Thermodynamics Basic Concepts

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamics Basic Concepts Thermodynamics Basic concepts • Thermodynamics is a phenomenological description of macroscopic systems with many degrees of free- dom. Its microscopic justication is provided by statistical mechanics. • Equilibrium is a state of an undisturbed system that does not change over time in any observable way - at least within time periods that are much longer than the time intervals of observation. A macroscopic system left to itself will spontaneously approach its equilibrium state. • An isolated system cannot exchange energy or anything else with its environment. However, a system can be coupled to the environment in various ways. Dierent types of coupling enable dierent types of equilibrium. • The coupling to the environment allows us to control only a very small number of the system's degrees of freedom. The controllable and measurable properties of a system are various state variables, quantities such as temperature, pressure, volume, energy, charge, magnetization, etc. Most degrees of freedom 23 (whose number can be of the order of Avogadro's number NA ∼ 10 ) are far beyond our ability to control, measure or even mathematically handle. • Nevertheless, thermodynamics, formulated by mathematical relationships between state variables (laws of thermodynamics), is suciently detailed to enable quantitative predictions of the macroscopic sys- tem dynamics. Historically, the development of thermodynamics led to applications such as engines and refrigerators. • The most studied system in thermodynamics is gas. An ideal gas is a collection of many non-interacting identical particles, which can't collide with one another but bounce from the walls of a container. Realistic gases at very low densities (rare collisions), or with very weak interactions (insignicant collisions) can be approximated by an ideal gas. Other systems of interest are uids (interacting gases and liquids), solids (crystals and amorphous), electrons in materials, magnets, plasmas, nuclear matter, biological systems, etc. Thermodynamics studies both classical and quantum systems. Thermal equilibrium and temperature • 0th law of thermodynamics: If two systems are separately in equilibrium with a third system, then they are also in equilibrium with each other. • The rst implication is that two systems can be in equilibrium with respect to each other, meaning that if such two systems are in contact with each other (and isolated from everything else) then their properties will not change over time. • Second, if two systems A and B are separately in equilibrium with a third system C, then they have something in common: being in equilibrium with C. This common property can be expressed as a state variable that separately characterizes the states of each system A and B. • The universal state variable that characterizes the equilibrium of any system is temperature. Two systems in equilibrium with each other (A and B) have the same common temperature T (this is an alternative statement of the 0th law). Dierent kinds of equilibrium (mechanical, chemical, etc.) may be characterized by additional state variables (pressure, chemical potential, etc. respectively). • We still have no denition of temperature. From our everyday experience, we regard temperature as a measure of how hot something is. More practically, we can measure temperature of a system by putting some uid in contact with it, waiting until the uid and the system equilibrate, and measuring the volume by which the uid expands or contracts. The change of uid's volume is roughly proportional to the change of its temperature, but depends also on the choice of uid. We must pick a particular uid and decide what reference points and scale to use in order to rigorously dene temperature. 1 • It has been noticed that heated water mixed with ice maintains its cold temperature until all ice is melted. Similarly, heated boiling water maintains its hot temperature until all water evaporates. This provides one convenient temperature scale, Celsius: water and ice in equilibrium have a reproducible temperature T = 0o C, while water and steam in equilibrium have a reproducible temperature T = 100o C (by denition). • The modern scale for temperature has been established at the 10th General Conference on Weights and Measures in 1954. The SI unit of temperature is Kelvin. The reproducible temperature of the triple point of ice-water-gas system is dened to be 273:16 K, while 0 K (absolute zero) is the lower bound for temperature of any system. The water triple point is a much better reference than freezing or boiling temperatures, because the former is an equilibrium between all three phases of water that occurs only at a particular pressure, while freezing/boiling critical temperatures actually depend on the ambient pressure. The reference of 273:16 K is chosen in order to make the temperature change of one Kelvin (K) identical to the temperature change of one