Compressibility Factor - Wikipedia, the Free Encyclopedia 頁 1 / 5
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
James Clerk Maxwell
James Clerk Maxwell JAMES CLERK MAXWELL Perspectives on his Life and Work Edited by raymond flood mark mccartney and andrew whitaker 3 3 Great Clarendon Street, Oxford, OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries c Oxford University Press 2014 The moral rights of the authors have been asserted First Edition published in 2014 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2013942195 ISBN 978–0–19–966437–5 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only. -
Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues
Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-51995 March 2013 Contract No. DE-AC36-08GO28308 Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues M. W. Melaina, O. Antonia, and M. Penev Prepared under Task No. HT12.2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5600-51995 Golden, Colorado 80401 March 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. -
Atmospheric Gases Student Handout Atmospheric Gases
Atmospheric Gases Student Handout Atmospheric Gases Driving Question: What is our atmosphere made of? In this activity you will: 1. Explore the variety and ratio of compounds and elements that make up the Earth’s atmosphere. 2. Understand volumetric measurements of gases in the atmosphere. 3. Visually depict the composition of the atmosphere. Background Information: Understanding Concentration Measurements In this activity, we will investigate the gas composition of our planet’s atmosphere. We use percentages to represent units of gas composition. A percent (%) is equivalent to 1 part out of 100 equal units. 1% = 1 part out of 100 For smaller concentrations scientists use parts per million (ppm) to represent concentrations of gases (or pollutants) in the atmosphere). One ppm is equivalent to 1 part out of 1,000,000 if the volume being measured is separated into 1,000,000 equal units. 1 ppm = 1 part out of 1,000,000 In this activity, you will use graph paper to represent the concentration of different gases in the atmosphere. Copyright © 2011 Environmental Literacy and Inquiry Working Group at Lehigh University Atmospheric Gases Student Handout 2 Here are some examples to help visualize parts per million: The common unit mg/liter is equal to ppm concentration Four drops of ink in a 55-gallon barrel of water would produce an "ink concentration" of 1 ppm. 1 12-oz can of soda pop in a 30-meter swimming pool 1 3-oz chocolate bar on a football field Atmospheric Composition Activity You will be creating a graphic model of the atmosphere composition using the Atmospheric Composition of Clean Dry Air activity sheet. -
Carbon Dioxide Heat Transfer Coefficients and Pressure
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca - Università degli studi di Napoli Federico II international journal of refrigeration 33 (2010) 1068e1085 available at www.sciencedirect.com www.iifiir.org journal homepage: www.elsevier.com/locate/ijrefrig Carbon dioxide heat transfer coefficients and pressure drops during flow boiling: Assessment of predictive methods R. Mastrullo a, A.W. Mauro a, A. Rosato a,*, G.P. Vanoli b a D.E.TE.C., Facolta` di Ingegneria, Universita` degli Studi di Napoli Federico II, p.le Tecchio 80, 80125 Napoli, Italy b Dipartimento di Ingegneria, Universita` degli Studi del Sannio, corso Garibaldi 107, Palazzo dell’Aquila Bosco Lucarelli, 82100 Benevento, Italy article info abstract Article history: Among the alternatives to the HCFCs and HFCs, carbon dioxide emerged as one of the most Received 13 December 2009 promising environmentally friendly refrigerants. In past years many works were carried Received in revised form out about CO2 flow boiling and very different two-phase flow characteristics from 8 February 2010 conventional fluids were found. Accepted 5 April 2010 In order to assess the best predictive methods for the evaluation of CO2 heat transfer Available online 9 April 2010 coefficients and pressure gradients in macro-channels, in the current article a literature survey of works and a collection of the results of statistical comparisons available in Keywords: literature are furnished. Heat exchanger In addition the experimental data from University of Naples are used to run a deeper Boiling analysis. Both a statistical and a direct comparison against some of the most quoted Carbon dioxide-review predictive methods are carried out. -
Entropy: Ideal Gas Processes
