Disertaciones Astronómicas Boletín Número 74 De Efemérides Astronómicas 12 De Mayo De 2021

Total Page:16

File Type:pdf, Size:1020Kb

Disertaciones Astronómicas Boletín Número 74 De Efemérides Astronómicas 12 De Mayo De 2021 Disertaciones astronómicas Boletín Número 74 de efemérides astronómicas 12 de mayo de 2021 Realiza Luis Fernando Ocampo O. ([email protected]). Noticias de la semana. Océano de materia oscura. Imagen 1: El nuevo mapa del halo de la Vía Láctea (región elíptica azul) con el disco de la Vía Láctea, visto de lado, y con la galaxia satélite la Gran Nube de Magallanes en la parte inferior derecha (la pequeña también está allí). Lo que es interesante en esta imagen son las áreas brillantes en el halo: la inferior forma un camino distinto, una estela, detrás de la Gran Nube de Magallanes. La de arriba es una región de más estrellas en el hemisferio norte del halo. Ambas anomalías de halo fueron predichas por primera vez por modelos de computadora y ahora han sido confirmadas por observación. Imagen vía NASA / ESA / JPL-Caltech / Conroy et al. Una misteriosa estela de estrellas, provocada por una pequeña galaxia que está a punto de chocar con la Vía Láctea, podría estar a punto de desentrañar los misterios de la materia oscura. Los astrónomos observaron estrellas distantes en el tenue halo que rodea a nuestra galaxia, la Vía Láctea, y ahora han creado un mapa del halo, el primero de este tipo en estas partes más externas de nuestra galaxia. Estas nuevas observaciones, dijeron los astrónomos en abril de 2021, muestran cómo la Gran Nube de Magallanes, una de las galaxias satélite de la Vía Láctea, ha creado una estela, como un barco que navega por aguas tranquilas, mientras viaja a través del halo de la Vía Láctea. La estela se muestra como una ruta brillante distinta de estrellas en el mapa, lo que nos dice que las Nubes de Magallanes todavía están viajando en su primera órbita alrededor de la Vía Láctea. ¡Y la estela misma puede estar compuesta de materia oscura, arrastrando a las estrellas con ella! El rastro de estrellas, ubicado fuera de los brazos espirales salpicados de estrellas del disco central de la Vía Láctea en una región llamada halo galáctico, se está llevando a lo largo de la estela cósmica de una galaxia enana en órbita alrededor de la Vía Láctea, según un nuevo mapa del cielo creado por astrónomos. La galaxia, llamada Gran Nube de Magallanes (LMC), está orbitando a unos 130.000 años luz de la Tierra y está provocando la estela de material cósmico detrás de ella. A primera vista, el rastro de la LMC parece consistir únicamente en estrellas, pero los investigadores saben que las estrellas están a lo largo del viaje. Están suspendidas dentro de una presencia mucho más grande y completamente invisible. Los astrónomos están interesados en esta onda en el espacio porque creen que podría estar compuesta de materia oscura, la misteriosa sustancia no luminosa que constituye la gran mayoría de la materia del Universo. Las predicciones dicen que la materia oscura, invisible e interactuando con la materia que solo podemos ver a través de la gravedad, debería estar en todas partes en el halo galáctico. Hay muchas cosas interesantes sobre los halos galácticos. Son débiles y difíciles de observar, se extienden a grandes distancias de sus galaxias y, aparte de algunas estrellas, gas y polvo, se cree que contienen una gran cantidad de materia oscura. La materia oscura se llama “oscura” no solo porque sabemos poco sobre ella, sino porque no nos revela su existencia a través de la luz, solo a través de la interacción gravitacional con otra materia. El video de arriba ilustra qué tan lejos del disco principal de nuestra galaxia se extiende el halo, así como el camino, la estela, de la Gran Nube de Magallanes que lo atraviesa. La influencia gravitacional de la materia oscura se puede observar en todo el Universo: es el andamio vital de nuestra galaxia (ARN galáctico), que pega estrellas y planetas para que no salgan volando mientras la galaxia gira. Sin embargo, qué es exactamente la materia oscura, o cómo se comporta, sigue siendo uno de los mayores misterios de la astronomía. Los investigadores esperan que, al estudiar la estela, puedan estudiar la materia oscura que creen que constituye la gran mayoría. Si la materia oscura constituye la mayor parte del halo, y todas las diferentes teorías sobre la naturaleza de