Selenous Acid

Total Page:16

File Type:pdf, Size:1020Kb

Selenous Acid Selenous acid sc-255610 Material Safety Data Sheet Hazard Alert Code Key: EXTREME HIGH MODERATE LOW Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Selenous acid STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY0 HEALTH2 HAZARD INSTABILITY0 OX SUPPLIER Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE Laboratory reagent for alkaloids; oxidising agent. SYNONYMS H2-O3-Se, "selenous acid", "seleneous acid", "monohydrated selenium dioxide" Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 0 Toxicity: 4 Body Contact: 2 Min/Nil=0 Low=1 Reactivity: 0 Moderate=2 High=3 Chronic: 2 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 14 EMERGENCY OVERVIEW RISK Danger of cumulative effects. Toxic by inhalation and if swallowed. Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ! Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual. ! Severely toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 5 gram may be fatal or may produce serious damage to the health of the individual. ! fatal if swallowed unless immediate treatment is applied. ! Acute effects of selenium poisoning include nervousness, convulsions, drowsiness, frontal headaches, and in extreme cases, death from respiratory depression. There may also be skin eruptions, tiredness, stomach upset, discoloration of teeth, an odorous garlic breath and loss of hair and nails. Selenium is rapidly absorbed in the gut and accumulates in the liver and kidneys. Selenates and selenites cause damage to the kidney, heart, spleen, stomach and bowel. Selenites might increase the rate of miscarriage. EYE ! Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals. SKIN ! The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. ! Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. ! Open cuts, abraded or irritated skin should not be exposed to this material. ! Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. INHALED ! Inhalation of dusts, generated by the material, during the course of normal handling, may produce toxic effects. ! The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. ! Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. CHRONIC HEALTH EFFECTS ! Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Chronic exposure to selenium and its compounds irritate the bronchi, cause gastrointestinal problems, irritation of the nasopharynx and a persistent foul garlic breath. There is often metallic tastes, pallor, irritability, extreme tiredness after years of exposure. Occasionally kidney and liver damage can occur. Selenium can cause tooth decay. Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS NAME CAS RN % selenious acid 7783-00-8 >98 in air may form selenic acid 7783-08-6 Section 4 - FIRST AID MEASURES SWALLOWED ! 2 of 14 IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise: For advice, contact a Poisons Information Center or a doctor. Urgent hospital treatment is likely to be needed. If conscious, give water to drink. INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS. EYE ! If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. SKIN ! If skin contact occurs: Immediately remove all contaminated clothing, including footwear Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. INHALED ! If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. NOTES TO PHYSICIAN ! Selenium dusts produce respiratory tract irritation, manifested by nasal discharge, loss of smell, epistaxis, and cough. Consumption of selenites and to a lesser degree, selenates causes nausea, vomiting, abdominal pain and tremor which resolves in 24 hrs. Muscle tenderness, tremor, light- headedness and facial flushings are observed in selenite poisoning. Both the acid and elemental form are well absorbed through the lungs and gastro-intestinal tract. Elimination (mostly in the urine) results in a biological half-life of around 1.2 days. Chronic selenium poisoning resembles arsenic poisoning. Management of chronic intoxication is supportive with elimination of the selenium source. BAL and CaNa2EDTA may enhance toxicity. High dose vitamin C (several grams daily) has produced equivocal results This is probably reasonable as