Chapter 19: The Kinec Theory of Gases Thermodynamics = macroscopic picture Gases micro -> macro picture One mole is the number of atoms in 12 g sample Avogadro’s Number of carbon-12 23 -1 C(12)—6 protrons, 6 neutrons and 6 electrons NA=6.02 x 10 mol 12 atomic units of mass assuming mP=mn Another way to do this is to know the mass of one molecule: then So the number of moles n is given by M n=N/N sample A N = N A mmole−mass € Ideal Gas Law Ideal Gases, Ideal Gas Law It was found experimentally that if 1 mole of any gas is placed in containers that have the same volume V and are kept at the same temperature T, approximately all have the same pressure p. The small differences in pressure disappear if lower gas densities are used. Further experiments showed that all low-density gases obey the equation pV = nRT. Here R = 8.31 K/mol ⋅ K and is known as the "gas constant." The equation itself is known as the "ideal gas law." The constant R can be expressed -23 as R = kNA . Here k is called the Boltzmann constant and is equal to 1.38 × 10 J/K. N If we substitute R as well as n = in the ideal gas law we get the equivalent form: NA pV = NkT. Here N is the number of molecules in the gas. The behavior of all real gases approaches that of an ideal gas at low enough densities. Low densitiens m= enumberans tha oft t hemoles gas molecul es are fa Nr e=nough number apa ofr tparticles that the y do not interact with one another, but only with the walls of the gas container. -
Linear-Nonequilibrium Thermodynamics Theory for Coupled Heat and Mass Transport
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Chemical and Biomolecular Research Papers -- Yasar Demirel Publications Faculty Authors Series 2001 Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport Yasar Demirel University of Nebraska - Lincoln, [email protected] Stanley I. Sandler University of Delaware, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/cbmedemirel Part of the Chemical Engineering Commons Demirel, Yasar and Sandler, Stanley I., "Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport" (2001). Yasar Demirel Publications. 8. https://digitalcommons.unl.edu/cbmedemirel/8 This Article is brought to you for free and open access by the Chemical and Biomolecular Research Papers -- Faculty Authors Series at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Yasar Demirel Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in International Journal of Heat and Mass Transfer 44 (2001), pp. 2439–2451 Copyright © 2001 Elsevier Science Ltd. Used by permission. www.elsevier.comllocate/ijhmt Submitted November 5, 1999; revised September 6, 2000. Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport Yasar Demirel and S. I. Sandler Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA Corresponding author — Y. Demirel Abstract Linear-nonequilibrium thermodynamics (LNET) has been used to express the entropy generation and dis- sipation functions representing the true forces and flows for heat and mass transport in a multicomponent fluid. These forces and flows are introduced into the phenomenological equations to formulate the cou- pling phenomenon between heat and mass flows. -
IB Questionbank
Topic 3 Past Paper [94 marks] This question is about thermal energy transfer. A hot piece of iron is placed into a container of cold water. After a time the iron and water reach thermal equilibrium. The heat capacity of the container is negligible. specific heat capacity. [2 marks] 1a. Define Markscheme the energy required to change the temperature (of a substance) by 1K/°C/unit degree; of mass 1 kg / per unit mass; [5 marks] 1b. The following data are available. Mass of water = 0.35 kg Mass of iron = 0.58 kg Specific heat capacity of water = 4200 J kg–1K–1 Initial temperature of water = 20°C Final temperature of water = 44°C Initial temperature of iron = 180°C (i) Determine the specific heat capacity of iron. (ii) Explain why the value calculated in (b)(i) is likely to be different from the accepted value. Markscheme (i) use of mcΔT; 0.58×c×[180-44]=0.35×4200×[44-20]; c=447Jkg-1K-1≈450Jkg-1K-1; (ii) energy would be given off to surroundings/environment / energy would be absorbed by container / energy would be given off through vaporization of water; hence final temperature would be less; hence measured value of (specific) heat capacity (of iron) would be higher; This question is in two parts. Part 1 is about ideal gases and specific heat capacity. Part 2 is about simple harmonic motion and waves. Part 1 Ideal gases and specific heat capacity State assumptions of the kinetic model of an ideal gas. [2 marks] 2a. two Markscheme point molecules / negligible volume; no forces between molecules except during contact; motion/distribution is random; elastic collisions / no energy lost; obey Newton’s laws of motion; collision in zero time; gravity is ignored; [4 marks] 2b. -
How Compressible Are Innovation Processes?
