Uterotonic Plants and Their Bioactive Constituents

Total Page:16

File Type:pdf, Size:1020Kb

Uterotonic Plants and Their Bioactive Constituents Reviews 207 Uterotonic Plants and their Bioactive Constituents Authors Christian W. Gruber1, Margaret OʼBrien2 Affiliations 1 Department of Pharmacognosy, University of Vienna, Vienna, Austria 2 National Centre for Biomedical and Engineering Science, Orbsen Building, National University of Ireland Galway, Galway, Ireland Key words Abstract their mechanisms, primarily focusing on utero- l" womenʼs health ! tonic active circular plant peptides called cycloti- l" gynaecology Abnormalities in the process of uterine muscle des. Finally we will comment on the discovery of l" labour contractility during pregnancy and birth can have novel cyclotide-producing plant species and the l" myometrial smooth muscle major clinical implications, including preterm la- possibility for the development of novel plant-de- l" oxytocin l" cyclotides bour, which is the single largest cause of maternal rived uterotonic and tocolytic drugs. l" plants and prenatal mortality in the Western world and a major contributor to childhood developmental problems. In contrast, induction of labour may Abbreviations be necessary in certain conditions. Currently used ! interventional therapies to suppress (tocolytic AC: adenylyl cyclase agents) or to induce (uterotonic agents) uterine CCK: cyclic cystine knot contractions lack potency and/or selectivity and COX-2: cyclooxygenase-2 can have harmful side effects for mother and CRH: corticotropin-releasing hormone baby. Natureʼs diversity has always been, and still GPCR: G-protein coupled receptor is, one of the biggest resources of therapeutic lead IL: interleukin compounds. Many natural products exhibit bio- IP3: D-myoinositol 1,4,5-triphosphate logical activity against unrelated targets, thus MLC: myosin light chain providing researchers with starting points for NF: nuclear factor drug development. In this review we will provide OT: oxytocin an overview of uterine muscle physiology, de- PL: phospholipase scribe currently available biological screening R: receptor procedures for testing of uterotonic plant com- SFE: supercritical fluid extraction received June 1, 2010 pounds and will summarise traditionally-used SR: sarcoplasmic reticulum revised July 28, 2010 uterotonic plants, their active components and TNF: tumour necrosis factor accepted August 5, 2010 Bibliography DOI http://dx.doi.org/ Introduction volve the modulation of uterine contractions at 10.1055/s-0030-1250317 ! labour, resulting in either the stimulation (“utero- Published online September 15, Traditional medicine relies on the use of certain tonic”) or inhibition (“tocolytic”) of myometrial 2010 herbal plants and other remedies for beneficial ef- muscle contractions. In this review we will pro- Planta Med 2011; 77: 207–220 © Georg Thieme Verlag KG fects during pregnancy, to induce labour, in the vide an overview of uterotonic herbs and their ac- Stuttgart · New York · removal of retained placenta and management of tive constituents. This includes traditionally-used ISSN 0032‑0943 post-partum bleeding. However, some of these as well as recently identified plants or isolated Correspondence medicines have harmful side effects and when plant compounds, which have reportedly shown Dr. Christian W. Gruber taken in large quantities can lead to the death of uterine smooth muscle-stimulating activities. Department of Pharmacognosy the unborn baby and/or uterine rupture, and oth- Furthermore we will give a brief outline of avail- University of Vienna Althanstrasse 14 er longer term effects on the mother or baby. able uterotonic assay systems and provide a list 1090 Vienna Most often the biological effects elicited by these of uterotonic plants, their bioactive ingredients Austria remedies are due to biomolecules (small chemi- and their mechanism of action on the uterus. Our Phone: + 431427755262 Fax: + 431 42779552 cals, peptides or proteins) that primarily act on focus will be on the description of recently identi- [email protected] the uterus. The nature of these actions may in- fied cyclotide peptides, mainly found in plants Gruber CW, OʼBrien M. Uterotonic Plants and… Planta Med 2011; 77: 207–220 208 Reviews from the Rubiaceae and Violaceae families, which have shown to be uterotonic agents. We will begin this article with a thorough description of uterine physiology and molecular details of uter- ine smooth muscle contractility. Uterine Muscle Physiology ! Biology of the uterus The uterus is the central organ of reproduction. It is a thick, pear- shaped, muscular organ approximately, 7 cm long, and 4–5cm wide at its widest point. It is divided functionally and morpho- logically into three sections, namely the cervix, the isthmus and the main body of the uterus (corpus uteri) [1]. The myometrium is the