A Review of the Structural Architecture of Tellurium Oxycompounds

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the Structural Architecture of Tellurium Oxycompounds Mineralogical Magazine, May 2016, Vol. 80(3), Deposited Tables 8–26 A review of the structural architecture of tellurium oxycompounds A. G. CHRISTY1, S. J. MILLS2,* AND A. R. KAMPF3 1Centre for Advanced Microscopy and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia 2Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA Mineralogical Magazine, May 2016, Vol. 80(3), pp. 414–544 Deposited Tables 8–26 *E-mail: [email protected] DOI: 10.1180/minmag.2016.080.093 1 Mineralogical Magazine, May 2016, Vol. 80(3), Deposited Tables 8–26 4+ TABLE 8. Structures with neso [Te X3] (Fig. 5a) not incorporated into a larger structural unit and no additional anions or water. N = number of symmetry distinct Te sites. SG = space group. # ICSD # Compound N SG a / Å b / Å c / Å α, β, γ / o Reference 1 4317 Li2[TeO3] 1 C2/c 5.06(9) 9.56(6) 13.72(7) 90, 95.4, 90 Folger (1975a) 2 100693 Na2[TeO3] 1 P21/a 6.882 10.315 4.961 90, 91.66, 90 Masse et al. (1980) 3 100694 Ag2[TeO3] 1 P21/a 7.004 10.547 4.917 90, 91.44, 90 Masse et al. (1980) 4 200965 Tl2[TeO3] 1 Pban 16.60(1) 11.078(6) 5.238(3) 90, 90, 90 Frit and Mercurio (1980) 5 169995 AgTl[TeO3] 1 Iba2 14.708(7) 10.745(6) 5.166(3) 90, 90, 90 Linda et al. (2010) 6 65640 K2[TeO3] 1 P3 6.279(2) 6.279(2) 7.069 90, 90, 120 Andersen et al. (1989) 7 59164 Cs2[TeO3] 1 P321� 6.790(1) 6.790(1) 7.972(1) 90, 90, 120 Loopstra and Goubitz (1986) 8 38223 Rb2[TeO3] 1 C2/m 11.24 6.48 7.49 90, 90, 90 Thümmel and Hoppe (1974) 9 260226 Ca[TeO3]-α 5 P43 12.1070(10) 12.1070(10) 11.0911(18) 90, 90, 90 Stöger et al. (2009) 10 260228 Ca[TeO3]-β 18 P1 25.6620(4) 10.2426(2) 11.3327(2) 107.218(1), 110.245(2), Stöger et al. (2009) 33.019(1) 11 260233 Ca[TeO3]-β’ 9 P1 25.6215(5) 10.3933(2) 11.2481(2) 108.604(9), 112.393(13), Stöger et al. (2009) 32.319(1) � 12 182023 Sr[TeO3]-ε 1 P21/c 6.7759(1) 7.2188(1) 8.6773(2) 90, 126.4980(7), 90 Stöger et al. (2011a) 13 74396 Sr[TeO3] 6 P1 8.890(2) 11.850(2) 5.832(1) 91.36(2), 91.04(42), 69.69(2) Elerman (1993) 14 172562 Sr[TeO3] 6 C2/c 28.1239(7) 5.90642(13) 28.4385(7) 90, 114.230(2), 90 Dityat'yev et al. (2006) 15 240967 Sr[TeO3] 6 C2 28.151(6) 