in-vitro results indicate selenium salts are then reduced to poorly absorbed elemental selenium. Management of chronic selenium intoxication is supportive with elimination of the selenium source. BAL (dimercaprol, 2,3-dimercaptopropanol) and CaNa2EDTA may enhance toxicity. There are no antidotes to selenious acid toxicity; treatment is expectant (cardiopulmonary monitoring in an intensive care setting) and supportive (intravenous infusion, supplemental oxygen and ventilation as needed). Section 5 - FIRE FIGHTING MEASURES Vapor Pressure (mmHg): 1.95 @ 15 C Upper Explosive Limit (%): Not applicable Specific Gravity (water=1): 3.004 Lower Explosive Limit (%): Not applicable EXTINGUISHING MEDIA ! Water spray or fog. Foam. Dry chemical powder. 3 of 14 BCF (where regulations permit). Carbon dioxide. FIRE FIGHTING ! Alert Emergency Responders and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS ! Will not burn but increases intensity of fire. Heating may cause expansion or decomposition leading to violent rupture of containers. Heat affected containers remain
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Aqueous Equilibrium Constants
    BLB_APP_D_1062-1063hr.qxp 11/8/10 2:27 PM Page 1062 APPENDIX D AQUEOUS EQUILIBRIUM CONSTANTS TABLE D.1 • Dissociation Constants for Acids at 25 ˚C Name Formula Ka1 Ka2 Ka3 -5 Acetic acid CH3COOH (or HC2H3O2) 1.8 * 10 * -3 * -7 * -12 Arsenic acid H3AsO4 5.6 10 1.0 10 3.0 10 * -10 Arsenous acid H3AsO3 5.1 10 * -5 * -12 Ascorbic acid H2C6H6O6 8.0 10 1.6 10 * -5 Benzoic acid C6H5COOH (or HC7H5O2) 6.3 10 * -10 Boric acid H3BO3 5.8 10 * -5 Butanoic acid C3H7COOH (or HC4H7O2) 1.5 10 * -7 * -11 Carbonic acid H2CO3 4.3 10 5.6 10 * -3 Chloroacetic acid CH2ClCOOH (or HC2H2O2Cl) 1.4 10 * -2 Chlorous acid HClO2 1.1 10 * -4 * -5 -7 Citric acid HOOCC(OH) (CH2COOH)2 (or H3C6H5O7) 7.4 10 1.7 10 4.0 * 10 - Cyanic acid HCNO 3.5 * 10 4 * -4 Formic acid HCOOH (or HCHO2) 1.8 10 * -5 Hydroazoic acid HN3 1.9 10 - Hydrocyanic acid HCN 4.9 * 10 10 - Hydrofluoric acid HF 6.8 * 10 4 - -7 Hydrogen chromate ion HCrO4 3.0 * 10 * -12 Hydrogen peroxide H2O2 2.4 10 - -2 Hydrogen selenate ion HSeO4 2.2 * 10 * -8 * -19 Hydrogen sulfide H2S 9.5 10 1 10 - Hypobromous acid HBrO 2.5 * 10 9 - Hypochlorous acid HClO 3.0 * 10 8 - Hypoiodous acid HIO 2.3 * 10 11 * -1 Iodic acid HIO3 1.7 10 * -4 Lactic acid CH3CH(OH)COOH (or HC3H5O3) 1.4 10 * -3 * -6 Malonic acid CH2(COOH)2 (or H2C3H2O4) 1.5 10 2.0 10 * -4 Nitrous acid HNO2 4.5 10 * -2 * -5 Oxalic acid (COOH)2 (or H2C2O4) 5.9 10 6.4 10 * -2 * -9 Paraperiodic acid H5IO6 2.8 10 5.3 10 * -10 Phenol C6H5OH (or HC6H5O) 1.3 10 * -3 * -8 * -13 Phosphoric acid H3PO4 7.5 10 6.2 10 4.2 10 * -5 Propionic acid C2H5COOH (or HC3H5O2) 1.3 10 *
    [Show full text]
  • Acids and Bases
    Name Date Class CHAPTER 14 REVIEW Acids and Bases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Name the following compounds as acids: sulfuric acid a. H2SO4 sulfurous acid b. H2SO3 hydrosulfuric acid c. H2S perchloric acid d. HClO4 hydrocyanic acid e. hydrogen cyanide 2. H2S Which (if any) of the acids mentioned in item 1 are binary acids? 3. Write formulas for the following acids: HNO2 a. nitrous acid HBr b. hydrobromic acid H3PO4 c. phosphoric acid CH3COOH d. acetic acid HClO e. hypochlorous acid 4. Calcium selenate has the formula CaSeO4. H2SeO4 a. What is the formula for selenic acid? H2SeO3 b. What is the formula for selenous acid? 5. Use an activity series to identify two metals that will not generate hydrogen gas when treated with an acid. Choose from Cu, Ag, Au, Pt, Pd, or Hg. 6. Write balanced chemical equations for the following reactions of acids and bases: a. aluminum metal with dilute nitric acid ϩ → ϩ 2Al(s) 6HNO3(aq) 2Al(NO3)3(aq) 3H2(g) b. calcium hydroxide solution with acetic acid ϩ → ϩ Ca(OH)2(aq) 2CH3COOH(aq) Ca(CH3COO)2(aq) 2H2O(l ) MODERN CHEMISTRY ACIDS AND BASES 117 Copyright © by Holt, Rinehart and Winston. All rights reserved. Name Date Class SECTION 1 continued 7. Write net ionic equations that represent the following reactions: a. the ionization of HClO3 in water ϩ → ϩ ϩ Ϫ HClO3(aq) H2O(l ) H3O (aq) ClO3 (aq) b. NH3 functioning as an Arrhenius base ϩ → ϩ ϩ Ϫ NH3(aq) H2O(l ) ← NH4 (aq) OH (aq) 8.
