Back SCHEDULE

Total Page:16

File Type:pdf, Size:1020Kb

Back SCHEDULE Back SCHEDULE - VII (See Clause 3(3)(6)(7) and 10(2)(3) under Plant Quarantine (Regulation of Import into India) Order, 2003) LIST OF PLANTS / PLANTING MATERIALS WHERE IMPORTS ARE PERMISSIBLE ON THE BASIS OF PHYTOSANITARY CERTIFICATE ISSUED BY THE EXPORTING COUNTRY, THE INSPECTION CONDUCTED BY INSPECTION AUTHORITY AND FUMIGATION, IF REQUIRED, INCLUDING ALL OTHER GENERAL CONDITIONS AMENDMENT TO THE SCHEDULE – VII APPROVED BY DAC’s VIDE LETTER No. 8-5/2004-PP.I DATED 04.06.2004 FOR ADDITIONAL COMMODITIES S.No. Plants and Plant Material Scientific Name 84. 84. Alder buckthorn - Roots (dried) Rhamnus frangula for medicinal use 85. 85. Alumroot - Root (dried) for Geranium sp. medicinal use 86. 86. Artemisia - leaves (dried) for Artemisia spp. medicinal use 87. 87. Barberries - roots (dried) for Berberis medicinal use 88. 88. Bearded usnea - whole Plants Usnea barbata (dried) for medicinal use 89. 89. Bitterwort - Roots (dried) for Gentiana medicinal use 90. 90. Black Haw - Barks (dried) for Viburnum medicinal use 91. 91. Bladder Wrack - whole Plants (Fucus vesiculosus (dried) for medicinal use 92. 92. Blessed Thistle - Whole plants Carduus sp. (dried) for medicinal use 93. 93. Boldina - Leaves (dried) for Peumos boldus consumption 94. 94. Calandine - whole Plants (dried) Chelidonium majus for medicinal use 95. 95. Caltrop - whole plants (dried) for Tribulus terrestris medicinal use 96. 96. Cascarilla - Bark (dried) for Croton medicinal use 97. 97. Cat Thyme - whole Plants (dried) Teucrium marum for medicinal use 98. 98. Celtic Nard - whole plants (dried) Arnica Montana for medicinal use 99. 99. Centella - Leaves (dried) for Centella asiatica medicinal use 100. 100. Cinchona - Bark (dried) for Cinchona spp. medicinal use 101. 101. Clary sage - Leaves (dried) Salvia medicinal use 102. 102. Colic root - Roots/Bulbs (dried) Dioscorea for medicinal use 103. 103. Comfrey - Roots (dried) for Symphytum officinale medicinal use 104. 104. Common bilberry - Leaves Vaccinium myrtillus (dried) for medicinal use 105. 105. Common valerian - Roots (dried) Valeriana officinalis for medicinal use 106. 106. Damiana - whole plants (dried) Turnera sp. for medicinal use 107. 107. Deadly nightshade - Leaves/roots Atropa belladonna (dried) for medicinal use 108. 108. Devil’s Claw - Roots (dried) for Harpagophytum medicinal use 109. 109. Digitalis -Leaves (dried) for Digitalis medicinal use 110. 110. Duboisia leaves - Leaves (dried) Duboisia medicinal use 111. 111. English Yew - dried leaves for Taxus baccata medicinal use. 112. 112. Ergot of Rye - Grounded form for Secale medicinal use 113. 113. Eye-bright - whole Plants (dried) Euphrasia for medicinal use 114. 114. Field Horsetail - Leaves (dried) Equisetum arvense for medicinal use 115. 115. Figwort - whole plants (dried) for Scrophularia medicinal use 116. 116. Fringe Tree - Bark (dried for Chionanthus virginica medicinal use 117. 117. Ginseng - Roots (dried) for Panax quinquefolius medicinal use 118. 118. Ginkgo - Leaves (dried) for Ginkgo medicinal use 119. 119. Guaiacum - whole plants (dried) Guaiacum for medicinal use 120. 120. Guarana - Seeds (dried) for Paullinia cupana medicinal use 121. 121. Hop - Leaves (dried) for Humulus lupulus medicinal use 122. 122. Horse Chest Nut - dried seeds for Aesculus hippocastanum medicinal use 123. 123. House leek - Leaves (dried) for Sempervivum sp medicinal use 124. 