5.897(1) 15.261(3) 90, 122.09(3), 90 Zavodnik et al. (2007) 16 4320 Ba[TeO3] 1 P21/m 4.633(8) 5.952(10) 7.308(12) 90, 111.19(20), 90 Folger (1975b) 17 10107 Ba[TeO3] 3 Pnma 14.784(2) 6.129(1) 12.350(2) 90, 90, 90 Kocak et al. (1979a) 18 4317 Pb[TeO3] 1 P41 5.304(3) 5.304(3) 11.900(6) 90, 90, 90 Sciau et al. (1986) 19 240921 Pb[TeO3] 3 C2/c 26.555(5) 4.593(1) 17.598(4) 90, 106.97(3), 90 Zavodnik et al. (2008) 2 Mineralogical Magazine, May 2016, Vol. 80(3), Deposited Tables 8–26 20 60067 Cd[TeO3] 1 P21/c 7.790(1) 11.253(2) 7.418(1) 90, 113.5(1), 90 Kramer and Brandt (1985) 21 - Sc2[TeO3]3 3 P21/n 5.2345(3) 24.3958(15) 6.8636(4) 90, 106.948(2), 90 Song et al. (2014) 22 69737 Ce[TeO3]2 2 P21/n 7.0197(8) 11.0434(8) 7.3327(1) 90, 108.007(8), 90 Lopez et al. (1991) 23 69738 Th[TeO3]2 2 P21/n 7.1954(1) 11.2183(6) 7.4638(8) 90, 108.063(3), 90 Lopez et al. (1991) 24 90383 Pu[TeO3]2 2 P21/n 6.9937(1) 11.0014(2) 7.3404(2) 90, 107.98(2), 90 Krishnan et al. (2000) 3 Mineralogical Magazine, May 2016, Vol. 80(3), Deposited Tables 8–26 4+ TABLE 9. Structures with neso [Te X3] (Fig. 5a) not incorporated into a larger structural unit, but with additional anions or water. # ICSD # Compound Fig# N SG a / Å b / Å c/ Å α, β, γ / o Reference (Mineral name) (whole str) 25 38036 Li3[TeO3](OH) 1 P21/m 6.771(2) 6.309(2) 5.433(2) 90, 113.20(1), 90 Cachau-Herreillat et al. (1983) 26 8008 Na2[TeO3]·5H2O 1 C2/c 13.468(2) 7.426(1) 17.545(3) 90, 97.79(2), 90 Philippot et al. (1979b) 27 24781 KNa[TeO3]·3H2O 1 P31c 6.550(3) 6.550(3) 8.980(4) 90, 90, 120 Daniel et al. (1982) 28 2384 K2[TeO3]·3H2O 1 Pnma 8.895(6) 6.964(3) 12.385(7) 90, 90, 90 Johansson and Lindqvist (1978) 29 48114 MgTeO3·6H2O 1 R3 9.029(5) 9.029(5) 8.979(9) 90, 90, 120 Andersen et al. (1984) ≡ [Mg(H2O)6][TeO3] 30 182022 Sr[TeO3]·H2O 1 P21/c 7.7669(5) 7.1739(4) 8.3311(5) 90, 107.210(1), 90 Stöger et al. (2011a) 31 15013 Ba[TeO3]·H2O 1 P21/a 8.58(2) 7.53(2) 7.70(2) 90, 106.03(2), 90 Nielsen et al. (1971) 32 422547 Sr3[TeO3]2Cl2 1 Fd3m 15.5391(4) 15.5391(4) 15.5391(4) 90, 90, 90 Stöger et al. (2011b) 33 422548 Ba3[TeO3]2Cl2 1 Fd3�m 16.688(2) 16.688(2) 16.688(2) 90, 90, 90 Stöger et al. (2011b) 34 422549 Ba3[TeO3]2Br1.64Cl0.36 1 Fd3�m 16.8072(3) 16.8072(3) 16.8072(3) 90, 90, 90 Stöger et al. (2011b) 35 424288 Pb3[TeO3]Cl4 1 Pna�21 