Aspects of the Biology of Ergasilus Sarsi a Gill Ectoparasite of Lamprichthys Tanganicanus from Lake Tanganyika

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of the Biology of Ergasilus Sarsi a Gill Ectoparasite of Lamprichthys Tanganicanus from Lake Tanganyika Aspects of the biology of Ergasilus sarsi a gill ectoparasite of Lamprichthys tanganicanus from Lake Tanganyika. By ESMARI KILIAN DISSERTATION Submitted in fulfilment of the requirements for the degree MASTER OF SCIENCE In ZOOLOGY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: PROF. A. AVENANT-OLDEWAGE October 2012 i ACKNOWLEDGEMENTS I would like to acknowledge the following people: - Professor A. Avenant- Oldewage for her support and guidance during the study. - The National Research Foundation (NRF) and the University of Johannesburg for funding the study. - Tannie Edie Lutch for all her help during the practical part of my study. - Mr. Ebrahim Karim of the Graphic department of the University of Johannesburg for the making of photo plates. - My family and friends for emotional support and encouragement to succeed. ii ABSTRACT A literature survey revealed gaps in the knowledge on Ergasilus in Africa. This studied aimed to elucidate on some of these matters. Ergasilus sarsi was collected from Lamprichthys tanganicanus during an expedition to Lake Tanganyika in March 2010. The gills of the fish were removed and preserved for further studies. Preserved specimens were studied with dissection- and light microscopy. Some specimens were also studied with a scanning electron microscope (SEM). For light microscopy the specimens were sectioned and then stained with AZAN and H&E. A total of 32 Lamprichthys tanganicanus were collected and studied for ergasilids. The prevalence was 86.40%, the mean intensity 7.56 and the mean abundance 6.38. A total of 204 parasites were collected and only 27 hosts were infected. The highest intensity was 29 parasites. Pearson’s Chi-squared test was used to compare attachment preferences of Ergasilus sarsi. The parasite exhibited site selection but not host specificity. It was noticed that E. sarsi mostly attach to the tip of the gill filament of the second gill arch. The second gill arch receives the largest portion of water flow supporting distribution of newly hatch ergasilid nauplius. There was no significant preference for the dorsal, medial and ventral attachment sites (p-value = 0.000542). However, significant preference between distal, central and proximal regions (p-value = 1.19) was observed. Fryer (1965) observed that the pathology caused by ergasilids is related to their attachment position on the host. Ergasilids display variation regarding morphology of their second antennae. Some have spines and others elongated antennae that wraps around the entire gill filament. This study shows that Ergasilus sarsi (with no spines on the second antennae) wraps around the gill filament and cause considerable damage to the host. The entire gill filament structure changed due to lamellar fusion and proliferation of mucous – and epithelial cells. Comparison of an infected gill to a healthy gill revealed differences. The compression caused by the second antennae caused some blood vessels to rupture resulting in haemorrhage. The swimming legs of the parasite also cause considerable damage by scraping gill tissue off the host and pushing it towards the mouth parts of the parasite. Mucous cells, gill epithelium and blood cells were observed in the vicinity of the mouth and in the intestine of the parasite. An increase in the number of Rodlet cells and mast cells were also observed on the gills in close proximity to the parasite. Increase in the number of these cells clearly indicate an inflammatory response. iii This is the first record of Ergasilus sarsi on Lamprichthys tanganicanus. This study also provides the first detailed description of the pathology caused by Ergasilus sarsi as well as the attachment distribution of this parasite. The shortcomings of the study and future study areas are discussed in the last chapter. iv OPSOMMING ‘n Literatuur oorsig het gapings in die kennis oor Ergasilus in Afrika bloot gelê. Hierdie studie het probeer om van die gapings te vul. Ergasilus sarsi is gevind op Lamprichthys tanganicanus tydens ‘n ekspedisie na Tanganjika- meer in Maart 2010. Die kieue van die vis was verwyder en fikseer vir verdere studies. Eksemplare was bestudeer met behulp van disseksie- en ligmikroskopie. Sommige eksemplare was ook bestudeer met ‘n skandeerelektronmikroskoop (SEM). Eksemplare vir ligmikroskopie was in hars ingebed en seriesneë is gemaak. Sneë was gekleur met AZAN en H&E. ‘n Totaal van 32 Lamprichthys tanganicanus is versamel en ondersoek vir verteenwoordigers van die Ergasilidae en daar is gevind dit is besmet met Ergasilus sarsi. Die persentasie besmetting was 86.40%, die gemiddelde besmettingsintensiteit was 7.56 en die besmettingsmoontlikheid