1 How Compressible are Innovation Processes? Hamid Ghourchian, Arash Amini, Senior Member, IEEE, and Amin Gohari, Senior Member, IEEE Abstract The sparsity and compressibility of finite-dimensional signals are of great interest in fields such as compressed sensing. The notion of compressibility is also extended to infinite sequences of i.i.d. or ergodic random variables based on the observed error in their nonlinear k-term approximation. In this work, we use the entropy measure to study the compressibility of continuous-domain innovation processes (alternatively known as white noise). Specifically, we define such a measure as the entropy limit of the doubly quantized (time and amplitude) process. This provides a tool to compare the compressibility of various innovation processes. It also allows us to identify an analogue of the concept of “entropy dimension” which was originally defined by R´enyi for random variables. Particular attention is given to stable and impulsive Poisson innovation processes. Here, our results recognize Poisson innovations as the more compressible ones with an entropy measure far below that of stable innovations. While this result departs from the previous knowledge regarding the compressibility of fat-tailed distributions, our entropy measure ranks stable innovations according to their tail decay. Index Terms Compressibility, entropy, impulsive Poisson process, stable innovation, white L´evy noise. I. INTRODUCTION The compressible signal models have been extensively used to represent or approximate various types of data such as audio, image and video signals. The concept of compressibility has been separately studied in information theory and signal processing societies. In information theory, this concept is usually studied via the well-known entropy measure and its variants. -
An Entropy-Stable Hybrid Scheme for Simulations of Transcritical Real-Fluid
Journal of Computational Physics 340 (2017) 330–357 Contents lists available at ScienceDirect Journal of Computational Physics www.elsevier.com/locate/jcp An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows Peter C. Ma, Yu Lv ∗, Matthias Ihme Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA a r t i c l e i n f o a b s t r a c t Article history: A finite-volume method is developed for simulating the mixing of turbulent flows at Received 30 August 2016 transcritical conditions. Spurious pressure oscillations associated with fully conservative Received in revised form 9 March 2017 formulations are addressed by extending a double-flux model to real-fluid equations of Accepted 12 March 2017 state. An entropy-stable formulation that combines high-order non-dissipative and low- Available online 22 March 2017 order dissipative finite-volume schemes is proposed to preserve the physical realizability Keywords: of numerical solutions across large density gradients. Convexity conditions and constraints Real fluid on the application of the cubic state equation to transcritical flows are investigated, and Spurious pressure oscillations conservation properties relevant to the double-flux model are examined. The resulting Double-flux model method is applied to a series of test cases to demonstrate the capability in simulations Entropy stable of problems that are relevant for multi-species transcritical real-fluid flows. Hybrid scheme © 2017 Elsevier Inc. All rights reserved. 1. Introduction The accurate and robust simulation of transcritical real-fluid effects is crucial for many engineering applications, such as fuel injection in internal-combustion engines, rocket motors and gas turbines. -
Chapter 3 3.4-2 the Compressibility Factor Equation of State