124. Indian sage - whole plants (dried) Eupatorium for medicinal use 125. 125. Jaborandi - Leaves (dried) for Pilocarpus medicinal use 126. 126. John’s Wort - whole plants Hypericum perforatum (dried) for medicinal use 127. 127. Lactuca - whole plants (dried) for Lactuca virosa medicinal use 128. 128. Marsh-Tea - whole Plants (dried) Ledum for medicinal use 129. 129. Milk Thistle - Seeds (dried) for Cardui mariae (Silybum marianum) consumption 130. 130. Muira Puama - Root/Bark (dried) Liriosma for medicinal use 131. 131. Okoubaka - Roots (dried) for Okoubaka medicinal use 132. 132. Orthosiphon - Leaves (dried) for Orthosiphon medicinal use 133. 133. Pellitory - roots (dried) for Anacyclus pyrethrum(Anthemis) consumption. 134. 134. Persea bark - dried bark for Persea spp medicinal use 135. 135. Picrorhiza - Roots (dried) for Scrophulariaceae medicinal use 136. 136. Piscidia - Bark (dried) for Piscidia medicinal use 137. 137. Podophyllum - Rhizome/Roots Hexandrum (dried) for medicinal use 138. 138. Pygeum Bark - Bark (dried) for Prunus spp. medicinal use 139. 139. Ratanhia - Roots (dried) for Krameria medicinal use 140. 140. Rauwolfia - Root bark (dried) for Rauwolfia vomitoria medicinal use 141. 141. Roman Chamomile - Flower head Anthemis nobilis (dried) for medicinal use 142. 142. Sabadilla - crushed seeds (dried) Schoenocaulon for medicinal use 143. 143. Sabina - Twig (dried) for Juniperus medicinal use 144. 144. Saw Palmetto - Fruit (dried) for Sabal medicinal use 145. 145. Scammonia roots (dried) for consumption 146. 146. Senna - pods for Cassia spp. consumption/processing 147. 147. Smilax - Rhizomes/Roots (dried) Smilax for medicinal use 148. 148. St. Johnswort - whole plants Hypericum perforatum (dried) for medicinal use 149. 149. St. Ignatius Bean - Bean cut Ignatia (dried) for medicinal use 150. 150. Tongkat Ali - Roots/Bark (dried) Eurycoma longifolia for medicinal use 151. 151. Uva-Ursi - Leaves (dried) for Arctostaphylos medicinal use 152. 152. Voacanga seeds - Seeds (dried) Apocynaceae for medicinal use 153. 153. Wild Hops - Roots (dried) for Bryonia alba medicinal use 154. 154. Windflower - whole plants (dried) Pulsatilla (Anemone) for medicinal use 155. 155. Winter green - Leaves (dried) for Gaultheria procumbens medicinal use 156. 156. Yellow Pond-lily - Rhizomes Nuphar lutea (dried) for medicinal use 157. 157. Yohimbe Bark - Bark (dried) for Pausinystalia yohimbe medicinal use 158. 158. Basil - leaves (dried) for Ocimum basilicum consumption 159. 159. Capsicum - fruit & seed (dried) Capsicum annum for consumption 160. 160. Chamomile - Flowers (dried) for Chamaemelum nobile consumption 161. 161. Guar - Seeds (broken) for Cyamopsis tetragonoloba processing 162. 162. Hibiscus - Flowers (dried) for Hibiscus sabdariffa consumption 163. 163. Jigat - dried bark powder for Machilus macarantha consumption 164. 164. Kakkar singhi - (dried) for Rhus spp. consumption. 165. 165. Kapok - fibre (lint) for Ceiba pentandra/ Bombax ceiba consumption. 166. 166. Lavender - flowers (dried) for Lavandula angustifolia consumption 167. 167. Manjith - roots (dried) for Rubia tinctorum consumption 168. 168. Patchouli leaves - (dried) for Pogostemon cablin consumption) 169. 169. Pyrethrum - Flower Powder Chrysanthemum tanacetum (dried) for consumption 170. 170. Saffron – dried flowers for Crocus sativus consumption 171. 171. Seaweed - for consumption Ecklonia maxima 172. 172. Sticky wood - bark (dried) for Litsea spp. consumption 173. 