Celsius (determined at standard atmospheric pressure). • In addition to a scale, one must also specify a concrete reference procedure for measuring temperature, which will provide a linear scale (by denition). For this purpose, one uses an ideal gas. It has been experimentally observed that the quantity pV=T (p is pressure, V is volume and T is temperature in Kelvins measured by a typical accurate thermometer) is a constant in any equilibrium state of any suciently dilute (approximately ideal) gas. Therefore, for two equilibrium states at the same pressure: V1 V2 V2 = ) T2 = T1 T1 T2 V1 Since one temperature (T1) can be determined by achieving equilibrium with a reference system (water at its triple point), any other temperature can be found by measuring volume in an ideal gas expansion experiment. This observed linear relationship for an ideal gas is then promoted to the denition of temperature, so that, by denition, accurate thermometers measure temperature and not some arbitrary function of temperature. The conservation of energy • A fundamental property of any system is energy. Internal energy E is the part of the system's total energy that is stored in its own degrees of freedom and depends only on the state (and not environment) variables. For any system of particles, internal energy is the total kinetic energy of all particles (measured in the center-of-mass frame) together with the potential energy of interactions between the particles. • A system can exchange energy with its environment in dierent ways. The general exchange of energy is work W done on the system by the environment (or work −W done on the environment by the system). Normally, we will not be concerned with work that accelerates the center of mass or changes the potential energy of the system due to external forces. Hence, all work will go toward internal energy. • The amount of work dW done on the system by external forces in an innitesimal time interval is: X dW = JidXi i as long as the system is not thrown far from equilibrium (so its state can still be faithfully represented by state variables such as temperature, pressure, etc.). Here, Ji are quantities that represent forces and Xi are the corresponding state variables that represent responses (displacements) of the system to the applied force. For example: Length change dL due to an external (tension) force F : dW = F dL Surface area change by dA due to a surface tension S: dW = SdA Volume change by dV due to internal pressure p: dW = −pdV 2 Magnetization change by dM in an external magnetic eld B: dW = BdM Electric polarization change by dP in an external electric eld E: dW = EdP The number of particles change by dN at a chemical potential µ: dW = µdN • There are processes in which energy is exchanged but we cannot identify the detailed corresponding change of the system's state (typically due to its microscopic complexity). The energy exchanged in such processes is called heat. For example, if two solid objects at dierent temperatures are placed in contact with each other, the hotter object will transfer heat to the colder one until both objects reach the same temperature (equilibrium). This need not lead to any change of volume, the number of particles, etc, which we would need to observe in order to recognize this energy exchange as work according to one of the above formulas. The change of the system is microscopic and hidden from our view (the distribution of particle velocities changes). • A system is said to evolve adiabatically if it does not exchange heat with its environment. • 1st law of thermodynamics: Energy is conserved in any process. If the system takes heat dQ from its environment, and work dW is done on it by external forces, then its internal energy changes by dE according to: dQ + dW = dE The sign convention is such that a positive value indicates energy added to the system. Response functions • Response functions are easy-to-measure quantities that depend on state variables and thus characterize the state of a system. • Heat capacity: how much energy (heat) dQ does it take to change the temperature of the system by dT under various conditions... dQ CV = ··· measured at given volume V = const dT V dQ Cp = ··· measured at given pressure p = const dT p • Force constant: a thermodynamic generalization of the spring constant 1 dX RT = ··· the change of displacement due to applied force, per unit volume V dJ T 1 dV κT = − ··· compressibility (pressure changes volume) V dp T 1 dM χT = ··· magnetic susceptibility (magnetic eld changes magnetization) V dB T • Thermal responses: 1 dV αp = ··· expansivity of a gas at constant pressure V dT p Ideal gas • Joule's free expansion experiment: If an ideal gas expands through empty space (without having any environment to exchange heat or work with), then its initial and nal temperature are found to be the same. But, according to the 1st law of thermodynamics: dE = dW + dQ ! 0 in this case, so internal energy E does not change even though the volume of the gas changes.