7.427(4) 15.993(8) 8.483(4) 90, 90, 90 Zhang et al. (2012b) 36 95844 Ho[TeO3]Cl 1 Pnma 7.3025(5) 6.9654(5) 9.0518(7) 90, 90, 90 Meier and Schleid (2002) 37 419383 Nd5[TeO3]2O4Cl3 17 1 C2/m 12.7061(9) 5.6270(4) 10.0897(8) 90, 90.784(3), 90 Zitzer and Schleid (2009) 38 420167 Na2Lu3[TeO3]4I3 2 P2/c 9.2169(5) 5.5271(3) 16.6437(9) 90, 90.218(4), 90 Zitzer and Schleid (2010) 1+ 39 170649 Nd4Cu [TeO3]5Cl3 5 I2 17.719(8) 5.663(2) 19.390(12) 90, 103.573(3), 90 Shen and Mao (2005) 40 85725 Bi2[TeO3]2O 4 Pbcn 22.78239(40) 5.5140(1) 22.1198(4) 90, 90, 90 Mercurio et al. (1998) 41 36446 Bi2[TeO3]O2 (Smirnite) 1 Abm2 11.602(2) 16.461(3) 5.523(1) 90, 90, 90 Mercurio et al. (1983) 42 - Ca6[TeO3]5(NO3)2 5 P21/c 15.492(2) 5.6145(7) 39.338(4) 90, 142.480(5), 90 Stöger and Weil (2013) 4 Mineralogical Magazine, May 2016, Vol. 80(3), Deposited Tables 8–26 43 - Ca5[TeO3]4(NO3)2(H2O)2 4 Cc 25.258(3) 5.7289(7) 17.0066(19) 90, 124.377(2), 90 Stöger and Weil (2013) 44 - Sc2[TeO3][SeO3][SeO4] 1 P21/c 6.5345(12) 10.970(2) 12.559(2) 90, 102.699(10), 90 Song et al. (2014) 45 418559 La2[Si6O13][TeO3]2 1 P21/c 14.766(9) 7.318(4) 8.099(5) 90, 103.051(11), 90 Kong et al. (2008) 46 417641 La4[Si5.2Ge2.8O18][TeO3]4 4 P3 8.150(5) 12.892(8) 14.320(8) 106.132(9), Kong et al. (2008) 90.045(5), 104.270(5) � 5 Mineralogical Magazine, May 2016, Vol. 80(3), Deposited Tables 8–26 4+ TABLE 10. Structures with neso Te X3 (Fig. 5a) as part of a larger structural unit that is a finite cluster or infinite chain. Non-Te cations are in 1-fold or linear 2-fold coordination (L), tetrahedral (T) or octahedral (M); Y = anion not bound to Te. # ICSD # Compound Fig# Structural unit N SG a / Å b / Å c / Å α, β, γ / o Reference (Mineral name) (whole str) 47 61673 HgTeO3 ≡ [Hg2(TeO3)2] cluster [L2(TeX3)2] 2 P1 6.139(1) 7.361(8) 7.459(3) 84.76(3), 65.72(4), Kramer and 87.11(2) Brandt (1986) � 48 418184 Cd4V2 Te3 O15 ≡ cluster [TY3(TeX3)] 3 P212121 5.3993(4) 16.0478(11) 16.2349(11) 90, 90, 90 Jiang et al. 5+ 4+ Cd4[VO3][(VO3)(TeO3)](TeO3)2 (2008) 2+ 49 423574 Pb2[Pd Cl2(TeO3)2] cluster [MY2(TeX3)2] 1 P21/c 8.145(2) 5.4447(15) 13.140(3) 90, 124.444(11), 90 Zhang et al. (2011c) 50 78917 Bi2WTe2O10 ≡ Bi2[WO4(TeO3)2] cluster [MY4(TeX3)2] 1 C2/c 12.4972(7) 5.6413(3) 12.2705(6) 90, 91.38(3), 90 Champarnaud‐ Mesjard et al.