la materia oscura están de acuerdo en eso, una galaxia que viaje a través del halo también dejaría una estela en la materia oscura, no solo en las estrellas. Imagen 2: Impresión artística de un par de galaxias del Universo temprano. Las observaciones en curso con el Atacama Large Millimeter / submillimeter Array (ALMA) han descubierto ejemplos sorprendentes de galaxias masivas llenas de estrellas vistas cuando el cosmos tenía menos de mil millones de años. Crédito: ESA. Esto sugiere que los bloques de construcción galácticos más pequeños pudieron ensamblarse en grandes galaxias con bastante rapidez. Las últimas observaciones de ALMA hacen retroceder aún más esta época de formación de galaxias masivas al identificar dos galaxias gigantes vistas cuando el universo tenía solo 780 millones de años, o alrededor del 5 por ciento de su edad actual. ALMA también reveló que estas galaxias inusualmente grandes están ubicadas dentro de una estructura cósmica aún más masiva, un halo de materia oscura varios billones de veces más masivo que el Sol. Las regiones internas del halo de la Vía Láctea ya se han investigado en detalle, pero esta es la primera vez que los astrónomos han podido mapear de manera similar las regiones externas del halo, incluida la estela, a una distancia de 200.000 a 325.000 años luz de distancia. el centro de nuestra galaxia. (A modo de comparación, el disco de la galaxia de la Vía Láctea visible con el que estamos más familiarizados tiene un diámetro de unos 100.000 años luz, por lo que está muy lejos). Con el halo tan tenue, ¿cómo se hace para observarlo? Aunque las estrellas son extremadamente escasas en el halo, todavía hay algunas allí. Los investigadores midieron 1.301 estrellas ubicadas a grandes distancias del halo, utilizando datos de la misión Gaia de la Agencia Espacial Europea y el Explorador de Encuestas Infrarrojas de Campo Amplio de Objetos Cercanos a la Tierra de la NASA (NEOWISE, que también dio nombre al cometa de 2020). Identificar con precisión sus distancias fue uno de los mayores obstáculos. Así que eligieron solo un tipo específico de estrellas gigantes rojas, clasificadas como gigantes K en el esquema de clasificación estelar. NEOWISE pudo detectar de manera eficiente estas estrellas en la parte infrarroja del espectro electromagnético, lo que ayudó al equipo a encontrar sus distancias precisas en el halo y crear el mapa. Parte del equipo detrás de esta investigación había predicho cómo debería ser la materia oscura en el halo de la Vía Láctea, usando modelos de computadora. Entonces, cuando los datos de observación mostraron una estela detrás de la Gran Nube de Magallanes y otra región de estrellas de mayor densidad en la parte norte del halo, esto no fue del todo una sorpresa. Nicolás Garavito-Camargo, coautor del estudio en la Universidad de Arizona, explicó cómo esta investigación se aplica también a otras galaxias: La Vía Láctea es la única galaxia en la que podemos resolver las estrellas y el halo a este nivel de detalle, por lo que es nuestro "laboratorio natural" más importante en el que podemos estudiar cómo funcionan las galaxias en general. Creemos que lo que observamos aquí probablemente se aplique a galaxias similares en todo el Universo. La Gran Nube de Magallanes es una pequeña galaxia que gira alrededor de la Vía Láctea, a unos 160.000 años luz de distancia de nosotros. Ella y su compañera más pequeña, la Pequeña Nube de Magallanes (a menudo abreviada LMC y SMC, respectivamente), son claramente visibles a simple vista desde el hemisferio sur, donde se ven exactamente como su homónimo: como curiosas nubes estacionarias. Se predice que LMC chocará con la Vía Láctea en un futuro lejano y, en esencia, esta colisión ya ha comenzado si se tiene en cuenta el halo como parte de nuestra galaxia. En pocas palabras: los astrónomos han creado un mapa del halo de nuestra galaxia, la Vía Láctea, sus regiones exteriores más lejanas, que muestra cómo la Gran Nube de Magallanes ha creado una estela a lo largo de su trayectoria recorrida, evidencia de que la galaxia enana satélite está solo en su primera órbita. alrededor de la Vía Láctea. El mapa proporciona una forma de aprender más sobre la naturaleza de la materia oscura, que se cree que compone una gran parte del halo galáctico. Imagen 3: En la Fig. 1a, se muestra un mapa de proyección de Mollweide de áreas iguales de la muestra resultante