Recommended publications
  • Lecture 8: Maximum and Minimum Work, Thermodynamic Inequalities
    Lecture 8: Maximum and Minimum Work, Thermodynamic Inequalities Chapter II. Thermodynamic Quantities A.G. Petukhov, PHYS 743 October 4, 2017 Chapter II. Thermodynamic Quantities Lecture 8: Maximum and Minimum Work, ThermodynamicA.G. Petukhov,October Inequalities PHYS 4, 743 2017 1 / 12 Maximum Work If a thermally isolated system is in non-equilibrium state it may do work on some external bodies while equilibrium is being established. The total work done depends on the way leading to the equilibrium. Therefore the final state will also be different. In any event, since system is thermally isolated the work done by the system: jAj = E0 − E(S); where E0 is the initial energy and E(S) is final (equilibrium) one. Le us consider the case when Vinit = Vfinal but can change during the process. @ jAj @E = − = −Tfinal < 0 @S @S V The entropy cannot decrease. Then it means that the greater is the change of the entropy the smaller is work done by the system The maximum work done by the system corresponds to the reversible process when ∆S = Sfinal − Sinitial = 0 Chapter II. Thermodynamic Quantities Lecture 8: Maximum and Minimum Work, ThermodynamicA.G. Petukhov,October Inequalities PHYS 4, 743 2017 2 / 12 Clausius Theorem dS 0 R > dS < 0 R S S TA > TA T > T B B A δQA > 0 B Q 0 δ B < The system following a closed path A: System receives heat from a hot reservoir. Temperature of the thermostat is slightly larger then the system temperature B: System dumps heat to a cold reservoir. Temperature of the system is slightly larger then that of the thermostat Chapter II.
    [Show full text]
  • ME182: Engineering Thermodynamics
    ME182: Engineering Thermodynamics Teaching Scheme Credits Marks Distribution Theory Marks Practical Marks Total L T P C Marks ESE CE ESE CE 4 0 0 4 70 30 0 0 100 Course Content: Sr. Teaching Topics No. Hrs. 1 Basic Concepts: 05 Microscopic & macroscopic point of view, thermodynamic system and control volume, thermodynamic properties, processes and cycles, Thermodynamic equilibrium, Quasi-static process, homogeneous and heterogeneous systems, zeroth law of thermodynamics and different types of thermometers. 2 First law of Thermodynamics: 05 First law for a closed system undergoing a cycle and change of state, energy, PMM1, first law of thermodynamics for steady flow process, steady flow energy equation applied to nozzle, diffuser, boiler, turbine, compressor, pump, heat exchanger and throttling process, unsteady flow energy equation, filling and emptying process. 3 Second law of thermodynamics: 06 Limitations of first law of thermodynamics, Kelvin-Planck and Clausius statements and their equivalence, PMM2, refrigerator and heat pump, causes of irreversibility, Carnot theorem, corollary of Carnot theorem, thermodynamic temperature scale. 4 Entropy: 05 Clausius theorem, property of entropy, inequality of Clausius, entropy change in an irreversible process, principle of increase of entropy and its applications, entropy change for non-flow and flow processes, third law of thermodynamics. 5 Energy: 08 Energy of a heat input in a cycle, energy destruction in heat transfer process, energy of finite heat capacity body, energy of closed and steady flow system, irreversibility and Gouy-Stodola theorem and its applications, second law efficiency. 6 P-v, P-T, T-s and h-s diagrams for a pure substance. 03 7 Maxwell’s equations, TDS equations, Difference in heat capacities, 04 ratio of heat capacities, energy equation, joule-kelvin effect and clausius-clapeyronequation.