was 6.38. ‘n Totaal van 204 parasiete was versamel en 27 gashere was besmet. Die hoogste besmettingsintensiteit was 29 parasiete. Pearson se Chi- kwadraat-toets was gebruik om vashegtings voorkeure van Ergasilus sarsi te vergelyk. Die parasiet toon ‘n voorkeur vir die vashegtings area maar nie vir die gasheer spesie nie. Ergasilus sarsi heg meestal aan die punte van die kieu-filamente van die tweede kieuboog vas. Die tweede kieuboog ontvang die grootste porsie van watervloei wat waarskynlik bydra tot die verspreiding van die nauplii wanneer hul uitbroei. Daar was geen beduidende voorkeur tussen die dorsale, median en ventrale vashegtings areas nie (p-waarde = 0.000542). Beduidende voorkeur tussen die distale, sentrale en proksimale streke (p-waarde = 1.19) was egter waargeneem. Fryer (1965) het waargeneem dat die patologie wat deur verteenwoordigers van die genus Ergasilus veroorsaak word afhang van die vashegtingposisie op die gasheer. Parasiete verskil ten opsigte van die morfologie van hul tweede antennas. Sommige het hakies en ander is langer wat hul instaat stel om, om die kieufilamente te vou. Die studie wys hoe Ergasilus sarsi (met geen hakies op die tweede antenna) om die kieufilament vou en sodoende aansienlike skade veroorsaak. Die hele kieufilament struktuur word verander as gevolg van lamellêre samesmelting en proliferasie van mukus-en epiteelselle. Vergelyking van 'n besmette kieu met ‘n gesonde kieu vertoon groot verskille. Die kompressie wat veroorsaak word deur die tweede antennas veroorsaak dat sommige bloedvate bars wat lei tot bloeding. Swempote van die parasiet het ook aansienlike skade veroorsaak deur die kieuweefsel van die gasheer af te skraap en dan voorentoe te druk na die mond gedeeltes van die parasiet. Slymselle, kieu-epiteel en bloedselle is waargeneem in die omgewing van v die parasiet se mond sowel as in die intestinum van die parasiet. ‘n Toename in die aantal Rodletselle en mastselle is waargeneem op die kieue in die omgewing van die parasiet. ‘n Toename in dié selle dui op ‘n inflamatoriese reaksie van die gasheer. Dit is die eerste rekord van Ergasilus sarsi op Lamprichtys tanganicanus, in Tanganjika- meer. Hierdie studie verskaf ook die eerste gedetallieerde beskrywing van die patologie wat veroorsaak word deur E. sarsi asook die besmettings statistiek van die parasiet. Tekortkominge van die studie sowel as moontlike toekomstige studies word in die laaste samevattende hoofstuk bespreek. vi TABLE OF CONTENTS ABSTRACT ..................................................................................................................................................III OPSOMMING ............................................................................................................................................... V LIST OF FIGURES ..................................................................................................................................... VII LIST OF TABLES........................................................................................................................................ IX 1 GENERAL INTRODUCTION ............................................................................................................... 2 1.1 MORPHOLOGY AND ECOLOGY ....................................................................................................................... 3 1.1.1 Background on Taxonomy ....................................................................................................... 3 1.1.2 Background on Ergasilus .......................................................................................................... 6 1.1.3 Background on the species found in Lake Tanganyika ..................................................... 27 1.2 OBJECTIVES OF THIS STUDY ......................................................................................................................... 28 1.2.1 Outline of the dissertation ....................................................................................................... 29 1.2.2 Oral presentations ................................................................................................................... 30 1.2.3 Special awards received during this study ........................................................................... 31 2 PATHOLOGY AND INFECTION STATISTICS ................................................................................ 33 2.1 INTRODUCTION ........................................................................................................................................ 33 2.2 MATERIALS AND METHODS: ....................................................................................................................... 34 2.3 RESULTS ................................................................................................................................................