de 1.301 estrellas en coordenadas galácticas. El mapa ha sido suavizado y coloreado por el contraste de densidad. Las regiones grises indican partes del cielo que se han enmascarado. Hay dos sobre-densidades notables que abarcan miles de grados cuadrados. Mapas de proyección de Mollweide para todo el cielo de la densidad de estrellas a 60 kpc <Rgal <100 kpc, a, Datos basados en K estrellas gigantes. b, Simulación que incluye la respuesta dinámica del halo a la órbita del LMC. La sobre-densidad en el suroeste es la estela local provocada por el paso del LMC. La sobre-densidad en el norte es la respuesta colectiva de la Galaxia debido a la llegada del LMC. Imagen: Nature. Imagen 4: En la figura, se muestran los resultados de cuatro simulaciones con un rango de masas LMC en caída: (0.8, 1.0, 1.8, 2.5) × 1011M⊙.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Evidence for Very Extended Gaseous Layers Around O-Rich Mira Variables and M Giants B
    The Astrophysical Journal, 579:446–454, 2002 November 1 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. EVIDENCE FOR VERY EXTENDED GASEOUS LAYERS AROUND O-RICH MIRA VARIABLES AND M GIANTS B. Mennesson,1 G. Perrin,2 G. Chagnon,2 V. Coude du Foresto,2 S. Ridgway,3 A. Merand,2 P. Salome,2 P. Borde,2 W. Cotton,4 S. Morel,5 P. Kervella,5 W. Traub,6 and M. Lacasse6 Received 2002 March 15; accepted 2002 July 3 ABSTRACT Nine bright O-rich Mira stars and five semiregular variable cool M giants have been observed with the Infrared and Optical Telescope Array (IOTA) interferometer in both K0 (2.15 lm) and L0 (3.8 lm) broad- band filters, in most cases at very close variability phases. All of the sample Mira stars and four of the semire- gular M giants show strong increases, from ’20% to ’100%, in measured uniform-disk (UD) diameters between the K0 and L0 bands. (A selection of hotter M stars does not show such a large increase.) There is no evidence that K0 and L0 broadband visibility measurements should be dominated by strong molecular bands, and cool expanding dust shells already detected around some of these objects are also found to be poor candi- dates for producing these large apparent diameter increases. Therefore, we propose that this must be a con- tinuum or pseudocontinuum opacity effect. Such an apparent enlargement can be reproduced using a simple two-component model consisting of a warm (1500–2000 K), extended (up to ’3 stellar radii), optically thin ( ’ 0:5) layer located above the classical photosphere.
    [Show full text]
  • A Search for Variability and Transit Signatures In
    A SEARCH FOR VARIABILITY AND TRANSIT SIGNATURES IN HIPPARCOS PHOTOMETRIC DATA A thesis presented to the faculty of 3 ^ San Francisco State University Zo\% In partial fulfilment of W* The Requirements for The Degree Master of Science In Physics: Astronomy by Badrinath Thirumalachari San JVancisco, California December 2018 Copyright by Badrinath Thirumalachari 2018 CERTIFICATION OF APPROVAL I certify that I have read A SEARCH FOR VARIABILITY AND TRANSIT SIGNATURES IN HIPPARCOS PHOTOMETRIC DATA by Badrinath Thirumalachari and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirements for the degree: Master of Science in Physics: Astronomy at San Francisco State University. fov- Dr. Stephen Kane, Ph.D. Astrophysics Associate Professor of Planetary Astrophysics Dr. Uo&eph Barranco, Ph.D. .%trtJphysics Chairfe Associate Professor of Physics K + A Q , L a . Dr. Ron Marzke, Ph.D. Astronomy Assoc. Dean of College of Science & Engineering A SEARCH FOR VARIABILITY AND TRANSIT SIGNATURES IN HIPPARCOS PHOTOMETRIC DATA Badrinath Thirumalachari San Francisco State University 2018 The study and characterization of exoplanets has picked up pace rapidly over the past few decades with the invention of newer techniques and instruments. Detecting transits in stellar photometric data around stars already known to harbor exoplanets is crucial for exoplanet characterization. Due to these advancements we now have oceans of data and coming up with an automated way of performing exoplanet characterization is a challenge. In this thesis I describe one such method to search for transits in Hipparcos dataset containing photometric data for over 118000 stars. The radial velocity method has discovered a lot of planets around bright host stars and a follow up transit detection will give us the density of the exoplanet.