    [Show full text]
  • A Proof of Clausius' Theorem for Time Reversible Deterministic Microscopic
    A proof of Clausius’ theorem for time reversible deterministic microscopic dynamics Denis J. Evans, Stephen R. Williams, and Debra J. Searles Citation: The Journal of Chemical Physics 134, 204113 (2011); doi: 10.1063/1.3592531 View online: http://dx.doi.org/10.1063/1.3592531 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/134/20?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Statistical Mechanics of Infinite Gravitating Systems AIP Conf. Proc. 970, 222 (2008); 10.1063/1.2839122 Gravitational clustering: an overview AIP Conf. Proc. 970, 205 (2008); 10.1063/1.2839121 Comment on “Comment on ‘Simple reversible molecular dynamics algorithms for Nosé-Hoover chain dynamics’ ” [J. Chem. Phys.110, 3623 (1999)] J. Chem. Phys. 124, 217101 (2006); 10.1063/1.2202355 Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte J. Chem. Phys. 122, 044903 (2005); 10.1063/1.1842059 Fluctuations and asymmetry via local Lyapunov instability in the time-reversible doubly thermostated harmonic oscillator J. Chem. Phys. 115, 5744 (2001); 10.1063/1.1401158 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 130.102.82.118 On: Thu, 01 Sep 2016 03:57:30 THE JOURNAL OF CHEMICAL PHYSICS 134, 204113 (2011) A proof of Clausius’ theorem for time reversible deterministic microscopic dynamics Denis J. Evans,1 Stephen R. Williams,1,a) and Debra J. Searles2 1Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia 2Queensland Micro- and Nanotechnology Centre and School of Biomolecular and Physical Sciences, Griffith University, Brisbane, Qld 4111, Australia (Received 17 February 2011; accepted 28 April 2011; published online 27 May 2011) In 1854 Clausius proved the famous theorem that bears his name by assuming the second “law” of thermodynamics.
    [Show full text]
  • Poincaré's Proof of Clausius' Inequality
    PHILOSOPHIA SCIENTIÆ MANUEL MONLÉON PRADAS JOSÉ LUIS GOMEZ RIBELLES Poincaré’s proof of Clausius’ inequality Philosophia Scientiæ, tome 1, no 4 (1996), p. 135-150 <http://www.numdam.org/item?id=PHSC_1996__1_4_135_0> © Éditions Kimé, 1996, tous droits réservés. L’accès aux archives de la revue « Philosophia Scientiæ » (http://poincare.univ-nancy2.fr/PhilosophiaScientiae/) implique l’accord avec les conditions générales d’utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la pré- sente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Poincaré's Proof of Clausius' Inequality Manuel Monléon Pradas José Luis Gomez Ribelles Universidad Politecnica de Valencla - Spain Dept. de Termodinamica Aplicada Philosopha Scientiœ, 1 (4), 1996,135-150. Manuel Monléon & JoséL. Ribelles Abstract* Clausius's inequality occupies a central place among thermodynamical results, as the analytical équivalent of the Second Law. Nevertheless, its proof and interprétation hâve always been dcbated. Poincaré developed an original attempt botb at interpreting and proving the resuit. Even if his attempt cannot be regarded as succeeded, he opened the way to the later development of continuum thermodynamics. Résumé. L'inégalité de Clausius joue un rôle central dans la thermodynamique, comme résultat analytiquement équivalent au Deuxième Principe. Mais son interprétation et sa démonstration ont toujours fait l'objet de débats. Poincaré a saisi les deux problèmes, en leur donnant des vues originales. Même si on ne peut pas dire que son essai était complètement réussi, il a ouvert la voie aux développements ultérieurs de la thermodynamique des milieux continus.
    [Show full text]
  • Thermodynamics 2Nd Year Physics A
    Thermodynamics 2nd year physics A. M. Steane 2000, revised 2004, 2006 We will base our tutorials around Adkins, Equilibrium Thermodynamics, 2nd ed (McGraw-Hill). Zemansky, Heat and Thermodynamics is good for experimental methods. Read also the relevant chapter in Feynman Lectures vol 1 for more physical insight. 1st tutorial: The First Law Read Adkins chapters 1 to 3. Terminology Function of state. It is important to be clear in your mind about what we mean by a function of state. Most physical quantities we tend to use in physics are functions of state, for example mass, volume, charge, pressure, electric ¯eld, temperature, entropy. A formal de¯nition is A function of state is a physical quantity whose change, when a system passes between any given pair of states, is independent of the path taken. (the `path' is the set of intermediate states that the system passes through during the change). The idea is that if a physical quantity has this property, then its value depends only on the state of the system, not on how the system got into that state, so that is why we call it a `function of state'. Heat and work are not functions of state, because they don't obey the formal de¯nition above, and this is because they each describe an energy exchange process, not a physical property. Some terminology concerning di®erentials. You will meet the terminology `exact' and `inexact' di®erential. The distinction is important, but I think this choice of terminology is not very good. It has become established however and now we are stuck with it.