173. Tamarind - Fruit pulp and seed Tamarindus indica for consumption 174. 174. Turmeric - Rhizome (dried) for Curcuma longa consumption 175. 175. Acacia - wood for consumption Albizia lebbeck 176. 176. African white wood - wood for Triplochiton sckeroxylon consumption 177. 177. Arau (Timla) - wood for Ficus auriculata consumption 178. 178. Beli - wood for consumption Aegle marmelos/Limonia acidissima 179. 179. Cedar - wood for consumption Cedrus spp. 180. 180. Hnaw logs - wood for Adina cordifolia consumption. 181. 181. Htauk Kyant - wood for Terminalia sp. consumption. 182. 182. Jatoba Sawn Timber - wood for Hymenaea courbaril consumption 183. 183. Kapur - wood for consumption Dryobalanops spp. 184. 184. Kempas - wood for consumption Koompassia spp. 185. 185. Manau cane - Cane for Acorus calamus consumption 186. 186. Meranti wood - for consumption Shorea spp. 187. 187. Mersawa/Kaung HMU - wood for Anisoptera spp. consumption 188. 188. Millettia round logs - wood for Wisteria floribunda consumption. 189. 189. Moabi round logs - wood for Mimusops consumption 190. 190. Mora wood - for consumption. Maclura tinctoria 191. 191. Osyris - dry roots/ wood for Osyris rhamnoides consumption 192. 192. Rengas - wood for consumption Gluta spp. 193. 193. Resak wood - for consumption Vatica spp. 194. 194. Rosewood - wood for Dalbergia spp. consumption 195. 195. Sagawa (Champa) - wood for Michelia Champaca consumption 196. 196. Sandalwood– wood for Santalum spp consumption 197. 197. Sappan wood - wood for Caesalpinia sappan consumption 198. 198. Swietenia mahagoni - wood for Grandifoliola consumption 199. 199. Sycamore/Maple - wood for Acer pseudoplatanus consumption 200. 200. Tali - wood for consumption Erythorophleum 201. 201. Yemane- wood for consumption Gmelina spp. Back .
Recommended publications
  • 36200 Yellow Wood, Old Fustic Recipe for Dyeing with Fustic
    36200 Yellow Wood, Old Fustic C.I. Natural Yellow 11 synonym: dyer´s mulberry german: Gelbholz, Fustik, geschnitten french: fustik, bois jaune Old fustik, or yellow wood, is derived from the heartwood of dyer's mulberry, a large, tropical tree (Chlorophora tinctoria, or Maclura tinctoria) of the mulberry family, Moraceae. The trees grow in South and Middle America, and in the warmer regions of North America. They also grow in Western India and in the Antilles. The climate in South Europe is not tropical, but it is warm enough for the Mulberry tree. Dye makers have used its bright yellow heartwood to make an effective dye. Yellow wood extract is made by cooking the wood. This is reddish-yellow and after diluting orange-yellow. Three different kinds of extracts are available: liquid extract (pale yellow – reddish-yellow), solid extract (yellow-brown – olive colored) containing about 15% water which is sold as cake or with about 5 % water which is sold as granules. The dye produces yellows on wool mordanted (fixed) with alaun. Brighter colors are reached with tin. Acidified lead oxide gives orange-yellow hues, chromium and copper salts give olive-green hues. Iron gives dark olive-green and black hues. Although the colors are not very light fast, yellow wood used to be very important for the manufacture of khaki-colored textiles. However, all colors are very fast to soap and alkalies. Recipe for dyeing with Fustic according to Gill Dably Ingredients 25% Alum 6% Washing Soda 100% Fustic Mordanting Dissolve the alum and the washing soda in cold water.