    [Show full text]
  • Astrometrically Registered Maps of H2O and Sio Masers Toward VX Sagittarii
    ARTICLE DOI: 10.1038/s41467-018-04767-8 OPEN Astrometrically registered maps of H2O and SiO masers toward VX Sagittarii Dong-Hwan Yoon1,2, Se-Hyung Cho2,3, Youngjoo Yun2, Yoon Kyung Choi2, Richard Dodson4, María Rioja4,5, Jaeheon Kim6, Hiroshi Imai7, Dongjin Kim3, Haneul Yang1,2 & Do-Young Byun2 The supergiant VX Sagittarii is a strong emitter of both H2O and SiO masers. However, previous VLBI observations have been performed separately, which makes it difficult to 1234567890():,; spatially trace the outward transfer of the material consecutively. Here we present the astrometrically registered, simultaneous maps of 22.2 GHz H2O and 43.1/42.8/86.2/129.3 GHz SiO masers toward VX Sagittarii. The H2O masers detected above the dust-forming layers have an asymmetric distribution. The multi-transition SiO masers are nearly circular ring, suggesting spherically symmetric wind within a few stellar radii. These results provide the clear evidence that the asymmetry in the outflow is enhanced after the smaller molecular gas clump transform into the inhomogeneous dust layers. The 129.3 GHz maser arises from the outermost region compared to that of 43.1/42.8/86.2 GHz SiO masers. The ring size of the 129.3 GHz maser is maximized around the optical maximum, suggesting that radiative pumping is dominant. 1 Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea. 2 Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Korea. 3 Department of Astronomy, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Direct Imaging of Radial Velocity Exoplanets WFIRST-AFTA Coronagraph Study
    Direct Imaging of Radial Velocity Exoplanets WFIRST-AFTA Coronagraph Study 12/18/2014 Aastha Acharya, aa533 Advisor: Dmitry Savransky, ds264 Contents Abstract .................................................................................................................................................. 2 Introduction ............................................................................................................................................ 3 Literature Review .................................................................................................................................... 4 Exoplanet Background ......................................................................................................................... 4 Detection Methods .............................................................................................................................. 4 Radial Velocity Detection Method ....................................................................................................... 7 Orbital Mechanics.............................................................................................................................. 10 Coronagraph Specification ................................................................................................................. 11 Methodology ......................................................................................................................................... 13 Results and Discussion ..........................................................................................................................
    [Show full text]
  • Determining the True Mass of Radial-Velocity Exoplanets with Gaia F
    Determining the true mass of radial-velocity exoplanets with Gaia F. Kiefer, G. Hébrard, A. Lecavelier Des Etangs, E. Martioli, S. Dalal, A. Vidal-Madjar To cite this version: F. Kiefer, G. Hébrard, A. Lecavelier Des Etangs, E. Martioli, S. Dalal, et al.. Determining the true mass of radial-velocity exoplanets with Gaia: Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets. Astronomy and Astrophysics - A&A, EDP Sciences, 2021, 645, pp.A7. 10.1051/0004-6361/202039168. hal-03085694 HAL Id: hal-03085694 https://hal.archives-ouvertes.fr/hal-03085694 Submitted on 21 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 645, A7 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039168 & © F. Kiefer et al. 2020 Astrophysics Determining the true mass of radial-velocity exoplanets with Gaia Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets? F. Kiefer1,2, G. Hébrard1,3, A. Lecavelier des Etangs1, E. Martioli1,4, S. Dalal1, and A. Vidal-Madjar1 1 Institut d’Astrophysique de Paris, Sorbonne
    [Show full text]
  • TRUE MASSES of RADIAL-VELOCITY EXOPLANETS Robert A