    [Show full text]
  • Unit-I Thermodynamical Laws and Entropy
    THERMODYNAMICAL LAWS AND ENTROPY UNIT – I K. Baria J. Prof. US05CPHY23 By Dr. Jagendra K. Baria Professor Of Physics V. P. & R. P. T. P. Science College Vidyanagar 388 120 1 Introduction and some Terminology What is heat? Heat is a form of energy that can be transferred from one object to another or even created at the expense of the loss of other forms of energy. What is Temperature? Temperature is a measure of the ability of a substance, or more generally of any physical system, to transfer heat energy to another K. Baria J. Prof. physical system. What is thermodynamics? • The study of the relationship between work, heat, and energy. • Deals with the conversion of energy from one form to another. • Deals with the interaction of a system and it surroundings. Or • Thermodynamics, is a science of the relationship between heat, work, temperature and energy . In broad terms, thermodynamics deals with the transfer of energy from one place to another and from one form to another. 2 The key concept is that heat is a form of energy corresponding to a definite amount of mechanical work. Introduction and some Terminology What is difference between Isothermal Process and adiabatic Process? Isothermal process Adiabatic process Prof. J. K. Baria J. Prof. Isothermal process is defined as one Adiabatic process is defined as one of the of the thermodynamic processes thermodynamic processes which occurs which occurs at a constant without any heat transfer between the temperature system and the surrounding Work done is due to the change in Work done is due to the change in its the net heat content in the system internal energy The temperature cannot be varied The temperature can be varied There is transfer of heat There is no transfer of heat 3 Introduction and some Terminology Prof.
    [Show full text]
  • Phd Thesis Optimising Thermal Energy Recovery, Utilisation And
    OPTIMISING THERMAL ENERGY RECOVERY, UTILISATION AND MANAGEMENT IN THE PROCESS INDUSTRIES MATHEW CHIDIEBERE ANEKE PhD 2012 OPTIMISING THERMAL ENERGY RECOVERY, UTILISATION AND MANAGEMENT IN THE PROCESS INDUSTRIES MATHEW CHIDIEBERE ANEKE A thesis submitted in partial fulfilment of the requirements of the University of Northumbria at Newcastle for the degree of Doctor of Philosophy Research undertaken in the School of Built and Natural Environment in collaboration with Brunel University, Newcastle University, United Biscuits, Flo-Mech Ltd, Beedes Ltd and Chemistry Innovation Network (KTN) August 2012 Abstract The persistent increase in the price of energy, the clamour to preserve our environment from the harmful effects of the anthropogenic release of greenhouse gases from the combustion of fossil fuels and the need to conserve these rapidly depleting fuels has resulted in the need for the deployment of industry best practices in energy conservation through energy efficiency improvement processes like the waste heat recovery technique. In 2006, it was estimated that approximately 20.66% of energy in the UK is consumed by industry as end-user, with the process industries (chemical industries, metal and steel industries, food and drink industries) consuming about 407 TWh, 2010 value stands at 320.28 TWh (approximately 18.35%). Due to the high number of food and drink industries in the UK, these are estimated to consume about 36% of this energy with a waste heat recovery potential of 2.8 TWh. This work presents the importance of waste heat recovery in the process industries in general, and in the UK food industry in particular, with emphasis on the fryer section of the crisps manufacturing process, which has been identified as one of the energy-intensive food industries with high waste heat recovery potential.