    [Show full text]
  • Forest Inventory and Analysis National Core Field Guide
    National Core Field Guide, Version 5.1 October, 2011 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 5.1 National Core Field Guide, Version 5.1 October, 2011 Changes from the Phase 2 Field Guide version 5.0 to version 5.1 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. • Section 8. Phase 2 (P2) Vegetation Profile (Core Optional). Corrected several figure numbers and figure references in the text. • 8.2. General definitions. NRCS PLANTS database. Changed text from: “USDA, NRCS. 2000. The PLANTS Database (http://plants.usda.gov, 1 January 2000). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2000.” To: “USDA, NRCS. 2010. The PLANTS Database (http://plants.usda.gov, 1 January 2010). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. FIA currently uses a stable codeset downloaded in January of 2010”. • 8.6.2. SPECIES CODE. Changed the text in the first paragraph from: “Record a code for each sampled vascular plant species found rooted in or overhanging the sampled condition of the subplot at any height. Species codes must be the standardized codes in the Natural Resource Conservation Service (NRCS) PLANTS database (currently January 2000 version). Identification to species only is expected. However, if subspecies information is known, enter the appropriate NRCS code. For graminoids, genus and unknown codes are acceptable, but do not lump species of the same genera or unknown code.
    [Show full text]
  • Forest Inventory and Analysis National Core Field Guide Volume I: Field Data Collection Procedures for Phase 2 Plots
    National Core Field Guide, Version 6.0 October, 2012 FOREST INVENTORY AND ANALYSIS NATIONAL CORE FIELD GUIDE VOLUME I: FIELD DATA COLLECTION PROCEDURES FOR PHASE 2 PLOTS Version 6.0 National Core Field Guide, Version 6.0 October, 2012 Changes from the Phase 2 Field Guide version 5.1 to version 6.0 Changes documented in change proposals are indicated in bold type. The corresponding proposal name can be seen using the comments feature in the electronic file. These change pages are intended to highlight significant changes to the field guide and do not contain all of the details or minor changes. Introduction. Field Guide Layout. Made the following changes: Old text New text 0 General Description 0 General Description 1 Plot 1 Plot Level Data 2 Condition 2 Condition Class 3 Subplot 3 Subplot Information 4 Boundary 4 Boundary References 5 Tree Measurements 5 Tree Measurements and Sapling Data 6 Seedling 6 Seedling Data 7 Site Tree 7 Site Tree Information 8 Phase 2 Vegetation Profile (core 8 Phase 2 (P2) Vegetation Profile (core optional) optional) 9 Invasive Plants 9 Invasive Plants 10 Down Woody Materials 0.0 General Description. Paragraph 5, Defined NIMS (the National Information Management System). Also Figure 1. Figure 1 was replaced by a plot diagram including the annular ring. 0.2 Plot Integrity. Copied the following paragraph (as it appears in chapter 9) to the end of the section: “Note: Avoid becoming part of the problem! There is a risk that field crews walking into plot locations could pick up seeds along roadsides or other patches of invasive plants and spread them through the forest and on to the plot.