middle muscular layer that makes up the major proportion of the uterine body. Myometrial smooth muscle is arranged in undefined layers and contractile forces can occur in any direction enabling the uterus to assume virtually any shape. Fig. 1 Uterine contraction signalling pathways. Uterotonic pathways (red Through growth and stretch during pregnancy, the myometrium arrows) – Myometrial contraction and relaxation result from the phospho- provides the protective environment for the developing foetus. rylation or dephosphorylation of myosin light chains (MLC), respectively. Then with the onset of labour it contracts rhythmically to expel Phosphorylation, by the enzyme myosin light chain kinase (MLCK), in the presence of adenosine triphosphate (ATP), is regulated by intracellular cal- the foetus and placenta. Smooth muscle fibres are composed of 2+ cium concentrations ([Ca ]i), in conjunction with the intermediate protein spindle-shaped cells, each with one centrally located nucleus. Typ- calmodulin (CaM), which together form the calcium-calmodulin (Ca-CaM) ically, they have a diameter of 2–10 µm and a length of several complex. Calcium channels (voltage and agonist operated channels; VOC/ hundred µm [2]. Smooth muscle cells are embedded in an extra- AOC), membrane endothelin (ET) receptors (ET1,ET2,ET3), passive entry, cellular matrix composed principally of collagen fibres, which fa- membrane prostaglandin (PG) receptors (E2,F2α) and stretch, all facilitate 2+ ↑ 2+ cilitate the transmission of contractile forcesgenerated by individ- an increase in intracellular Ca concentration ( [Ca ]i) and result in ual cells. They are organised into sheets of closely opposed fibres, smooth muscle contraction. Agonist-mediated activation of membrane acetylcholine (ACh) and oxytocin (OT) receptors stimulate the production oriented at right angles to each other. These sheets form two dis- of the second messenger D-myoinositol 1,4,5-triphosphate (IP ), the latter “ ” 3 tinct layers, the longitudinal layer , which consists of a network through the action of the enzyme phospholipase C (coupled to the OTR by of bundles of smooth muscle cells generally oriented in the long the G-protein [Gq]) on the plasma membrane constituent phosphatidyl- 2+ axis of the organ, and the “circular layer”, in which the fibres are inositol 4,5-bisphosphate (PIP2). IP3 releases Ca from the sarcoplasmic 2+ arranged concentrically around the longitudinal axis of the organ reticulum (SR) thus increasing [Ca ]i and resulting in cell contraction. A by- [3]. Contraction of the longitudinal layer causes the organ to dilate product of IP3 synthesis, the second messenger diacylglycerol (DAG) might and shorten, whereas contraction of the circular layer causes the promote cell contraction via intracellular PG synthesis from arachidonic ac- id (AA) by cyclooxygenase (COX) enzymes. The steroid hormone oestrogen organ to elongate; thus alternating contraction and relaxation of promotes cellular contractility by upregulating COX enzymes, particularly these layers enables the uterus to expel its contents at birth [2]. the COX-2 isoform. The active isoform of myosin phosphatase (MP) de- phosphorylates MLC, promoting cell relaxation. Receptor-agonist binding Uterine muscle contractility and the formation or upregulation of intracellular RhoA or Rho kinase could The onset of labour is facilitated by phasic myometrial contrac- result in a shift in the equilibrium of intracellular MP in the direction of the tions that are driven by the development of action potentials inactive isoform, resulting in enhanced cell contraction, i.e., calcium sensi- α α across the plasma membrane, resulting from a transient increase tisation. Agonist binding of the 1 adrenergic receptor ( 1ADR) stimulates inhibitory G-proteins (G ), which inactivate the adenylyl cyclase (AC) medi- in the cytosolic free Ca2+ concentration [4]. In this case (calcium- i ated production of cAMP from ATP. cAMP results in cell relaxation in many dependent smooth muscle contraction), calcium is released from 2+ ways, including inhibition of MLCK and the efflux of [Ca ]i through sodium/ the sarcoplasmic reticulum (SR) and from extracellular stores calcium (Na+/Ca2+) exchanger channels. Chloride (Cl−) channels, which through voltage-gated calcium channels. Therefore smooth might be activated by OT, exert their uterotonic effect by depolarisation of muscle contractility by different agonists or by electrical depolar- the smooth muscle cell membrane. Uterorelaxant pathways are indicated by 2+ 2+ blue arrows. Figure was adapted with modifications from [154]. isation results in a rapid increase in [Ca ]i [5]. Ca binds to four binding sites of calmodulin causing a conformational change al- lowing the calmodulin-calcium complex to interact with inactive
Recommended publications
  • Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem.