    [Show full text]
  • Process for the Preparation of Chacogens and Chalcogenide Alloys of Controlled Average Crystallite Size
    Europaisches Patentamt European Patent Office @ Publication number: 0 1 60 493 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION © Application number: 85302825.6 © Int. CI.4: C 01 B 19/02 _ C 01 B 19/04 © Date of filing: 23.04.85 © Priority: 23.04.84 US 603019 © Applicant: XEROX CORPORATION Xerox Square - 020 Rochester New York 14644(US) @ Date of publication of application: 06.11.85 Bulletin 85/45 @ Inventor: Badesha, Santokh Singh 665 Cievenger Road @ Designated Contracting States: Ontario New York 1451 9(US) DE FR GB © Inventor: Fekete, George Thomas 111 Dale Road Rochester New York 14625IUS) © Representative: Goode, Ian Roy et al, European Patent Attorney do Rank Xerox Limited Patent Department Rank Xerox House 338 Euston Road London NW1 3BH(GB) (64) Process for the preparation of chacogens and chalcogenide alloys of controlled average crystallite size. A process for the preparation of chalcogens and chal- cogenide alloys which comprises subjecting the correspond- ing esters to a reduction or coreduction reaction, for example using hydrazine, at a temperature between about 40°C and 135°C. The morphology/crystallite size of the product is controlled by suitably selecting a temperature within this range, depending on the particular chalcogen or alloy being prepared. The product is either a non-crystalline material, or has an average crystallite size between about 15 and 52 nm. This invention relates to a process for the preparation of chalcogens and chalcogenide alloys, the process being of the kind which comprises subjecting the corresponding esters to a reduction or coreduction reaction. Such a process for preparing high purity tellurium is described in EP-A-0 102 753, and such a process for preparing high purity chalcogenide alloys, such as selenium/tellurium alloys, is described in EP-A-0 101 238.
    [Show full text]
  • 1,2-Cyclohexanedione Dioxime
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • H2seo3. Arxiv:1901.03765V1
    Crystal Structure Elucidation of the Novel Molecular-Inorganic Polymer K2SeO4 · H2SeO3. Oscar S. Hernández-Daguer 1,2, Charles L. Barnes3, Samuel P. Hernández-Rivera4, and Jorge L. Ríos-Steiner 5 1Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, United States, e-mail: [email protected], [email protected] 2Department of Physics, University of Puerto Rico, Mayagüez, Puerto Rico 00681-9000, United States, e-mail: [email protected], [email protected], phone: +1 787 228 1380. 3Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States. 4ALERT-II DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico, 00681-9000, United States. 5Laboratory of Crystallography and Synthesis of New Materials, Department of Chemistry, University of Puerto Rico, Mayagüez, Puerto Rico, 00681-9000 United States, e-mail: [email protected], phone: +1 787 832 4040 ext 2538, Fax: +1 787 265 3849. January 15, 2019 Abstract The orthorhombic crystal structure of the novel molecular-inorganic polymer K2SeO4 · H2SeO3 was elucidated using single-crystal X-ray diffraction with MoKα radiation (λ= 0.71073 Å), performed at 100 and 298.15 K. The reported data is at 100 K since there were no struc- tural differences as compared to the room temperature. The technique revealed K2SeO4 ·H2SeO3 crystals to have space group P bcm with unit cell dimensions a = 8.8672(17) Å, b = 7.3355(14) Å, c = 11.999(2) Å and Z = 4. The unit cell volume obtained was V = 780.5(3) Å3 3 arXiv:1901.03765v1 [cond-mat.mtrl-sci] 11 Jan 2019 with a calculated density Dc = 2:980Mg=m .
    [Show full text]
  • WO 2016/196440 Al 8 December 2016 (08.12.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/196440 Al 8 December 2016 (08.12.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61P 3/04 (2006.01) A61K 33/40 (2006.01) kind of national protection available): AE, AG, AL, AM, A61P 9/10 (2006.01) A61K 38/44 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 35/74 (2015.01) A61K 31/17 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US20 16/034973 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 3 1 May 2016 (3 1.05.2016) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/169,480 1 June 2015 (01 .06.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/327,283 25 April 2016 (25.04.2016) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: XENO BIOSCIENCES INC.