    APP Template V1.01 Article id: apj513330 Typesetter: MPS Date received by MPS: 19/05/2015 PE: CE : LE: UNCORRECTED PROOF The Astrophysical Journal, 00:000000 (28pp), 2015 Month Day © 2015. The American Astronomical Society. All rights reserved. TRUE MASSES OF RADIAL-VELOCITY EXOPLANETS Robert A. Brown Space Telescope Science Institute, USA; [email protected] Received 2015 January 12; accepted 2015 April 14; published 2015 MM DD ABSTRACT We study the task of estimating the true masses of known radial-velocity (RV) exoplanets by means of direct astrometry on coronagraphic images to measure the apparent separation between exoplanet and host star. Initially, we assume perfect knowledge of the RV orbital parameters and that all errors are due to photon statistics. We construct design reference missions for four missions currently under study at NASA: EXO-S and WFIRST-S, with external star shades for starlight suppression, EXO-C and WFIRST-C, with internal coronagraphs. These DRMs reveal extreme scheduling constraints due to the combination of solar and anti-solar pointing restrictions, photometric and obscurational completeness, image blurring due to orbital motion, and the “nodal effect,” which is the independence of apparent separation and inclination when the planet crosses the plane of the sky through the host star. Next, we address the issue of nonzero uncertainties in RV orbital parameters by investigating their impact on the observations of 21 single-planet systems. Except for two—GJ 676 A b and 16 Cyg B b, which are observable only by the star-shade missions—we find that current uncertainties in orbital parameters generally prevent accurate, unbiased estimation of true planetary mass.
    [Show full text]
  • High Contrast Imaging from Space and the WFIRST Coronagraph Instrument
    High Contrast Imaging from Space and the WFIRST Coronagraph Instrument N. Jeremy Kasdin Eugene Higgins Prof. of Mechanical & Aerospace Eng. Princeton University 20 May 2018 1 Acknowledgments I am indebted to my direct imaging and WFIRST colleagues for their help and contributions to this talk: Vanessa Bailey, Bruce Macintosh, Maggie Turnbull, Peg Frerking, Feng Zhao, Ilya Poberezhkiy, Rick Demers, Eric Cady, A J Riggs, BijanNemati, Bertrand Menneson, John Trauger, John Krist, Fang Shi, and the entire CGI team. Neil Zimmerman, Tyler Groff, Missy Vess, and the team at Goddard Space Flight Center. Laurent Pueyo, Remi Soummer, and Chris Stark at STScI. Gary Ruane (Caltech), Dmitry Savransky(Cornell), Aki Roberge (GSFC), Leslie Rogers (Chicago), Courtney Dressing (Berkeley). Sara Seager, Andrew Grey, Andrew Romero-Wolf, Doug Lisman, Stuart Shaklan, and the StarshadeRendezvous team. My students and postdocs: Christian Delcroix, Jessica Gersh-Range, Anthony Harness, Leonel Palacios Moreno, Mia Hu, Leonid Pogorelyuki, He Sun. 2 3 CGI in Context Giant Planet Imaging Photometry Narrow-band Spectroscopy of Self-luminous & RV Planets New Planet Discovery ExozodiacalDisk Imaging Visible light characterization of Debris Disks 6 WFIRST after WIETR • The Coronagraph Instrument is a technology demonstration only • Requirements established using standard engineering practice • Reduction in modes and science center role • If successful, ”Participating Science Program” following tech demo • Design to support possible starshade (pending Decadal recommendation)
    [Show full text]
  • Doctor of Philosophy
    Study of Sun-like G Stars and Their Exoplanets Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mr. SHASHANKA R. GURUMATH May, 2019 ABSTRACT By employing exoplanetary physical and orbital characteristics, aim of this study is to understand the genesis, dynamics, chemical abundance and magnetic field structure of Sun-like G stars and relationship with their planets. With reasonable constraints on selection of exoplanetary physical characteristics, and by making corrections for stellar rate of mass loss, a power law relationship between initial stellar mass and their exo- planetary mass is obtained that suggests massive stars harbor massive planets. Such a power law relationship is exploited to estimate the initial mass (1.060±0.006) M of the Sun for possible solution of “Faint young Sun paradox” which indeed indicates slightly higher mass compared to present mass. Another unsolved puzzle of solar system is angular momentum problem, viz., compare to Sun most of the angular momentum is concentrated in the solar system planets. By analyzing the exoplanetary data, this study shows that orbital angular momentum of Solar system planets is higher compared to orbital angular momentum of exoplanets. This study also supports the results of Nice and Grand Tack models that propose the idea of outward migration of Jovian planets during early history of Solar system formation. Furthermore, we have examined the influence of stellar metallicity on the host stars mass and exoplanetary physical and orbital characteristics that shows a non-linear relationship. Another important result is most of the planets in single planetary stellar systems are captured from the space and/or inward migration of planets might have played a dominant role in the final architecture of single planetary stellar systems.
