The Astrophysical Journal, 724:1238–1255, 2010 December 1 doi:10.1088/0004-637X/724/2/1238 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE STRUCTURE OF THE β LEONIS DEBRIS DISK Nathan D. Stock1, Kate Y. L. Su1, Wilson Liu2,PhilM.Hinz1, George H. Rieke1, Massimo Marengo3, Karl R. Stapelfeldt4, Dean C. Hines5, and David E. Trilling6 1 Steward Observatory, University of Arizona, 933 N Cherry Avenue, Tucson, AZ 85721, USA;
[email protected] 2 Infrared Processing and Analysis Center, California Institute of Technology, Mail Code 100-22, Pasadena, CA 91125, USA 3 Department of Physics and Astronomy, Iowa State University, Ames, IA 50010, USA 4 JPL/Caltech, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 5 Space Science Institute, 4750 Walnut Street, Suite 205 Boulder, CO 80301, USA 6 Department of Physics and Astronomy, Northern Arizona University, 602 S Humphreys Street, Flagstaff, AZ 86011, USA Received 2010 March 9; accepted 2010 September 25; published 2010 November 11 ABSTRACT We combine nulling interferometry at 10 μm using the MMT and Keck Telescopes with spectroscopy, imaging, and photometry from 3 to 100 μmusingSpitzer to study the debris disk around β Leo over a broad range of spatial scales, corresponding to radii of 0.1 to ∼100 AU. We have also measured the close binary star o Leo with both Keck and MMT interferometers to verify our procedures with these instruments. The β Leo debris system has a complex structure: (1) relatively little material within 1 AU; (2) an inner component with a color temperature of ∼600 K, fitted by a dusty ring from about 2–3 AU; and (3) a second component with a color temperature of ∼120 K fitted by a broad dusty emission zone extending from about ∼5AUto∼55 AU.