenic Centre for Marine Research (HCMR), Institute of Oceanography, Anavyssos 19013, Attica, Greece dOceanlab, University of Aberdeen, Main Street, Newburgh AB41 6AA, Scotland, UK Abstract – To identify cryptic stages of marine brown macroalgae present in the “bank of microscopic forms”, we incubated natural substrata of different geographical origins and isolated emerging Phaeophyceae into clonal cultures. A total of 431 clones were subsequently identified by barcoding using 5’-COI. A proportion of 98% of the isolates belonged to the Ectocarpales. The distribution of pairwise genetic distances revealed a K2P divergence of 1.8% as species-level cut-off. Using this threshold, the samples were ascribed to 83 different species, 39 (47%) of which were identified through reference sequences or morphology. In the Ectocarpaceae, 16 lineages of Ectocarpus fulfilled the barcode criterion for different species, while three putative new species were detected. In the Chordariaceae, numerous microthalli were microstages of known macroscopic taxa. A separate cluster contained Hecatonema maculans and other microscopic species. Taxa traditionally classified in Acinetosporaceae were split in two species-rich groups containing Pylaiella and Hincksia in one and Acinetospora in the other.
    [Show full text]
  • Curriculum Vitae in Confidence
    CURRICULUM VITAE IN CONFIDENCE Professor Lloyd Samuel Peck Overview Outstanding Antarctic scientist with leading international status. NERC Theme Leader and IMP, and over 250 refereed science papers, major reviews and book chapters. ISI H factor of 46, Google Scholar H factor of 53. Dynamic and inspirational leader of a large and diverse science programmes (BEA, LATEST and BIOFLAME) of around 30 science and support staff researching subjects from hard rock geology through biodiversity, ecology, physiology and biochemistry to molecular (genomic) biology. Twenty one years experience of strategic development of major science programmes, and subsequent management and direction of their science in the UK, Antarctica, the Arctic, temperate and tropical sites, on stations, ships, and field sites. Exceptional communicator. Royal Institution Christmas lecturer 2004. 15 televised lectures given in Japan, Korea and Brazil since 2005. Over 100 TV, radio and news interviews given in 10 years. Most recently major contributor to “A Licence to Krill” documentary (DOX productions). Over 35 keynote lectures, departmental seminars and other major presentations given since 2000. High quality University teaching record. Positions include Visiting Professor in Ecology, Sunderland University, and Visiting Lecturer, Cambridge University. Visiting Professor in Marine Biology, Portsmouth University, Deputy Chair Cambridge NERC DTP. Strong grant success record. In last 10 years: PI of BAS programmes valued over £2 million. PI or Co-I on 28 grants (total value of over £8 million). Over 50% success rate in grant applications. Integrated member of NERC science review processes for over 10 years. Member of NERC peer review college, and 6 years experience of Chairing grant panels.
    [Show full text]
  • Invertebrate ID Guide
    11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................
    [Show full text]
  • Marine Species Distributions: from Data to Predictive Models
    Marine Species Distributions: From data to predictive models Samuel Bosch Promoter: Prof. Dr. Olivier De Clerck Thesis submitted in partial fulfilment of the requirements for the degree of Doctor (PhD) in Science – Biology Academic year 2016-2017 Members of the examination committee Prof. Dr. Olivier De Clerck - Ghent University (Promoter)* Prof. Dr. Tom Moens – Ghent University (Chairman) Prof. Dr. Elie Verleyen – Ghent University (Secretary) Prof. Dr. Frederik Leliaert – Botanic Garden Meise / Ghent University Dr. Tom Webb – University of Sheffield Dr. Lennert Tyberghein - Vlaams Instituut voor de Zee * non-voting members Financial support This thesis was funded by the ERANET INVASIVES project (EU FP7 SEAS-ERA/INVASIVES SD/ER/010) and by VLIZ as part of the Flemish contribution to the LifeWatch ESFRI. Table of contents Chapter 1 General Introduction 7 Chapter 2 Fishing for data and sorting the catch: assessing the 25 data quality, completeness and fitness for use of data in marine biogeographic databases Chapter 3 sdmpredictors: an R package for species distribution 49 modelling predictor datasets Chapter 4 In search of relevant predictors for marine species 61 distribution modelling using the MarineSPEED benchmark dataset Chapter 5 Spatio-temporal patterns of introduced seaweeds in 97 European waters, a critical review Chapter 6 A risk assessment of aquarium trade introductions of 119 seaweed in European waters Chapter 7 Modelling the past, present and future distribution of 147 invasive seaweeds in Europe Chapter 8 General discussion 179 References 193 Summary 225 Samenvatting 229 Acknowledgements 233 Chapter 1 General Introduction 8 | C h a p t e r 1 Species distribution modelling Throughout most of human history knowledge of species diversity and their respective distributions was an essential skill for survival and civilization.
    [Show full text]