    [Show full text]
  • SCHEDULE-VII 1. Abies Canadensis
    SCHEDULE-VII {See clause 3(3),(6),(7) and 10(2)(3)} LIST OF PLANTS/PLANTING MATERIALS WHERE IMPORTS ARE PERMISSIBLE ON THE BASIS OF PHYTOSANITARY CERTIFICATE ISSUE BY THE EXPORTING COUNTRY, THE INSPECTION CONDUCTED BY INSPECTION AUTHORITY AND FUMIGATION, IF REQUIRED, INCLUDING ALL OTHER GENERAL CONDITIONS. Serial Plants and Plant Material Number 1 2 1. Abies canadensis - Hemlock spruce bark (dried) for medicinal use 2. Acacia mangium - Brown sal wood for consumption 3. Acer pseudoplatanus /Acer spp. - Sycamore/Maple wood/logs for consumption 4. Acorus calamus - Manau cane for consumption 5. Adansonia digitata - Baobab fruits (Dried) for medicinal use 6. Adina cordifolia - Hnaw logs wood for consumption. 7. Aegle marmelos/Limonia acidissima - Beli wood for consumption 8. Aesculus hippocastanum - Horse Chest Nut dried seeds for medicinal use 9. Agathis dammara - Agathis wood for consumption 10. Agave sisalana - Sisal fibres 11. Albizia lebbeck - Acacia wood for consumption 12. Alpinia officinarum - Gallangal Roots 13. Amomum subulatum - Large cardamom 14. Anacardium occidentale - Cashew nuts (Raw) 15. Anacyclus pyrethrum -(Anthemis Pellitory roots)( dried) for medicinal use 16. Anemone hepatica - Hepatica whole plants (dried) for medicinal use 17. Angelica archangelica - European Angelica roots (dried) for medicinal use 18. Angelica glauca/ Angelica spp - Gandh Roots/ Angelica roots dried for consumption 19. Animal feeds 20. Aningeria spp.- Aningre wood for consumption 21. Anisoptera spp. - Mersawa/Kaung HMU wood for consumption 22. Anthemis nobilis - Roman Chamomile flower head (dried) for medicinal use 23. Apocynaceae sp./Vocanga sp. - Voacanga seeds, roots and bark (dried) for medicinal use 24. Apocynum cannabinum - Black Indian Hemp Roots (dried) for medicinal use 25.
    [Show full text]
  • Economically Important Plants Arranged Systematically James P
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 1-2017 Economically Important Plants Arranged Systematically James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: http://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Economically Important Plants Arranged Systematically" (2017). Botanical Studies. 48. http://digitalcommons.humboldt.edu/botany_jps/48 This Economic Botany - Ethnobotany is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. ECONOMICALLY IMPORTANT PLANTS ARRANGED SYSTEMATICALLY Compiled by James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 30 January 2017 This list began in 1970 as a handout in the Plants and Civilization course that I taught at HSU. It was an updating and expansion of one prepared by Albert F. Hill in his 1952 textbook Economic Botany... and it simply got out of hand. I also thought it would be useful to add a brief description of how the plant is used and what part yields the product. There are a number of more or less encyclopedic references on this subject. The number of plants and the details of their uses is simply overwhelming. In the list below, I have attempted to focus on those plants that are of direct economic importance to us.