    [Show full text]
  • Lab 3 2004 Coriolis – II, Equation of State, Phase Change, Latent Heat, Thermal Energy Equation, Pδv Work
    1 Geophysical Fluid Dynamics I 22 Jan 2004 Lab 3 2004 Coriolis – II, equation of state, phase change, latent heat, thermal energy equation, pδv work. 1. Coriolis: We want to see geostrophic balance. Use the free-surface ‘pressure gauge’ to see the pressure variation in eddies on the big rotating table. Using reflected light, viewed with the video camera overhead, quite small deflections of the free surface can be seen. The appearance is not unlike the TOPEX/Poseidon satellite altimetry images of the world ocean. 2. Equation of state: water The curved function ρ(T,S,p), density as a function of temperature, salinity and pressure can be explored. In Lab I one of the experiments measured the buoyancy force on a glass bulb immersed in water: ice was added to the water and the bulb then weighed less! Today we take an Erlenmayer flask (sloping sides) with a ‘chimney’, that is, a glass tube sticking out the top. The system is filled with water, initially in two layers of differing temperature. The height of the water in the chimney is marked, and then the two layers are mixed together with a magnetic stir-bar. The height of the fluid in the chimney would stay the same if the equation of state were linear, but (see plots in previous handout) it is not. The resulting change is a very sensitive measure of the curvature of the equation of state. The effect of the nonlinear equation of state in Nature can be quite important. Now the experiment is repeated for salt stratification, a fresh layer floats on a salty layer, and the change in volume of the entire fluid is observed when the two are mixed…same idea.
    [Show full text]
  • Determination of the Entropy Production During Glass Transition: Theory and Experiment H
    Determination of the entropy production during glass transition: theory and experiment H. Jabraoui, S. Ouaskit, J. Richard, J.-L. Garden To cite this version: H. Jabraoui, S. Ouaskit, J. Richard, J.-L. Garden. Determination of the entropy production dur- ing glass transition: theory and experiment. Journal of Non-Crystalline Solids, Elsevier, 2020, 533, pp.119907. 10.1016/j.jnoncrysol.2020.119907. hal-02184448v2 HAL Id: hal-02184448 https://hal.archives-ouvertes.fr/hal-02184448v2 Submitted on 29 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Determination of the entropy production during glass transition: theory and experiment H. Jabraoui,1 S. Ouaskit,2 J. Richard,3, 4 and J.-L. Garden∗3, 4 1Laboratoire Physique et Chimie Th´eoriques,CNRS - Universit´ede Lorraine, F-54000 Nancy France. 2Laboratoire physique de la mati`ere condens´ee,Facult´edes sciences Ben M'sik, Universit´eHassan II de Casablanca, Morocco 3Institut NEEL,´ CNRS, 25 avenue des Martyrs, F-38042 Grenoble France 4Univ. Grenoble Alpes, Institut NEEL,´ F-38042 Grenoble France (Dated: January 10, 2020) A glass is a non-equilibrium thermodynamic state whose physical properties depend on time.
    [Show full text]
  • On the Clausius Theorem 3
    ON THE CLAUSIUS THEOREM ALEXEY GAVRILOV Abstract. We show that for a metastable system there exists a theoretical possibility of a violation of the Clausius inequality without a violation of the second law. Possibilities of experimental detection of this hypothetical viola- tion are pointed out. The question which will be considered here is the possibility of a violation of the Clausius inequality δQ ≤ 0. (1) I T We do not discuss here the second law of thermodynamics. It remains beyond any doubt. The aim is to watch closely the proof of (1) which is not as rigorous as it seems. As we’ll see, this proof is based on some assumptions which theoretically may be wrong for a metastable system. Our consideration avoids statistical mechanics, it is mostly thermodynamic, in other words, phenomenological. 1. Clausius theorem The well-known Clausius theorem states that the inequality (1) is valid for any closed system undergoing a cycle. The proof may be found in some textbooks on thermodynamics 1. Consider a system connected to a heat reservoir at a constant absolute temperature of T0 through a reversible cyclic device (e.g., Carnot engine) (fig. 1). Q0 ✬✩Qsystem W heat work reservoir ′ reservoir ✫✪ W arXiv:0707.3871v1 [physics.gen-ph] 26 Jul 2007 fig.1 Then δQ Q0 = , I T T0 where Q0 is the amount of heat taken from the heat reservoir. The combined system (=system+reversible device) operates in a cycle, hence the possibility of Q0 > 0 is forbidden by the Kelvin-Plank formulation of the second law. 1Forgive the author: he was unable to find a book where the proof have been written thoroughly.