    [Show full text]
  • Quantization of Planetary Systems and Its Dependency on Stellar Rotation Jean-Paul A
    Quantization of Planetary Systems and its Dependency on Stellar Rotation Jean-Paul A. Zoghbi∗ ABSTRACT With the discovery of now more than 500 exoplanets, we present a statistical analysis of the planetary orbital periods and their relationship to the rotation periods of their parent stars. We test whether the structure of planetary orbits, i.e. planetary angular momentum and orbital periods are ‘quantized’ in integer or half-integer multiples with respect to the parent stars’ rotation period. The Solar System is first shown to exhibit quantized planetary orbits that correlate with the Sun’s rotation period. The analysis is then expanded over 443 exoplanets to statistically validate this quantization and its association with stellar rotation. The results imply that the exoplanetary orbital periods are highly correlated with the parent star’s rotation periods and follow a discrete half-integer relationship with orbital ranks n=0.5, 1.0, 1.5, 2.0, 2.5, etc. The probability of obtaining these results by pure chance is p<0.024. We discuss various mechanisms that could justify this planetary quantization, such as the hybrid gravitational instability models of planet formation, along with possible physical mechanisms such as inner discs magnetospheric truncation, tidal dissipation, and resonance trapping. In conclusion, we statistically demonstrate that a quantized orbital structure should emerge naturally from the formation processes of planetary systems and that this orbital quantization is highly dependent on the parent stars rotation periods. Key words: planetary systems: formation – star: rotation – solar system: formation 1. INTRODUCTION The discovery of now more than 500 exoplanets has provided the opportunity to study the various properties of planetary systems and has considerably advanced our understanding of planetary formation processes.
    [Show full text]
  • Planetary Companions in K Giants Β Cancri, Μ Leonis, and Β Ursae Minoris,
    A&A 566, A67 (2014) Astronomy DOI: 10.1051/0004-6361/201322608 & c ESO 2014 Astrophysics Planetary companions in K giants β Cancri, μ Leonis, and β Ursae Minoris, B.-C. Lee1,I.Han1,M.-G.Park2, D. E. Mkrtichian3,4, A. P. Hatzes5,andK.-M.Kim1 1 Korea Astronomy and Space Science Institute, 776, Daedeokdae-Ro, Youseong-Gu, 305-348 Daejeon, Korea e-mail: [bclee;iwhan;kmkim]@kasi.re.kr 2 Department of Astronomy and Atmospheric Sciences, Kyungpook National University, 702-701 Daegu, Korea e-mail: [email protected] 3 National Astronomical Research Institute of Thailand, 50200 Chiang Mai, Thailand 4 Crimean Astrophysical Observatory, Taras Shevchenko National University of Kyiv, Nauchny, 98409 Crimea, Ukraine e-mail: [email protected] 5 Thüringer Landessternwarte Tautenburg (TLS), Sternwarte 5, 07778 Tautenburg, Germany e-mail: [email protected] Received 5 September 2013 / Accepted 1 May 2014 ABSTRACT Aims. The aim of our paper is to investigate the low-amplitude and long-period variations in evolved stars with a precise radial velocity survey. Methods. The high-resolution, the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) was used from 2003 to 2013 for a radial velocity survey of giant stars as part of the exoplanet search program at Bohyunsan Optical Astronomy Observatory (BOAO). Results. We report the detection of three new planetary companions orbiting the K giants β Cnc, μ Leo, and β UMi. The planetary nature of the radial velocity variations is supported by analyzes of ancillary data. The Hipparcos photometry shows no variations with periods close to those in radial velocity variations and there is no strong correlation between the bisector velocity span (BVS) and the radial velocities for each star.
    [Show full text]