    [Show full text]
  • Wood Toxicity: Symptoms, Species, and Solutions by Andi Wolfe
    Wood Toxicity: Symptoms, Species, and Solutions By Andi Wolfe Ohio State University, Department of Evolution, Ecology, and Organismal Biology Table 1. Woods known to have wood toxicity effects, arranged by trade name. Adapted from the Wood Database (http://www.wood-database.com). A good reference book about wood toxicity is “Woods Injurious to Human Health – A Manual” by Björn Hausen (1981) ISBN 3-11-008485-6. Table 1. Woods known to have wood toxicity effects, arranged by trade name. Adapted from references cited in article. Trade Name(s) Botanical name Family Distribution Reported Symptoms Affected Organs Fabaceae Central Africa, African Blackwood Dalbergia melanoxylon Irritant, Sensitizer Skin, Eyes, Lungs (Legume Family) Southern Africa Meliaceae Irritant, Sensitizer, African Mahogany Khaya anthotheca (Mahogany West Tropical Africa Nasopharyngeal Cancer Skin, Lungs Family) (rare) Meliaceae Irritant, Sensitizer, African Mahogany Khaya grandifoliola (Mahogany West Tropical Africa Nasopharyngeal Cancer Skin, Lungs Family) (rare) Meliaceae Irritant, Sensitizer, African Mahogany Khaya ivorensis (Mahogany West Tropical Africa Nasopharyngeal Cancer Skin, Lungs Family) (rare) Meliaceae Irritant, Sensitizer, African Mahogany Khaya senegalensis (Mahogany West Tropical Africa Nasopharyngeal Cancer Skin, Lungs Family) (rare) Fabaceae African Mesquite Prosopis africana Tropical Africa Irritant Skin (Legume Family) African Padauk, Fabaceae Central and Tropical Asthma, Irritant, Nausea, Pterocarpus soyauxii Skin, Eyes, Lungs Vermillion (Legume Family)
    [Show full text]
  • Corantes Naturais Para Têxteis – Da Antiguidade Aos Tempos Modernos Natural Dyestuffs from Antiquity to Modern Days
    revista_n3.qxp 21-02-2007 20:24 Page 39 Corantes naturais para têxteis – da Antiguidade aos tempos modernos Natural dyestuffs from Antiquity to modern days Maria Eduarda Machado de Araújo Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal [email protected] Resumo A utilização pelo Homem de corantes de origem animal ou vegetal é muito antiga. Estes corantes foram usados para adorno pessoal, decorar objectos, armas e utensílios, fazer pinturas e principalmente tingir os têxteis com os quais cobriram o corpo e embelezavam as habitações. Neste texto são apresentados alguns dos corantes naturais que foram mais apreciados desde a Antiguidade até agora e é descrita a estrutura química dos componentes responsáveis pela respectiva cor. Palavras-chave Corantes, têxteis, corantes naturais Abstract Since a long time that mankind uses of dyes for recreational purposes.They had been used to color different goods but manly to dye clothes and other textiles. This paper presents some of the most used dyestuffs since Antiquity to nowadays, obtained from vegetal or animal sources. It also presents the plants, or animals, from where they were extracted, their major components and chemical structures. Keywords Dyestuffs, textiles, natural dyes revista_n3.qxp 21-02-2007 20:24 Page 40 Maria Eduarda Machado de Araújo Introdução Corantes de tina – Este é um grupo especial de corantes aplicado à lã e ao algodão, mas principalmente A utilização pelo Homem de corantes de origem animal, a este último. O corante é aplicado numa forma química vegetal e mineral, é muito antiga. Estes corantes foram reduzida, incolor, chamada de forma leuco, e já depois de usados como adorno pessoal, para decorar objectos, aplicado ao tecido é transformado na forma corada por armas e utensílios, fazer pinturas e principalmente tingir oxidação com o oxigénio do ar ou por adição de agentes os têxteis com os quais cobriram o corpo e embele- oxidantes.
    [Show full text]
  • Osage-Orange (Maclura Pomifera): a Traveling Tree Dr
    Osage-Orange (Maclura pomifera): A Traveling Tree Dr. Kim D. Coder, Professor of Tree Biology & Health Care, Warnell School, UGA Osage-orange (Maclura pomifera) is a small tree in which people have found great value. Once discovered by early European settlers, it was haphazardly carried and tended across the continent. Be- tween 1855 and 1875 there was an agricultural hedge program to plant the species. Because of its attributes, it was prized anywhere agriculture, teamsters, and grazing animals were found. It is now considered escaped from cultivation and has naturalized in many areas. Solitary trees or small family groups can be found around old home sites, in alleys, and along roadways. Names & Relatives Osage-orange is not a citrus or an orange tree, and so its name is hyphenated. Osage-orange is known by many common names in all the places where it grows. Many names represent specific uses for the tree which included wood for long bows and linear plantings for field hedges. Common names include bois-d’arc, bodark, bodock, bowwood, fence shrub, hedge, hedge-apple, hedge-orange, horse- apple, mockorange, naranjo chino, postwood, and yellowwood. The common name most often used is Osage-orange, named after the Osage native American nation, and as such, should always be capitalized. The scientific name (Maclura pomifera) is derived from a combination of a dedication to Will- iam Maclure, an American geologist working around 1800, and the Latin term for an apple or fruit bearing tree. Other names in the past have been Ioxylon pomiferum and Toxylon pomiferum. Osage-orange is one of two species in its genus.