    [Show full text]
  • Ethnopharmacological Study on Medicinal Plants Used to Treat Infectious Diseases in the Rungwe District, Tanzania
    International Journal of Medicinal Plants and Natural Products (IJMPNP) Volume 1, Issue 3, 2015, PP 15-23 ISSN 2454-7999 (Online) www.arcjournals.org Ethnopharmacological Study on Medicinal Plants Used to Treat Infectious Diseases in the Rungwe District, Tanzania Sheila M. Maregesi, Rogers Mwakalukwa Department of Pharmacognosy, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania smaregesi @hotmail.com Abstract: An ethnopharmacological survey was conducted in two villages of Rungwe district, Mbeya Region, Tanzania. In this area, the use of plants for the treatment of various diseases is still very high, especially infectious diseases which are endemic in the tropical countries and leading cause of morbidity and mortality. Information was obtained from one traditional healer and two other experienced persons, having some knowledge on medicinal plants. A total of twenty plants were reported for use in the treatment of various infectious conditions and were documented during the field study. These plants belong to 18 genera and 11 families of which Asteraceae was the most represented. Amongst uses of various phytoorgans, leaves ranked highest, the most used method of preparation being decoction (57%). The most frequently mentioned route of administration was oral. The plants recorded for treating chronic infectious conditions amounted to 38%. It was found out that, people in this area commonly use medicinal plants with trust they have built on the curative outcome witnessed. However, this creates a further work to test for the antimicrobial activity and standardization of herbal preparation if these plants proven to be safe. Keywords: Ethnopharmacology; Medicinal plants; Traditional medicine; Infectious diseases; Rungwe,Tanzan 1.
    [Show full text]
  • Kuguacin J, a Triterpenoid from Momordica Charantia Linn: a Comprehensive Review of Anticarcinogenic Properties
    Chapter 13 Kuguacin J, a Triterpenoid from Momordica charantia Linn: A Comprehensive Review of Anticarcinogenic Properties Pornngarm Limtrakul, Pornsiri Pitchakarn and Shugo Suzuki Additional information is available at the end of the chapter http://dx.doi.org/10.5772/55532 1. Introduction Momordica charantia (MC) L. belongs to a short-fruited group of the Cucurbitaceae family and has been widely cultivated as a vegetable crop in many tropical and subtropical countries. The fruit, vines, leaves and roots of this plant have been used as a traditional medicine for the treatment of toothaches, diarrhea, furuncle, and diabetes [1-3]. Its fruit, referred to as kugua in the Chinese language, Mara Kee Nok in Thai and bitter melon in English, has been used in Chinese, Indian and Thai Cooking. Bitter melon, also known as bitter gourd, is cylindrical shaped and 4 to 12 inches in length and 1 and a half to 3 inches in diameter and contains large seeds inside. It tastes very bitter and is considered a blood purifier. It can be cut into rings and deep-fried for a snack. It is also often stir fried with meat, shrimp or fish. In view of the popularity of bitter melon in the Asian tropics and the fact that the results of using bitter melon as a remedy for diabetes has yielded conflicting results [2,4,5], more research needs to be done on its hypoglycemic activity. In addition, several compounds from bitter melon have shown interesting pharmacological activities, including antitumor, immunotoxic and anti-HIV properties, which merit further research, and may have strong potential in the development of future medicines [2,6-9].
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • Etude Florisitique D'une Végétation Naturelle En Anthropise: Cas De La
    UNIVERSITE DE KISANGANI CENTRE UNIVERSITAIRE EXTENSION DE BUKAVU C.U.B B.P. 570 BUKAVU FACULTE DES SCIENCES ETUDE FLORISTIQUE D’UNE VEGETATION NATURELLE EN MILIEU ANTHROPISE : CAS DE LA FORMATION ARBUSTIVE XEROPHILE DE CIBINDA, AU NORD DE BUKAVU Par Chantal KABOYI Nzabandora Mémoire présenté et défendu en vue de L’obtention du grade de Licence en Sciences Option : Biologie Orientation : Phytosociologie et Taxonomie végétale Directeur : Prof. Dr Jean-Baptiste Dhetchuvi Matchu-Mandje Année académique 2003-2004 II DEDICACE A nos très chers parents, Joseph NZABANDORA et Florence KOFIMOJA, pour tant d’amour et de sacrifice consentis dans notre parcours terrestre et dont l’aboutissement de nos études universitaires demeure un des témoignages les plus éloquents que nous n’ayons jamais eu dans la vie ; A notre charmante sœur jumelle Julienne BASEKE avec qui, de par notre existence, nous avons été faites pour partager une vie inséparable et chaleureuse ; A nos petits frères et sœurs, pour tant d’amour et de respect qu’ils n’on cessé de témoigner à notre égard, que ce travail soit pour vous un exemple à suivre ; A notre futur époux et nos futurs enfants pour l’amour, l’attente et la compréhension qui nous caractériseront toujours. III AVANT-PROPOS Au terme de notre parcours universitaire, il nous est un agréable devoir de formuler nos vifs remerciements à tous ceux qui, de près ou de loin, ont contribué à notre formation tant morale qu'intellectuelle. Nos sincères remerciements s'adressent, tout d'abord, aux autorités académiques, administratives ainsi qu'aux professeurs, chefs de travaux et assistants du Centre Universitaire Extension de Bukavu (CUB), pour toutes les théories apprises tout au long de notre séjour en son sein.