Recommended publications
  • An Application of Near-Infrared and Mid-Infrared Spectroscopy to the Study of 3 Selected Tellurite Minerals: Xocomecatlite, Tlapallite and Rodalquilarite 4 5 Ray L
    QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Keeffe, Eloise C. and Reddy, B. Jagannadha (2009) An application of near-infrared and mid- infrared spectroscopy to the study of selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite. Transition Metal Chemistry, 34(1). pp. 23-32. © Copyright 2009 Springer 1 2 An application of near-infrared and mid-infrared spectroscopy to the study of 3 selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite 4 5 Ray L. Frost, • B. Jagannadha Reddy, Eloise C. Keeffe 6 7 Inorganic Materials Research Program, School of Physical and Chemical Sciences, 8 Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, 9 Australia. 10 11 Abstract 12 Near-infrared and mid-infrared spectra of three tellurite minerals have been 13 investigated. The structure and spectral properties of two copper bearing 14 xocomecatlite and tlapallite are compared with an iron bearing rodalquilarite mineral. 15 Two prominent bands observed at 9855 and 9015 cm-1 are 16 2 2 2 2 2+ 17 assigned to B1g → B2g and B1g → A1g transitions of Cu ion in xocomecatlite. 18 19 The cause of spectral distortion is the result of many cations of Ca, Pb, Cu and Zn the 20 in tlapallite mineral structure. Rodalquilarite is characterised by ferric ion absorption 21 in the range 12300-8800 cm-1. 22 Three water vibrational overtones are observed in xocomecatlite at 7140, 7075 23 and 6935 cm-1 where as in tlapallite bands are shifted to low wavenumbers at 7135, 24 7080 and 6830 cm-1. The complexity of rodalquilarite spectrum increases with more 25 number of overlapping bands in the near-infrared.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 104, pages 625–629, 2019 New Mineral Names*,† DMITRIY I. BELAKOVSKIY1 AND FERNANDO CÁMARA2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2Dipartimento di Scienze della Terra “Ardito Desio”, Universitá di degli Studi di Milano, Via Mangiagalli, 34, 20133 Milano, Italy IN THIS ISSUE This New Mineral Names has entries for 8 new minerals, including fengchengite, ferriperbøeite-(Ce), genplesite, heyerdahlite, millsite, saranchinaite, siudaite, vymazalováite and new data on lavinskyite-1M. FENGCHENGITE* X-ray diffraction pattern [d Å (I%; hkl)] are: 7.186 (55; 110), 5.761 (44; 113), 4.187 (53; 123), 3.201 (47; 028), 2.978 (61; 135). 2.857 (100; 044), G. Shen, J. Xu, P. Yao, and G. Li (2017) Fengchengite: A new species with 2.146 (30; 336), 1.771 (36; 24.11). Single-crystal X-ray diffraction data the Na-poor but vacancy-dominante N(5) site in the eudialyte group. shows the mineral is trigonal, space group R3m, a = 14.2467 (6), c = Acta Mineralogica Sinica, 37 (1/2), 140–151. 30.033(2) Å, V = 5279.08 Å3, Z = 3. The structure was solved by direct methods and refined to R = 0.043 for all unique I > 2σ(I) reflections. Fengchengite (IMA 2007-018a), Na Ca (Fe3+,) Zr Si (Si O ) 12 3 6 3 3 25 73 Fenchengite is the Fe3+ analog of eudialyte with a structural difference (H O) (OH) , trigonal, is a new eudialyte-group mineral discovered in 2 3 2 in vacancy dominant N5 site and splitting its Na site N1 into N1a and the agpaitic nepheline syenites and its pegmatite facies near the Saima N1b sites.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Download the Scanned
    INDEX,VOLUME 59* Absorption coefficients Albite, continued attapulgite 1113 1ow-, comparison with ussingite 347 clay ninerals 11r3 nelting in nultispecies fluid 598 dickite 274 Alexandrite, chrorniumIII centers in 159 hal loysite 274 hectorite I 113 ALLAN, DAVID illite 1113 with V. Brown, and J. Stark, Rocke kaolinite 274 and Minez,als of Califowi,a; reviewed metabentonite 1113 by J. Murdoch 387 nontronite 1113 Allemontite, see stibarsen 1331 srnectite 1113 ALLMAN,MICHAEL Absorption spectra with D.F. Lawrence, Geological alexandrite, synthetic 159 Labonatony Techni.ques reviewed apophyllite 62I ; by F.H. Manley and W.R. Powers IL42 garnet 565 olivine 244 A1lophane rhodonite.. shocked t77 dehydration, DTA, infrared spectra 1094 Acmite, Ti-, phase relations of 536 Almandine Actinolite overgrowth by grossularite- spessartine 558 coexisting with hoinblende 529 in netamorphic rocks, optical Arnerican Crystallographic Association, properties 22 abstracts, Spring neeting,1974 1L27 Activity coefficients Amphiboles of coexisting pyroxenes 204 actinolite 2? 529 Al -Ca-anphibole ADMS, HERBERTG. 22 compositions 22 with L.H. Cohen, and W. Klenent, Jr.; coordination polyhedra M High-low quartz inversion : Thermal of site atons in I 083 analysis studies to 7 kbar I 099 hornblende L, 22, 529, 604 ADAMS,JOHN W. magnesioarfvedsonite (authigenic) 830 with T. Botinelly, W.N. Sharp, and refraction indices 22 K. Robinson; Murataite, a new richterite, Mg-Fe- 518 conplex oxide from E1 Paso County, AMSTUTZ,G.C. Colorado L72 with A.J. Bernard, Eds., )nes in Errata 640 Sediments; reviewed by P.B. Barton 881 Aenigmatite ANDERSEN,C.A. in volcanic conplex, composition, and X-ray data Micz,opnobeAnalysis; reviewed by A.E.