    [Show full text]
  • Maclura Tinctoria Extracts: in Vitro Antibacterial Activity Against Aeromonas Hydrophila and Sedative Effect in Rhamdia Quelen
    fishes Article Maclura tinctoria Extracts: In Vitro Antibacterial Activity against Aeromonas hydrophila and Sedative Effect in Rhamdia quelen Luana da Costa Pires 1, Patricia Rodrigues 1, Quelen Iane Garlet 1 , Luisa Barichello Barbosa 2, Bibiana Petri da Silveira 3 , Guerino Bandeira Junior 1 , Lenise de Lima Silva 1, Amanda Gindri 4, Rodrigo Coldebella 5 , Cristiane Pedrazzi 5, Agueda Palmira Castagna de Vargas 3, Bernardo Baldisserotto 1 and Berta Maria Heinzmann 1,2,* 1 Laboratory of Plant Extractives, Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; [email protected] (L.d.C.P.); [email protected] (P.R.); [email protected] (Q.I.G.); [email protected] (G.B.J.); [email protected] (L.d.L.S.); [email protected] (B.B.) 2 Laboratory of Bacteriology, Department of Preventive Veterinary Medicine, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; [email protected] 3 Fish Physiology Laboratory, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; [email protected] (B.P.d.S.); [email protected] (A.P.C.d.V.) 4 Laboratory of Research and Development, Integrated Regional University of Alto Uruguai e Missões, Satiago 97700-000, RS, Brazil; [email protected] 5 Citation: Pires, L.d.C.; Rodrigues, P.; Wood Chemistry Laboratory, Department of Forest Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; [email protected] (R.C.); [email protected] (C.P.) Garlet, Q.I.; Barbosa, L.B.; * Correspondence: [email protected]; Tel.: +55-55-3220-8149 da Silveira, B.P.; Bandeira Junior, G.; Silva, L.d.L.; Gindri, A.; Abstract: Maclura tinctoria is a tree species native from Brazil and rich in phenolic compounds.
    [Show full text]
  • Synthesis and Application of Ag-Agar Gel SERS Substrates for the Non-Destructive Detection of Organic Dyes in Works of Art”
    PhD Course in Science for the Conservation of Cultural Heritage Cycle XXVI PhD Coordinator Prof. Piero Baglioni “Synthesis and Application of Ag-agar gel SERS substrates for the non-destructive detection of organic dyes in works of art” CHIM/02 Tutor PhD Candidate Prof. Emilio M. Castellucci Elena Platania PhD Coordinator Prof. Piero Baglioni Years 2011/2013 To Diego, My love, joy and strength. To my family and my family-in-law, For all their endless support 2 Table of Contents Abbreviations 6 Acknowledgements 7 Introduction 8 Chapter 1: Organic dyes 10 1.1 Natural and synthetic dyes 10 1.2 Molecular classes of natural organic dyes 14 1.2.1 Anthraquinones 14 1.2.2 Flavonoids 16 1.2.3 Naphtoquinones 17 1.2.4 Orchil dyes 18 1.2.5 Carotenoids 18 1.2.6 Curcuminoids 19 1.2.7 Indigoid dyes 19 1.3 Analytical approaches to the study of organic dyes in artworks 20 Chapter 2: Surface Enhanced Raman Spectroscopy 22 2.1 Discovery and Principles of SERS 22 2.2 SERS substrates 26 2.3 Application of SERS for the detection of organic dyes in artworks 29 3 Chapter 3: Agar gel in art conservation 32 3.1 Chemistry and properties of agar-agar 32 3.2 Applications of agar-gel in conservation science 35 3.3 Development of Ag-agar gel SERS substrate for the micro-extraction of organic dyes on artworks 37 Chapter 4: SERS detection of red organic dyes by Ag-agar gel 39 Abstract 39 Introduction 40 4.1 The basic of plasmon activation of SERS 43 4.2 Experimental 44 4.2.1 Textile dyeing process 44 4.2.2 Ag-agar gel synthesis and micro-extractive procedure 45 4.2.3