Recommended publications
  • A Study on Aquatic Biodiversity in the Lake Victoria Basin
    A Study on Aquatic Biodiversity in the Lake Victoria Basin EAST AFRICAN COMMUNITY LAKE VICTORIA BASIN COMMISSION A Study on Aquatic Biodiversity in the Lake Victoria Basin © Lake Victoria Basin Commission (LVBC) Lake Victoria Basin Commission P.O. Box 1510 Kisumu, Kenya African Centre for Technology Studies (ACTS) P.O. Box 459178-00100 Nairobi, Kenya Printed and bound in Kenya by: Eyedentity Ltd. P.O. Box 20760-00100 Nairobi, Kenya Cataloguing-in-Publication Data A Study on Aquatic Biodiversity in the Lake Victoria Basin, Kenya: ACTS Press, African Centre for Technology Studies, Lake Victoria Basin Commission, 2011 ISBN 9966-41153-4 This report cannot be reproduced in any form for commercial purposes. However, it can be reproduced and/or translated for educational use provided that the Lake Victoria Basin Commission (LVBC) is acknowledged as the original publisher and provided that a copy of the new version is received by Lake Victoria Basin Commission. TABLE OF CONTENTS Copyright i ACRONYMS iii FOREWORD v EXECUTIVE SUMMARY vi 1. BACKGROUND 1 1.1. The Lake Victoria Basin and Its Aquatic Resources 1 1.2. The Lake Victoria Basin Commission 1 1.3. Justification for the Study 2 1.4. Previous efforts to develop Database on Lake Victoria 3 1.5. Global perspective of biodiversity 4 1.6. The Purpose, Objectives and Expected Outputs of the study 5 2. METHODOLOGY FOR ASSESSMENT OF BIODIVERSITY 5 2.1. Introduction 5 2.2. Data collection formats 7 2.3. Data Formats for Socio-Economic Values 10 2.5. Data Formats on Institutions and Experts 11 2.6.
    [Show full text]
  • Review on Major Parasitic Crustacean in Fish Kidanie Misganaw and Addis Getu* Department of Animal Production and Extension, University of Gondar, P.O
    Aquacu nd ltu a r e s e J i o r u e r h n s a i Misganaw and Getu, Fish Aquac J 2016, 7:3 l F Fisheries and Aquaculture Journal ISSN: 2150-3508 DOI: 10.4172/2150-3508.1000175 Review Open Access Review on Major Parasitic Crustacean in Fish Kidanie Misganaw and Addis Getu* Department of Animal Production and Extension, University of Gondar, P.O. Box: 196, Gondar, Ethiopia *Corresponding author: Addis Getu, Faculty of Veterinary, Department of Animal Production and Extension, Medicine, University of Gondar, P.O. Box: 196, Gondar, Ethiopia, Tel: +251588119078, +251918651093; E-mail: [email protected] Received date: 04 December, 2014; Accepted date: 26 July, 2016; Published date: 02 August, 2016 Copyright: © 2016 Misganaw K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract In this paper the major description, epidemiology, pathogenesis and clinical sign, diagnosis, treatment and control of parasitic crustaceans in fish has been reviewed. The major crustaceans parasites commonly encountered in cultured and wild fish are: copepods (ergasilidea and lernaeidae), branchiura (argulidae) and isopods). Members of the branchiura and isopod are relatively large and both sexes are parasitic, while copepods are the most common crustacean parasites are generally small to microscopic with both free-living and parasitic stages in their life cycle. These parasitic crustaceans are numerous and have worldwide distribution in fresh, brackish and salt water. Most of them can be seen with naked eyes as they attach to the gills, bodies and fins of the host.