    [Show full text]
  • Pdf/14/3/387/3420048/387.Pdf by Guest on 30 September 2021 388 TTIE CANADIAN MINERALOGIST
    Canadian Mineraloslst Vol. 14, pp. 387-390 (197Q ZEMANNITE,A ZINGTETLURITE FROM MOCTEZUMA, SONORA, MEXICO J. A. MANDARINO Department of Mineralogy and Geology, Royal Ontario Museum, L00 Qaeeds Park, Toronto, Ontario, Canada E. MATZAT Mineraloglsch-krlstallographisches Institut, University of Gdttingen, Gdttlngen, Gennany S. J. WILLIAMS Pera State College, Pera, Nebraska, U,S-4. ABSIRAG"I fesseurJosef Zemann,de I'Universit6 de Vienne, qui a contribu6 tellement i nos connaissancesdes struc- Zemannite occurs as minute hexagonal prisms tures des compos6sde tellure. terminated by a bipyramid. The mineral is light Clraduit par le journal) to dark brown, has an adamantine lustre, and is brittle. It is uniaxial positive: <o-1.85, e:1.93. The density is greater than 4.05 g/cm3, probably about INtnopucficyt* gave 4.36 g/cma. Crystal structure study the fol- Zemannite was first recognized as a possible group P6s/m, a 9.4t!0,42, c 7.64! lowing: space new species by Mandarino & Williams (1961) tellurite 0.024, Z:2. Zemannite is a zeolite-like who referred to it as a zinc tellurite or tellurate. with a negatively charged framework of lZtu Problems involving the determination of the GeOrLl having large (diam. : 8.28A) open chan- nels parallel to [0001]. These channels are statis- chemical formula delayed submission of the tically occupied by Na and H ions and possibly by description to the Commission on New Minerals H:O. Some Fe substitutes f.or 7m, Partial analyses Names, I.M.A. After the structural determina- and the crystal structure analysis indicate the for- tion by Matzat (1967), the description of zeman- mula (Zn,Fe)2(feOs)sNafir-']HzO.
    [Show full text]
  • Utahite, a New Mineral and Associated Copper Tellurates from the Centennial Eureka Mine, Tintic District, Juab County, Utah
    UTAHITE, A NEW MINERAL AND ASSOCIATED COPPER TELLURATES FROM THE CENTENNIAL EUREKA MINE, TINTIC DISTRICT, JUAB COUNTY, UTAH Andrew C. Roberts and John A. R. Stirling Geological Survey of Canada 601 Booth Street Ottawa, Ontario, Canada K IA OE8 Alan J. Criddle Martin C. Jensen Elizabeth A. Moffatt Department of Mineralogy 121-2855 Idlewild Drive Canadian Conservation Institute The Natural History Museum Reno, Nevada 89509 1030 Innes Road Cromwell Road Ottawa, Ontario, Canada K IA OM5 London, England SW7 5BD Wendell E. Wilson Mineralogical Record 4631 Paseo Tubutama Tucson, Arizona 85750 ABSTRACT Utahite, idealized as CusZn;(Te6+04JiOH)8·7Hp, is triclinic, fracture. Utahite is vitreous, brittle and nonfluorescent; hardness space-group choices P 1 or P 1, with refined unit-cell parameters (Mohs) 4-5; calculated density 5.33 gtcm' (for empirical formula), from powder data: a = 8.794(4), b = 9996(2), c = 5.660(2);\, a = 5.34 glcm' (for idealized formula). In polished section, utahite is 104.10(2)°, f3 = 90.07(5)°, y= 96.34(3YO, V = 479.4(3) ;\3, a:b:c = slightly bireflectant and nonpleochroic. 1n reflected plane-polar- 0.8798:1 :0.5662, Z = 1. The strongest five reflections in the X-ray ized light in air it is very pale brown, with ubiquitous pale emerald- powder pattern are (dA(f)(hkl)]: 9.638(100)(010); 8.736(50)(100); green internal reflections. The anisotropy is unknown because it is 4.841(100)(020); 2.747(60)(002); 2.600(45)(301, 311). The min- masked by the internal reflections. Averaged electron-microprobe eral is an extremely rare constituent on the dumps of the Centen- analyses yielded CuO = 25.76, ZnO = 15.81, Te03 = 45.47, H20 nial Eureka mine, Tintic district, Juab County, Utah, where it (by difference) {12.96], total = {100.00] weight %, corresponding occurs both as isolated 0.6-mm clusters of tightly bound aggre- to CU49;Zn29lTe6+04)39l0H)79s' 7.1H20, based on 0 = 31.