Chapter 3 3.4-2 The Compressibility Factor Equation of State The dimensionless compressibility factor, Z, for a gaseous species is defined as the ratio pv Z = (3.4-1) RT If the gas behaves ideally Z = 1. The extent to which Z differs from 1 is a measure of the extent to which the gas is behaving nonideally. The compressibility can be determined from experimental data where Z is plotted versus a dimensionless reduced pressure pR and reduced temperature TR, defined as pR = p/pc and TR = T/Tc In these expressions, pc and Tc denote the critical pressure and temperature, respectively. A generalized compressibility chart of the form Z = f(pR, TR) is shown in Figure 3.4-1 for 10 different gases. The solid lines represent the best curves fitted to the data. Figure 3.4-1 Generalized compressibility chart for various gases10. It can be seen from Figure 3.4-1 that the value of Z tends to unity for all temperatures as pressure approach zero and Z also approaches unity for all pressure at very high temperature. If the p, v, and T data are available in table format or computer software then you should not use the generalized compressibility chart to evaluate p, v, and T since using Z is just another approximation to the real data. 10 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 112 3-19 Example 3.4-2 ---------------------------------------------------------------------------------- A closed, rigid tank filled with water vapor, initially at 20 MPa, 520oC, is cooled until its temperature reaches 400oC. -
Lecture 8: Maximum and Minimum Work, Thermodynamic Inequalities
Lecture 8: Maximum and Minimum Work, Thermodynamic Inequalities Chapter II. Thermodynamic Quantities A.G. Petukhov, PHYS 743 October 4, 2017 Chapter II. Thermodynamic Quantities Lecture 8: Maximum and Minimum Work, ThermodynamicA.G. Petukhov,October Inequalities PHYS 4, 743 2017 1 / 12 Maximum Work If a thermally isolated system is in non-equilibrium state it may do work on some external bodies while equilibrium is being established. The total work done depends on the way leading to the equilibrium. Therefore the final state will also be different. In any event, since system is thermally isolated the work done by the system: jAj = E0 − E(S); where E0 is the initial energy and E(S) is final (equilibrium) one. Le us consider the case when Vinit = Vfinal but can change during the process. @ jAj @E = − = −Tfinal < 0 @S @S V The entropy cannot decrease. Then it means that the greater is the change of the entropy the smaller is work done by the system The maximum work done by the system corresponds to the reversible process when ∆S = Sfinal − Sinitial = 0 Chapter II. Thermodynamic Quantities Lecture 8: Maximum and Minimum Work, ThermodynamicA.G. Petukhov,October Inequalities PHYS 4, 743 2017 2 / 12 Clausius Theorem dS 0 R > dS < 0 R S S TA > TA T > T B B A δQA > 0 B Q 0 δ B < The system following a closed path A: System receives heat from a hot reservoir. Temperature of the thermostat is slightly larger then the system temperature B: System dumps heat to a cold reservoir. Temperature of the system is slightly larger then that of the thermostat Chapter II. -
Acta Technica Jaurinensis
Acta Technica Jaurinensis Győr, Transactions on Engineering Vol. 3, No. 1 Acta Technica Jaurinensis Vol. 3. No. 1. 2010 The Historical Development of Thermodynamics D. Bozsaky “Széchenyi István” University Department of Architecture and Building Construction, H-9026 Győr, Egyetem tér 1. Phone: +36(96)-503-454, fax: +36(96)-613-595 e-mail: [email protected] Abstract: Thermodynamics as a wide branch of physics had a long historical development from the ancient times to the 20th century. The invention of the thermometer was the first important step that made possible to formulate the first precise speculations on heat. There were no exact theories about the nature of heat for a long time and even the majority of the scientific world in the 18th and the early 19th century viewed heat as a substance and the representatives of the Kinetic Theory were rejected and stayed in the background. The Caloric Theory successfully explained plenty of natural phenomena like gas laws and heat transfer and it was impossible to refute it until the 1850s when the Principle of Conservation of Energy was introduced (Mayer, Joule, Helmholtz). The Second Law of Thermodynamics was discovered soon after that explanation of the tendency of thermodynamic processes and the heat loss of useful heat. The Kinetic Theory of Gases motivated the scientists to introduce the concept of entropy that was a basis to formulate the laws of thermodynamics in a perfect mathematical form and founded a new branch of physics called statistical thermodynamics. The Third Law of Thermodynamics was discovered in the beginning of the 20th century after introducing the concept of thermodynamic potentials and the absolute temperature scale.