    [Show full text]
  • Preparation of Monodisperse Se Colloid Spheres and Se Nanowires
    Nano Res (2008) 1: 403 411 DOI 10.1007/s12274-008-8040-5 00403 Research Article Preparation of Monodisperse Se Colloid Spheres and Se Nanowires Using Na2SeSO3 as Precursor Liping Liu, Qing Peng, and Yadong Li( ) Department of Chemistry, Tsinghua University, Beijing 100084, China Received: 3 September 2008 / Revised: 19 September 2008 /Accepted: 19 September 2008 ©Tsinghua Press and Springer-Verlag 2008. This article is published with open access at Springerlink.com ABSTRACT Nearly monodisperse spherical amorphous Se colloids are prepared by the dismutation of Na2SeSO3 solution at room temperature; by altering the pH of the solution, amorphous Se colloid spheres with sizes of about 120 nm, 200 nm, 300 nm, and 1 μm can be obtained. Se@Ag2Se core/shell spheres are successfully synthesized by using the obtained amorphous Se (a-Se) spheres as templates, indicating the potential applications of these Se nanomaterials in serving as soft templates for other selenides. Meanwhile, selenium nanowires are obtained through a “solid-solution-solid” growth process by dispersing the prepared Se spheres in ethanol. This simple and environmentally benign approach may offer more opportunities in the synthesis and applications of nanocrystal materials. KEYWORDS Na2SeSO3, dismutation, amorphous Se (a-Se) spheres, trigonal Se (t-Se) nanowires Introduction structures, as it is easily removed [4, 5]. Furthermore, selenium is a relatively active material and can react Materials which are composed of the element selenium with a variety of chemical reagents to form other play important roles in the fields of photonics materials, such as Ag Se, and CdSe [1, 6, 7], which and electronics due to its special photoconductive 2 possess wide potential applications as soft templates properties [1, 2]; the electrical conductivity of selenium for functional selenides.
    [Show full text]
  • (Ii) 3,870,614 Underwood (45) Mar
    United States Patent 19 (ii) 3,870,614 Underwood (45) Mar. 11, 1975 54 SELENIUM DEPOSITION Primary Examiner-Howard S. Williams 75 Inventor: John Duckles Underwood, Bishop Attorney, Agent, or Firm-John T. O'Halloran; Stortford, England Menotti J. Lombardi, Jr.; Vincent Ingrassia 73) Assignee: International Standard Electric Corporation, New York, N.Y. (22 Filed: June 6, 1974 57 ABSTRACT 21 Appl. No.: 476,986 This relates to a method of depositing selenium in a suitable form for the manufacture of rectifiers. Sele (52) U.S. Cl. ................................................ 204181 nium is electrophoretically deposited from a mixture (51) int. Cl............................................... B01k 5/02 of two selenium sols. The first sol is prepared by 58) Field of Search..................................... 204/18 chemical reduction of selenous acid and the second by grinding and colloid milling metallic selenium. 56 References Cited UNITED STATES PATENTS 8 Claims, 1 Drawing Figure 3,745,098 7, 1973 Brown et al........................ 2041 181 GREY SELENUM HEAT TREATMENT RECYCLE GRND AND COLLOD MLL WASH AND DECANT DSPERSE IN SO MEDUM ELECTROPHORESS TENTED KAR 1975 3,87O64. GREY SELENUM HEAT TREATMENT RECYCLE GRND AND COLLOD MLL WASH AND DECANT OSPERSE IN SOL MEDUM ELECTROPHORESS 3,870,614 1. 2 SELENIUM DEPOSITION After milling several times the colloidal particles are allowed to settle, the liquid is decanted and the parti BACKGROUND OF THE INVENTION cles are washed by decantation with an alcohol such as This invention relates to the electrophoretic deposi ethanol. The colloidal particles are then formed into a tion of selenium and in particular to a method of depos sol by dispersion in a sol medium typically consisting iting selenium in a form suitable for manufacturing rec of: tifiers.