    [Show full text]
  • An Overview of Minerals Toxicity, by RDG, 2014-2020
    AN OVERVIEW OF MINERALS TOXICITY Written by RDG, 2014 Copyright © 2014 - 2020, RDG. All rights reserved. First published electronically November 2014. Last updated December 19, 2020. Disclaimer: This article is not intended as an authoritative text. The author cannot be held responsible for your safety. TABLE OF CONTENTS 1.INTRODUCTION …................................................................................................................. 3 1.1.Why discuss the toxicity of minerals …....................................................................................3 1.2.A few basic notions of toxicology …........................................................................................ 3 1.2.1.Dose …...................................................................................................................................3 1.2.2.Bioavailability …................................................................................................................... 3 1.2.3.Toxicity class, Acute toxicity, and Median lethal dose …......................................................3 1.2.4.Chronic toxicity …................................................................................................................. 4 1.2.5.Carcinogenic, Mutagenic, Reprotoxic …...............................................................................4 1.3.Risk assessment ….................................................................................................................... 4 2.TOXICITY OF MINERALS …...............................................................................................
    [Show full text]
  • New Mineral Names*
    AmericanMineralogM, Volume66, pages 1099-l103,IgEI NEW MINERAL NAMES* LouIs J. Cetnt, MrcHeer FtnrscHnn AND ADoLF Pnssr Aldermanlter Choloallte. I. R. Harrowficl4 E. R. Segnitand J. A. Watts (1981)Alderman- S. A. Williams (1981)Choloalite, CuPb(TeO3)z .HrO, a ncw min- ite, a ncw magnesiumalrrminum phosphate.Mineral. Mag.44, eral. Miaeral. Mag. 44, 55-51. 59-62. Choloalite was probably first found in Arabia, then at the Mina Aldermanite o@urs as minute, very thin" talc-likc crystallitcs La Oriental, Moctczuma, Sonora (the typc locality), and finally at with iuellite and other secondaryphosphates in the Moculta rock Tombstone, Arizona. Only thc Tombstone material provides para- phosphatc deposit near thc basc of Lower Cambrisn limestone genetic information. In this material choloalite occurs with cerus- close to Angaston, ca. 60 km NE of Adelaide. Microprobc analy- site, emmonsite and rodalquilarite in severcly brecciated shale that si.q supplcmented by gravimetric water determination gave MgO has been replaced by opal and granular jarosite. Wet chcmical E.4,CaO 1.2, AJ2O328.4, P2O5 25.9, H2O 36.1%,(totat 100),lead- analysisofcholoalitc from the type locality gave CuO 11.0,PbO ing to the formula Mg5Als2(POa)s(OH)zz.zH2O,where n = 32. 33.0,TeO2 50.7, H2O 3.4,total 98.1%,correspolding closcly to thc Thc powder diffraction pattern, taken with a Guinier camera, can formula in the titlc. Powder pattems of thc mineral from thc three be indexed on an orthorhombic. ccll with a = 15.000(7), D = localities can bc indexcd on the basis of a cubic ccll with a : 8.330(6),c - 26.60(l)A, Z = 2,D alc.2.15 from assumedcell con- l2.5l9A for the material from Mina La Oriental, Z: l2,D c,alc.
    [Show full text]
  • JOURNAL the Russell Society
    JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material.