    [Show full text]
  • Esox Lucius) Ecological Risk Screening Summary
    Northern Pike (Esox lucius) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2019 Web Version, 8/26/2019 Photo: Ryan Hagerty/USFWS. Public Domain – Government Work. Available: https://digitalmedia.fws.gov/digital/collection/natdiglib/id/26990/rec/22. (February 1, 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019a): “Circumpolar in fresh water. North America: Atlantic, Arctic, Pacific, Great Lakes, and Mississippi River basins from Labrador to Alaska and south to Pennsylvania and Nebraska, USA [Page and Burr 2011]. Eurasia: Caspian, Black, Baltic, White, Barents, Arctic, North and Aral Seas and Atlantic basins, southwest to Adour drainage; Mediterranean basin in Rhône drainage and northern Italy. Widely distributed in central Asia and Siberia easward [sic] to Anadyr drainage (Bering Sea basin). Historically absent from Iberian Peninsula, Mediterranean France, central Italy, southern and western Greece, eastern Adriatic basin, Iceland, western Norway and northern Scotland.” Froese and Pauly (2019a) list Esox lucius as native in Armenia, Azerbaijan, China, Georgia, Iran, Kazakhstan, Mongolia, Turkey, Turkmenistan, Uzbekistan, Albania, Austria, Belgium, Bosnia Herzegovina, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, 1 Netherlands, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Sweden, Switzerland, United Kingdom, Ukraine, Canada, and the United States (including Alaska). From Froese and Pauly (2019a): “Occurs in Erqishi river and Ulungur lake [in China].” “Known from the Selenge drainage [in Mongolia] [Kottelat 2006].” “[In Turkey:] Known from the European Black Sea watersheds, Anatolian Black Sea watersheds, Central and Western Anatolian lake watersheds, and Gulf watersheds (Firat Nehri, Dicle Nehri).
    [Show full text]
  • Parasites and Their Freshwater Fish Host
    Bio-Research, 6(1): 328 – 338 328 Parasites and their Freshwater Fish Host Iyaji, F. O. and Eyo, J. E. Department of Zoology, University of Nigeria, Nsukka, Enugu State, Nigeria Corresponding author: Eyo, J. E. Department of Zoology, University of Nigeria, Nsukka, Enugu State, Nigeria. Email: [email protected] Phone: +234(0)8026212686 Abstract This study reviews the effects of parasites of fresh water fish hosts. Like other living organisms, fish harbour parasites either external or internal which cause a host of pathological debilities in them. The parasites live in close obligate association and derive benefits such as nutrition at the host’s expense, usually without killing the host. They utililize energy otherwise available for the hosts growth, sustenance, development, establishment and reproduction and as such may harm their hosts in a number of ways and affect fish production. The common parasites of fishes include the unicellular microparasites (viruses, bacteria, fungi and protozoans). The protozoans i.e. microsporidians and mixozoans are considered in this review. The multicellular macroparasites mainly comprised of the helminthes and arthropods are also highlighted. The effects of parasites on their fish hosts maybe exacerbated by different pollutants including heavy metals and hydrocarbons, organic enrichment of sediments by domestic sewage and others such as parasite life cycles and fish population size. Keywords: Parasites, Helminths, Protozoans, Microparasites, Macroparasites, Debilities, Freshwater fish Introduction the flagellates have direct life cycles and affect especially the pond reared fish populations. Several studies have revealed rich parasitic fauna Microsporidians are obligate intracellular parasites in freshwater fishes (Onyia, 1970; Kennedy et al., that require host tissues for reproduction (FAO, 1986; Ugwuzor, 1987; Onwuliri and Mgbemena, 1996).
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
    h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID
    [Show full text]
  • PROCEEDINGS of the OKLAHOMA ACADEMY of SCIENCE Volume 98 2018
    PROCEEDINGS of the OKLAHOMA ACADEMY OF SCIENCE Volume 98 2018 EDITOR: Mostafa Elshahed Production Editor: Tammy Austin Business Manager: T. David Bass The Official Organ of the OKLAHOMA ACADEMY OF SCIENCE Which was established in 1909 for the purpose of stimulating scientific research; to promote fraternal relationships among those engaged in scientific work in Oklahoma; to diffuse among the citizens of the State a knowledge of the various departments of science; and to investigate and make known the material, educational, and other resources of the State. Affiliated with the American Association for the Advancement of Science. Publication Date: January 2019 ii POLICIES OF THE PROCEEDINGS The Proceedings of the Oklahoma Academy of Science contains papers on topics of interest to scientists. The goal is to publish clear communications of scientific findings and of matters of general concern for scientists in Oklahoma, and to serve as a creative outlet for other scientific contributions by scientists. ©2018 Oklahoma Academy of Science The Proceedings of the Oklahoma Academy Base and/or other appropriate repository. of Science contains reports that describe the Information necessary for retrieval of the results of original scientific investigation data from the repository will be specified in (including social science). Papers are received a reference in the paper. with the understanding that they have not been published previously or submitted for 4. Manuscripts that report research involving publication elsewhere. The papers should be human subjects or the use of materials of significant scientific quality, intelligible to a from human organs must be supported by broad scientific audience, and should represent a copy of the document authorizing the research conducted in accordance with accepted research and signed by the appropriate procedures and scientific ethics (proper subject official(s) of the institution where the work treatment and honesty).