    [Show full text]
  • Review Article Historical Aspects of Propolis Research in Modern Times
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2013, Article ID 964149, 11 pages http://dx.doi.org/10.1155/2013/964149 Review Article Historical Aspects of Propolis Research in Modern Times Andrzej K. Kuropatnicki,1 Ewelina Szliszka,2 and Wojciech Krol2 1 Pedagogical University of Krakow, Karmelicka 41, 31-128 Krakow, Poland 2 Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze-Rokitnica, Poland Correspondence should be addressed to Andrzej K. Kuropatnicki; [email protected] Received 6 March 2013; Revised 29 March 2013; Accepted 29 March 2013 Academic Editor: Zenon Czuba Copyright © 2013 Andrzej K. Kuropatnicki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Propolis (bee glue) has been known for centuries. The ancient Greeks, Romans, and Egyptians were aware of the healing properties of propolis and made extensive use of it as a medicine. In the middle ages propolis was not a very popular topic and its use in mainstream medicine disappeared. However, the knowledge of medicinal properties of propolis survived in traditional folk medicine. The interest in propolis returned in Europe together with the renaissance theory of ad fontes. It has only been in the last century that scientists have been able to prove that propolis is as active and important as our forefathers thought. Research on chemical composition of propolis started at the beginning of the twentieth century and was continued after WW II.
    [Show full text]
  • Forest Inventory and Analysis National Urban Fia Plot Field Guide
    FOREST INVENTORY AND ANALYSIS NATIONAL URBAN FIA PLOT FIELD GUIDE FIELD DATA COLLECTION PROCEDURES FOR URBAN FIA PLOTS Southern Research Station Version 7.2.1 FOREST SERVICE U.S. DEPARTMENT OF AGRICULTURE April 2018 National Urban FIA Plot Field Guide, Version 7.2.1 SRS Edition April 2018 Note to User: URBAN FIA Field Guide 7.2.1 is based on the National CORE Field Guide, Version 7.2; with the exception of Section 5.9, Section 5.9.2, and Appendix 6, which are based on the National CORE Field Guide, Version 8.0. Data elements are national CORE unless indicated as follows: National CORE data elements that end in “+U” (e.g., x.x+U) have had values, codes, or text added, changed, or adjusted from the CORE program. Any additional URBAN FIA text for a national CORE data element is hi-lighted or shown as an "Urban Note". All URBAN FIA data elements end in “U” (e.g., x.xU). The text for an URBAN FIA data element is not hi- lighted and does not have a corresponding variable in CORE. URBAN FIA electronic file notes: o national CORE data elements that are not applicable in URBAN FIA are formatted as light gray or light gray hidden text. o hyperlink cross-references are included for various sections, figures, and tables. *National CORE data elements retain their national CORE field guide data element/variable number but may not retain their national CORE field guide location or sequence within the guide. 1 National Urban FIA Plot Field Guide, Version 7.2.1 SRS Edition April 2018 CHANGES FROM THE URBAN FIA PLOT FIELD GUIDE VERSION 7.2 TO 7.2.1 - ABRIDGED .........
    [Show full text]