    [Show full text]
  • General Index
    CAL – CAL GENERAL INDEX CACOXENITE United States Prospect quarry (rhombs to 3 cm) 25:189– Not verified from pegmatites; most id as strunzite Arizona 190p 4:119, 4:121 Campbell shaft, Bisbee 24:428n Unanderra quarry 19:393c Australia California Willy Wally Gully (spherulitic) 19:401 Queensland Golden Rule mine, Tuolumne County 18:63 Queensland Mt. Isa mine 19:479 Stanislaus mine, Calaveras County 13:396h Mt. Isa mine (some scepter) 19:479 South Australia Colorado South Australia Moonta mines 19:(412) Cresson mine, Teller County (1 cm crystals; Beltana mine: smithsonite after 22:454p; Brazil some poss. melonite after) 16:234–236d,c white rhombs to 1 cm 22:452 Minas Gerais Cripple Creek, Teller County 13:395–396p,d, Wallaroo mines 19:413 Conselheiro Pena (id as acicular beraunite) 13:399 Tasmania 24:385n San Juan Mountains 10:358n Renison mine 19:384 Ireland Oregon Victoria Ft. Lismeenagh, Shenagolden, County Limer- Last Chance mine, Baker County 13:398n Flinders area 19:456 ick 20:396 Wisconsin Hunter River valley, north of Sydney (“glen- Spain Rib Mountain, Marathon County (5 mm laths donite,” poss. after ikaite) 19:368p,h Horcajo mines, Ciudad Real (rosettes; crystals in quartz) 12:95 Jindevick quarry, Warregul (oriented on cal- to 1 cm) 25:22p, 25:25 CALCIO-ANCYLITE-(Ce), -(Nd) cite) 19:199, 19:200p Kennon Head, Phillip Island 19:456 Sweden Canada Phelans Bluff, Phillip Island 19:456 Leveäniemi iron mine, Norrbotten 20:345p, Québec 20:346, 22:(48) Phillip Island 19:456 Mt. St-Hilaire (calcio-ancylite-(Ce)) 21:295– Austria United States
    [Show full text]
  • A Review of the Structural Architecture of Tellurium Oxycompounds
    Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances.
    [Show full text]
  • Thirty-Seventh List of New Mineral Names. Part 1" A-L
    Thirty-seventh list of new mineral names. Part 1" A-L A. M. CLARK Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK AND V. D. C. DALTRYt Department of Geology and Mineralogy, University of Natal, Private Bag XO1, Scottsville, Pietermaritzburg 3209, South Africa THE present list is divided into two sections; the pegmatites at Mount Alluaiv, Lovozero section M-Z will follow in the next issue. Those Complex, Kola Peninsula, Russia. names representing valid species, accredited by the Na19(Ca,Mn)6(Ti,Nb)3Si26074C1.H20. Trigonal, IMA Commission on New Minerals and Mineral space group R3m, a 14.046, c 60.60 A, Z = 6. Names, are shown in bold type. Dmeas' 2.76, Dc~ac. 2.78 g/cm3, co 1.618, ~ 1.626. Named for the locality. Abenakiite-(Ce). A.M. McDonald, G.Y. Chat and Altisite. A.P. Khomyakov, G.N. Nechelyustov, G. J.D. Grice. 1994. Can. Min. 32, 843. Poudrette Ferraris and G. Ivalgi, 1994. Zap. Vses. Min. Quarry, Mont Saint-Hilaire, Quebec, Canada. Obschch., 123, 82 [Russian]. Frpm peralkaline Na26REE(SiO3)6(P04)6(C03)6(S02)O. Trigonal, pegmatites at Oleny Stream, SE Khibina alkaline a 16.018, c 19.761 A, Z = 3. Named after the massif, Kola Peninsula, Russia. Monoclinic, a Abenaki Indian tribe. 10.37, b 16.32, c 9.16 ,~, l~ 105.6 ~ Z= 2. Named Abswurmbachite. T. Reinecke, E. Tillmanns and for the chemical elements A1, Ti and Si. H.-J. Bernhardt, 1991. Neues Jahrb. Min. Abh., Ankangite. M. Xiong, Z.-S.
    [Show full text]