    [Show full text]
  • Revision of the Genus Ficus L. (Moraceae) in Ethiopia (Primitiae Africanae Xi)
    582.635.34(63) MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 79-3 (1979) REVISION OF THE GENUS FICUS L. (MORACEAE) IN ETHIOPIA (PRIMITIAE AFRICANAE XI) G. AWEKE Laboratory of Plant Taxonomy and Plant Geography, Agricultural University, Wageningen, The Netherlands Received l-IX-1978 Date of publication 27-4-1979 H. VEENMAN & ZONEN B.V.-WAGENINGEN-1979 BIBLIOTHEEK T)V'. CONTENTS page INTRODUCTION 1 General remarks 1 Uses, actual andpossible , of Ficus 1 Method andarrangemen t ofth e revision 2 FICUS L 4 KEY TOTH E FICUS SPECIES IN ETHIOPIA 6 ALPHABETICAL TREATMENT OFETHIOPIA N FICUS SPECIES 9 Ficus abutilifolia (MIQUEL)MIQUEL 9 capreaefolia DELILE 11 carica LINNAEUS 15 dicranostyla MILDBRAED ' 18 exasperata VAHL 21 glumosu DELILE 25 gnaphalocarpa (MIQUEL) A. RICHARD 29 hochstetteri (MIQUEL) A. RICHARD 33 lutea VAHL 37 mallotocarpa WARBURG 41 ovata VAHL 45 palmata FORSKÀL 48 platyphylla DELILE 54 populifolia VAHL 56 ruspolii WARBURG 60 salicifolia VAHL 62 sur FORSKÂL 66 sycomorus LINNAEUS 72 thonningi BLUME 78 vallis-choudae DELILE 84 vasta FORSKÂL 88 vogelii (MIQ.) MIQ 93 SOME NOTES ON FIGS AND FIG-WASPS IN ETHIOPIA 97 Infrageneric classification of Hewsaccordin gt o HUTCHINSON, related to wasp-genera ... 99 Fig-wasp species collected from Ethiopian figs (Agaonid associations known from extra- limitalsample sadde d inparentheses ) 99 REJECTED NAMES ORTAX A 103 SUMMARY 105 ACKNOWLEDGEMENTS 106 LITERATURE REFERENCES 108 INDEX 112 INTRODUCTION GENERAL REMARKS Ethiopia is as regards its wild and cultivated plants, a recognized centre of genetically important taxa. Among its economic resources, agriculture takes first place. For this reason, a thorough knowledge of the Ethiopian plant cover - its constituent taxa, their morphology, life-cycle, cytogenetics etc.
    [Show full text]
  • Albuca Spiralis
    Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J.