    [Show full text]
  • An Introduction to Thermodynamics Applied to Organic Rankine Cycles
    An introduction to thermodynamics applied to Organic Rankine Cycles By : Sylvain Quoilin PhD Student at the University of Liège November 2008 1 Definition of a few thermodynamic variables 1.1 Main thermodynamics variables, accessible by measurements : 1. Mass : m [kg] and mass flow rate m˙ [kg/s] 2. Volume : V m3 and volume flow rate : V˙ [m3/ s] 3. Temperature : T [°C ] or T [K ] ] 4. Pressure : p [Pa] or p [ psi] 1.2 Other variables : 1. Internal energy : U [ j] and internal energy flow rate : U˙ [W ] 2. Enthalpy : H [ j]=U P⋅V and enthalpy flow rate : H˙ [W ] 3. Entropy : S [ j /K ] 4. Helmholtz free energy : A [ j]=U ± T⋅S 5. Gibbs free energy : G [ j]=H ± T⋅S 1.3 Intensive variables : The above variables can be expressed per unit of mass. In this document, intensive variable will be written in lower case : v [ m3/kg] , u [ j/ kg] , h [ j /kg] , s [ j/ kg⋅K ] , a [ j /kg] , g [ j/kg] 3 1 NB = the specific volume corresponds to the inverse of the density : v [ m /kg]= [ kg/m 3] 1.4 Total energy : The energy state of a fluid can be expressed by its internal energy, but also by it kinetic and its potential energy. The concept of ªtotal energyº is used : 1 u =u ⋅C 2g⋅z tot 2 where C is the fluid velocity and z its relative altitude The same definition can be applied to the enthalpy : 1 u =u ⋅C 2g⋅z tot 2 2 1.5 Thermodynamic process : Several particular thermodynamic processes can be identified : • isothermal process : at constant temperature, maintained with heat added or removed from a heat source or sink • isobaric process : at constant
    [Show full text]
  • A Nonequilibrium Extension of the Clausius Heat Theorem
    J Stat Phys (2014) 154:188–203 DOI 10.1007/s10955-013-0822-9 A Nonequilibrium Extension of the Clausius Heat Theorem Christian Maes · Karel Netocnýˇ Received: 6 June 2013 / Accepted: 29 July 2013 / Published online: 27 August 2013 © Springer Science+Business Media New York 2013 Abstract We generalize the Clausius (in)equality to overdamped mesoscopic and macro- scopic diffusions in the presence of nonconservative forces. In contrast to previous frame- works, we use a decomposition scheme for heat which is based on an exact variant of the Minimum Entropy Production Principle as obtained from dynamical fluctuation theory. This new extended heat theorem holds true for arbitrary driving and does not require assumptions of local or close to equilibrium. The argument remains exactly intact for diffusing fields where the fields correspond to macroscopic profiles of interacting particles under hydro- dynamic fluctuations. We also show that the change of Shannon entropy is related to the antisymmetric part under a modified time-reversal of the time-integrated entropy flux. Keywords Clausius heat theorem · Nonequilibrium fluctuations · Steady state thermodynamics 1 Introduction The Clausius heat theorem stands at the very beginning of the theory of equilibrium thermodynamics.1 Grown out of meditations on the efficiency of heat machines [2], Clau- sius discovered that for quasi-static processes between equilibria, heat divided by tempera- ture is an exact differential, memorized as δQ/T = dS. The new state function S was called the entropy of the system (in equilibrium). Clausius continued by arguing that this entropy 1Studies on the heat theorem were started by Clausius since about 1855, with the final emergence of the entropy concept in [1].
    [Show full text]