    [Show full text]
  • Fisheries Special/Management Report 08
    llBRARY INSTITUTE FOR F1s·--~~r.s ~ESEARCH University Museums Annex • Ann Arbor, Michigan 48104 • ntoJUJol Ofr---- com mon DISEASES. PARASITES.AnD AnomALIES OF ffilCHIGAn FISHES ···········•·················································································••······ ..................................................................................................... Michigan Department Of Natural Resources Fisheries Division MICHIGAN DEPARTMENT OF NATURAL RESOURCES INTEROFFICE COMMUNICATION Lake St. Clair Great Lakes Stati.on 33135 South River Road rt!:;..,I, R.. t-1 . Mt. Clemens, Michigan 48045 . ~ve -~Av •, ~ ··-··~ ,. ' . TO: "1>ave Weaver,. Regional Fisheries Program Manager> Region. III Ron Spitler,. Fisheries Biologist~ District 14 .... Ray ·shepherd, Fis~eries Biologis.t11t District 11 ; -~ FROM: Bob Baas, Biologise In Cbarge11t Lake St. Clair Great Lakes. Stati.ou SUBJECT: Impact of the red worm parasite on. Great Lakes yellow perch I recently receive4 an interim report from the State of Ohio on red worm infestation of yellow perch in Lake Erie. The report is very long and tedious so 1·want·to summarize ·for you ·souie of the information which I think is important. The description of the red worm parasite in our 1-IDNR. disease manual is largely.outdated by this work. First,. the Nematodes or round worms. locally called "red worms",. were positively identified as Eustrongylides tubifex. The genus Eustrongylides normally completes its life cycle in the proventiculus of fish-eating birds. E. tubifex was fed to domestic mallards and the red worms successfu11y matured but did not reach patentcy (females with obvtous egg development). Later lab examination of various wild aquatic birds collected on Lake Erie.showed that the red­ breasted merganser is the primary host for the adult worms. Next,. large numbers of perch were (and are still) being examined for rate of parasitism and its pot~ntial effects.
    [Show full text]
  • Trout (Oncorhynchus Mykiss)
    Acta vet. scand. 1995, 36, 299-318. A Checklist of Metazoan Parasites from Rainbow Trout (Oncorhynchus mykiss) By K. Buchmann, A. Uldal and H. C. K. Lyholt Department of Veterinary Microbiology, Section of Fish Diseases, The Royal Veterinary and Agricultural Uni­ versity, Frederiksberg, Denmark. Buchmann, K., A. Uldal and H. Lyholt: A checklist of metazoan parasites from rainbow trout Oncorhynchus mykiss. Acta vet. scand. 1995, 36, 299-318. - An extensive litera­ ture survey on metazoan parasites from rainbow trout Oncorhynchus mykiss has been conducted. The taxa Monogenea, Cestoda, Digenea, Nematoda, Acanthocephala, Crustacea and Hirudinea are covered. A total of 169 taxonomic entities are recorded in rainbow trout worldwide although few of these may prove synonyms in future anal­ yses of the parasite specimens. These records include Monogenea (15), Cestoda (27), Digenea (37), Nematoda (39), Acanthocephala (23), Crustacea (17), Mollusca (6) and Hirudinea ( 5). The large number of parasites in this salmonid reflects its cosmopolitan distribution. helminths; Monogenea; Digenea; Cestoda; Acanthocephala; Nematoda; Hirudinea; Crustacea; Mollusca. Introduction kova (1992) and the present paper lists the re­ The importance of the rainbow trout Onco­ corded metazoan parasites from this host. rhynchus mykiss (Walbaum) in aquacultural In order to prevent a reference list being too enterprises has increased significantly during extensive, priority has been given to reports the last century. The annual total world pro­ compiling data for the appropriate geograph­ duction of this species has been estimated to ical regions or early records in a particular 271,478 metric tonnes in 1990 exceeding that area. Thus, a number of excellent papers on of Salmo salar (FAO 1991).