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]
  • Larvicidal Activity of Some Plants Extracts and Their Partitioned Fractions Against Culex Quinquefasciatus
    International Journal of TROPICAL DISEASE & Health 41(11): 23-34, 2020; Article no.IJTDH.59818 ISSN: 2278–1005, NLM ID: 101632866 Larvicidal Activity of Some Plants Extracts and Their Partitioned Fractions against Culex quinquefasciatus Funmilayo G. Famuyiwa1*, Francis B. Adewoyin2, Oluyemi J. Oladiran1 and Oluwatosin R. Obagbemi1 1Department of Pharmacognosy, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria. 2Drug Research and Production Unit, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria. Authors’ contributions This work was carried out in collaboration among all authors. Author FGF designed the study and performed the statistical analysis. Authors FGF and FBA wrote the first draft of the manuscript. Authors OJO and ORO carried out the larvicidal assay under the supervision of author FBA. Author FGF managed the literature searches. All authors read and approved the final manuscript. Article Information DOI: 10.9734/IJTDH/2020/v41i1130332 Editor(s): (1) Dr. Arthur V. M. Kwena, Moi University, Kenya. Reviewers: (1) Stan Florin Gheorghe, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Romania. (2) Kishore Yadav Jothula, All India Institute of Medical Sciences (AIIMS), India. Complete Peer review History: http://www.sdiarticle4.com/review-history/59818 Received 04 June 2020 Accepted 10 August 2020 Original Research Article Published 24 August 2020 ABSTRACT Aim: The methanol extracts of fifteen plants and their partitioned fractions were screened for larvicidal activity against the fourth instar of larvae Culex quinquefasciatus, the vector of lymphatic filariasis with a view to identifying the active ones. Methodology: The plant parts were collected, separately dried and milled. Each powdered material was extracted in methanol at room temperature for 3 days, with agitation.
    [Show full text]
  • Crystal Structures and Cytotoxicity of Ent-Kaurane-Type Diterpenoids from Two Aspilia Species
    This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details. Author(s): Yaouba, Souaibou; Valkonen, Arto; Coghi, Paolo; Gao, Jiaying; Guantai, Eric M.; Derese, Solomon; Wong, Vincent K. W.; Erdélyi, Máté; Yenesew, Abiy Title: Crystal Structures and Cytotoxicity of ent-Kaurane-Type Diterpenoids from Two Aspilia Species Year: 2018 Version: Published version Copyright: © the Authors, 2018. Rights: CC BY 4.0 Rights url: https://creativecommons.org/licenses/by/4.0/ Please cite the original version: Yaouba, S., Valkonen, A., Coghi, P., Gao, J., Guantai, E. M., Derese, S., Wong, V. K. W., Erdélyi, M., & Yenesew, A. (2018). Crystal Structures and Cytotoxicity of ent-Kaurane-Type Diterpenoids from Two Aspilia Species. Molecules, 23(12), Article 3199. https://doi.org/10.3390/molecules23123199 molecules Article Crystal Structures and Cytotoxicity of ent-Kaurane-Type Diterpenoids from Two Aspilia Species Souaibou Yaouba 1 , Arto Valkonen 2 , Paolo Coghi 3, Jiaying Gao 3, Eric M. Guantai 4, Solomon Derese 1, Vincent K. W. Wong 3,Máté Erdélyi 5,6,7,* and Abiy Yenesew 1,* 1 Department of Chemistry, University of Nairobi, P. O. Box 30197, 00100 Nairobi, Kenya; [email protected] (S.Y.); [email protected] (S.D.) 2 Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland; arto.m.valkonen@jyu.fi 3 State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; [email protected] (P.C.); [email protected] (J.G.); [email protected] (V.K.W.W.) 4 Department of Pharmacology and Pharmacognosy, School of Pharmacy, University of Nairobi, P.
    [Show full text]
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]
  • The One Hundred Tree Species Prioritized for Planting in the Tropics and Subtropics As Indicated by Database Mining
    The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining Roeland Kindt, Ian K Dawson, Jens-Peter B Lillesø, Alice Muchugi, Fabio Pedercini, James M Roshetko, Meine van Noordwijk, Lars Graudal, Ramni Jamnadass LIMITED CIRCULATION Correct citation: Kindt R, Dawson IK, Lillesø J-PB, Muchugi A, Pedercini F, Roshetko JM, van Noordwijk M, Graudal L, Jamnadass R. 2021. The one hundred tree species prioritized for planting in the tropics and subtropics as indicated by database mining. Working Paper No. 312. World Agroforestry, Nairobi, Kenya. DOI http://dx.doi.org/10.5716/WP21001.PDF The titles of the Working Paper Series are intended to disseminate provisional results of agroforestry research and practices and to stimulate feedback from the scientific community. Other World Agroforestry publication series include Technical Manuals, Occasional Papers and the Trees for Change Series. Published by World Agroforestry (ICRAF) PO Box 30677, GPO 00100 Nairobi, Kenya Tel: +254(0)20 7224000, via USA +1 650 833 6645 Fax: +254(0)20 7224001, via USA +1 650 833 6646 Email: [email protected] Website: www.worldagroforestry.org © World Agroforestry 2021 Working Paper No. 312 The views expressed in this publication are those of the authors and not necessarily those of World Agroforestry. Articles appearing in this publication series may be quoted or reproduced without charge, provided the source is acknowledged.
    [Show full text]