    [Show full text]
  • Selenium Recovery in Precious Metal Technology
    Selenium Recovery in Precious Metal Technology Fabian Kling Willig Degree Project in Engineering Chemistry, 30 hp Report passed: February 2014 Supervisors: Tomas Hedlund, Umeå University Mikhail Maliarik, Outotec (Sweden) AB Abstract Selenium is mostly extracted from copper anode slimes because the selenium-rich ores are too rare to be mined with profit. When copper anode slimes are processed in a precious metal plant the first step is to remove copper by pressure leach in an autoclave. The anode slime is then dried and fed into a Kaldo furnace. The Kaldo is heated and reduction and smelting begins. During reduction, slag builders are added to form a slag with impurities and fluxes with coke breeze are added to reduce precious metal. In the oxidation step, selenium dioxide, sulphur dioxide and some tellurium dioxide are removed along with the process gas. The dioxides and the process gas are captured in a circulating venturi solution in the gas cleaning system. The dioxides lowers the pH of the venturi solution. Sodium hydroxide is added to the solution to keep pH above 4 in order to prevent selenium from precipitating in the circulation tank. After a Kaldo cycle, the venturi solution is transferred to a precipitation tank where sulphur dioxide is added in order to precipitate selenium. The precipitated selenium is finally collected in a filter press and sold as crude (99.5%) selenium. During commissioning of a precious metal plant and during processing of 2 batches anode slime, data such as pH and electrochemical potential was collected from the venturi solution and later shown in a Pourbaix diagram.
    [Show full text]
  • Selenium Compounds Are Federal Hazardous Air Pollutants and Were Identified As Toxic Air Contaminants in April 1993 Under AB 2728
    SELENIUM COMPOUNDS Selenium compounds are federal hazardous air pollutants and were identified as toxic air contaminants in April 1993 under AB 2728. CAS Registry Number of Selenium: 7782-49-2 Se Selenium monosulfide: 7446-34-6 SeS Molecular Formula of Selenium: Se Selenium monosulfide: SSe Elemental selenium exists in several allotropic forms. The amorphous form is either red in powder form, or black in vitreous form. The crystalline monoclinic prism form is deep red and the black crystalline hexagonal form (the most stable variety) is a lustrous metallic gray. Selenium is odorless and insoluble in water and alcohol, but soluble in chloroform, methylene iodide, benzene, quinoline, nitric acid, sulfuric acid, ether, carbon disulfide, aqueous potassium cyanide and potassium sulfate solutions (HSDB, 1991; Sax, 1989). Selenium possesses photovoltaic (converts radiant energy to electrical energy) and photoconductive (where electrical resistance decreases with increased illumination) properties. There are six isotopes (Merck, 1989). The properties of selenium compounds vary with the individual selenium compound. Selenium sulfide is the only selenium compound currently shown to be carcinogenic in animals. It is a bright orange powder which emits toxic fumes of selenium and sulfur oxides when heated to decomposition (Sax, 1989). It is soluble in benzene and carbon disulfide. Examples of Selenium Compounds Selenic acid Selenium dioxide Selenourea Seleninyl bis(dimethylamide) Selenium hexafluoride Selsun Seleninyl bromide Selenium monosulfide
    [Show full text]
  • Proceedings of the Indiana Academy of Science
    : Organic Compounds op Selenium 165 I. ORGANIC COMPOUNDS OF SELENIUM W. E. Bradt and M. Van Valkenhurgh, University of Cincinnati Introduction. Because selenium and some of its compounds are now- available in considerable amounts at reasonable prices, the investigation of the preparation and properties of organic selenium compounds is quite feasible. In order to further this work, the senior author plans a series of papers which, when completed, will present: (a) a classification of the known organic selenium compounds based on the analogous oxygen and sulphur types, (b) a complete list of all known organic selenium compounds, (c) a resume of the chemistry and methods of preparation developed for each class of compounds, and (d) a com- plete bibliography for each known organic selenium compound. The physiological action of some of the more common inorganic selenium compounds is well known. Many organic selenium compounds are reported to exhibit valuable therapeutic and tinctorial properties. However, the investigation of these properties has been so incomplete that organic compounds of selenium are still only of scientific interest. It is hoped that a systematic presentation of the chemistry of organic selenium compounds, with a statement of the extent of the synthetic work accomplished to date, will create interest in developing the possibilities of service to mankind (dyes, medicinals etc.), which probably exist in this field. Investigation in this direction lends itself particularly to the worker who has available only limited equipment. The reactions can usually be conducted in apparatus which is always available or which may be easily prepared. Aliphatic Selenols In this group will be discussed compounds, represented by the following formulas, in which "R" is a methyl group, the hydrogen atoms of which may or may not be replaced by other groups.
    [Show full text]