    [Show full text]
  • Ecological Consequences of Non-Native Parasites for Native UK Fishes
    Ecological consequences of non-native parasites for native UK fishes Josephine Pegg This thesis has been submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy Bournemouth University October 2015 I This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis. II Josephine Pegg Ecological consequences of non-native parasites for native UK fishes Abstract Introductions of non-native species can result in the release of their parasites. Although the majority of parasites are lost during the introduction process, those that do get released can spill over to native species and potentially result in pathological, physiological and ecological impacts. Whilst it is increasingly recognised that native parasites can play important ecological roles, the ecological consequences of non- native parasites remain unclear. Consequently, through study of three host-parasite models, this research investigated the ecological consequences of non-native parasites in UK freshwater fish communities through assessment of their effects on hosts (individuals to populations), and on food web structure. The three non-native parasite: host systems were Ergasilus briani and roach Rutilus rutilus and common bream Abramis brama, Bothriocephalus acheilognathi and common carp Cyprinus carpio, and Anguillicoides crassus and the European eel Anguilla anguilla. These parasites were chosen as they reflect a range of life cycle complexity in parasites. The pathology of each parasite was identified using histology, with E.
    [Show full text]
  • Parasites and Diseases of Mullets (Mugilidae)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1981 Parasites and Diseases of Mullets (Mugilidae) I. Paperna Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Paperna, I. and Overstreet, Robin M., "Parasites and Diseases of Mullets (Mugilidae)" (1981). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 579. https://digitalcommons.unl.edu/parasitologyfacpubs/579 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Paperna & Overstreet in Aquaculture of Grey Mullets (ed. by O.H. Oren). Chapter 13: Parasites and Diseases of Mullets (Muligidae). International Biological Programme 26. Copyright 1981, Cambridge University Press. Used by permission. 13. Parasites and diseases of mullets (Mugilidae)* 1. PAPERNA & R. M. OVERSTREET Introduction The following treatment ofparasites, diseases and conditions affecting mullet hopefully serves severai functions. It acquaints someone involved in rearing mullets with problems he can face and topics he should investigate. We cannot go into extensive illustrative detail on every species or group, but do provide a listing ofmost parasites reported or known from mullet and sorne pertinent general information on them. Because of these enumerations, the paper should also act as a review for anyone interested in mullet parasites or the use of such parasites as indicators about a mullet's diet and migratory behaviour.
    [Show full text]
  • A New Species of Ergasilus (Copepoda: Cyclopoida: Ergasilidae) from Coastal Fishes of the Mexican Pacific
    FOLIA PARASITOLOGICA 55: 224–230, 2008 A new species of Ergasilus (Copepoda: Cyclopoida: Ergasilidae) from coastal fishes of the Mexican Pacific Eduardo Suárez-Morales1 and Ana María Santana-Piñeros2 1El Colegio de la Frontera Sur (ECOSUR), Chetumal, Quintana Roo 77900, Mexico; 2Universidad del Mar, Campus Puerto Angel, Oaxaca 70902, Mexico Key words: Copepoda, Ergasilidae, Ergasilus davidi, copepod taxonomy, fish parasites, Tropical Pacific, Mexico, Chiapas Abstract. A new species of the cyclopoid copepod genus Ergasilus von Nordmann, 1832 is described based on adult female specimens removed from the gills of the yellow snapper Lutjanus argentiventris (Peters) and the yellowfin snook Centropomus robalito Jordan et Gilbert from a Pacific coastal system of Mexico. The new species Ergasilus davidi sp. n. has a combination of characters that includes a two-segmented first leg endopod, a three-segmented fourth leg endopod, and the presence of a single seta on the first antennular segment. These characters are shared with 14 other congeners known mainly from Brazil and North America. It differs from these other species in the armature and ornamentation of legs 1 and 4, the shape of the body, and the structure and ornamentation of the antennae. Additional characters include a maxillar basis armed with blunt teeth, distally bent maxillular setae, and naked margins of first exopodal segments of legs 2–4. Previous regional records of Ergasilus sp. from both fish species are probably assignable to E. davidi. The prevalence and intensity of infection was estimated for both teleost species and agrees to previous data. Based on other records of the genus from several other teleost species in the surveyed area and adja- cent zones of the Eastern Pacific, it is presumed that the new species could have a wider range of hosts.
    [Show full text]