Phd Thesis Optimising Thermal Energy Recovery, Utilisation And

Total Page:16

File Type:pdf, Size:1020Kb

Phd Thesis Optimising Thermal Energy Recovery, Utilisation And OPTIMISING THERMAL ENERGY RECOVERY, UTILISATION AND MANAGEMENT IN THE PROCESS INDUSTRIES MATHEW CHIDIEBERE ANEKE PhD 2012 OPTIMISING THERMAL ENERGY RECOVERY, UTILISATION AND MANAGEMENT IN THE PROCESS INDUSTRIES MATHEW CHIDIEBERE ANEKE A thesis submitted in partial fulfilment of the requirements of the University of Northumbria at Newcastle for the degree of Doctor of Philosophy Research undertaken in the School of Built and Natural Environment in collaboration with Brunel University, Newcastle University, United Biscuits, Flo-Mech Ltd, Beedes Ltd and Chemistry Innovation Network (KTN) August 2012 Abstract The persistent increase in the price of energy, the clamour to preserve our environment from the harmful effects of the anthropogenic release of greenhouse gases from the combustion of fossil fuels and the need to conserve these rapidly depleting fuels has resulted in the need for the deployment of industry best practices in energy conservation through energy efficiency improvement processes like the waste heat recovery technique. In 2006, it was estimated that approximately 20.66% of energy in the UK is consumed by industry as end-user, with the process industries (chemical industries, metal and steel industries, food and drink industries) consuming about 407 TWh, 2010 value stands at 320.28 TWh (approximately 18.35%). Due to the high number of food and drink industries in the UK, these are estimated to consume about 36% of this energy with a waste heat recovery potential of 2.8 TWh. This work presents the importance of waste heat recovery in the process industries in general, and in the UK food industry in particular, with emphasis on the fryer section of the crisps manufacturing process, which has been identified as one of the energy-intensive food industries with high waste heat recovery potential. The work proposes the use of a dual heat source ORC system for the recovery and conversion of the waste heat from the fryer section of a crisps manufacturing plant to electricity. The result, obtained through modelling and simulation, shows that the proposed technology can produce about 92% of the daily peak electricity need of the plant which is currently 216 kW. Also, the economic analysis shows that the proposed technology is viable (even at an inflation rate of 5.03% and discounted rate of 6%), with a payback period of approximately three years and net present value of over £2.2 million if the prices of electricity and carbon is at an average value of £0.16 and £13.77 respectively throughout the 30 years service life of the plant. The life cycle assessment study shows that the proposed technology can reduce the CO 2 emission by 139,580 kg/year if the electricity produced is used to displace ii that which would have been produced from a conventional coal-fired power plant. Keywords : Waste Heat Recovery, Energy Efficiency, Organic Rankine Cycle, Life Cycle Assessment, Carbon Emission Reduction, Entropy Generation. iii Table of Contents Abstract ............................................................................................................... ii Table of Contents ............................................................................................... iv List of Figures .................................................................................................... ix List of Tables.................................................................................................... xiv Glossary ............................................................................................................ xv Dedication ....................................................................................................... xviii Acknowledgements .......................................................................................... xix Author’s Declaration .......................................................................................... xx Chapter One ....................................................................................................... 1 1 Introduction .................................................................................................. 1 1.1 Energy and Industry ............................................................................... 1 1.2 Project Motivations ................................................................................ 8 1.3 Waste Heat Energy Recovery ................................................................ 8 1.3.1 Where Do We Recover Waste Heat Energy? ................................... 9 1.3.2 Why Do We Recover Waste Heat Energy? ..................................... 10 1.3.3 How Do We Recover Waste Heat Energy? ..................................... 16 1.4 Waste Heat Energy Utilization ............................................................. 20 1.5 Energy Management............................................................................ 24 1.6 Aim of the Project ................................................................................ 26 1.7 Project Objectives ................................................................................ 27 1.8 Structure of the Thesis ......................................................................... 28 Chapter Two ..................................................................................................... 31 2 Literature Review ....................................................................................... 31 2.1 State of the Art Waste Heat Recovery Techniques/Applications ......... 31 iv 2.1.1 Waste Heat for Power Generation .................................................. 31 2.1.2 Waste Heat for Wastewater Desalination ........................................ 47 2.1.3 Waste Heat for Cooling or Refrigeration Applications ..................... 62 2.2 Overall Conclusions from the Literature Review .................................. 78 2.2.1 Original Contribution to Knowledge ................................................. 78 Chapter Three ................................................................................................... 81 3 Modelling and Simulation Tool ................................................................... 81 3.1 Modelling and Simulation Software ...................................................... 81 3.1.1 IPSEpro Simulation Software .......................................................... 81 3.1.2 Modelling an Object Using IPSEpro MDK ....................................... 85 3.1.3 Modelling a Process Using IPSEpro PSE ....................................... 87 Chapter Four ..................................................................................................... 89 4 Potato Crisp/Chip Manufacturing Process ................................................. 89 4.1 Energy Consumption in Crisp Manufacturing Process ......................... 95 4.2 Waste Heat Recovery Potential in Crisp Manufacturing Process ........ 96 Chapter Five ..................................................................................................... 97 5 Thermodynamics of ORC System and IPSEpro MDK Modelling of ORC Unit Operations .......................................................................................... 97 5.1 Thermodynamic Properties .................................................................. 97 5.2 Thermodynamic Processes ................................................................. 98 5.3 Thermodynamic Laws .......................................................................... 99 5.3.1 First Law of Thermodynamics ......................................................... 99 5.3.2 Second Law of Thermodynamics .................................................. 100 5.4 Reversible Cycle ................................................................................ 101 5.5 Irreversible Cycle ............................................................................... 104 v 5.6 Thermodynamic Processes of ORC System ...................................... 104 5.7 Steady State Modelling of the Proposed ORC Unit Operations in IPSEpro MDK ....................................................................................... 107 5.7.1 Evaporator (LMTD Method) .......................................................... 108 5.7.2 Condenser (LMTD Method) .......................................................... 110 5.7.3 Turbine/Expander ......................................................................... 112 5.7.4 Pump ............................................................................................. 115 5.7.5 Motor ............................................................................................. 116 5.7.6 Working Fluid Enthalpy Parameter ............................................... 117 Chapter Six ..................................................................................................... 119 6 Proposed ORC System Utilizing Waste Heat from the Fryer for Power Generation ............................................................................................... 119 6.1 Process Description of the Proposed ORC System ........................... 120 6.2 Waste Heat Quality ............................................................................ 121 6.2.1 Waste Heat from Fryer Foul Gas .................................................. 121 6.2.2 Waste Heat from the Exhaust Stack ............................................. 121 6.3 Building the IPSEpro Model of an ORC System Using IPSEpro PSE 121 6.3.1 Proposed Water Cooled Dual Heat Source ORC System
Recommended publications
  • High Efficiency and Large-Scale Subsurface Energy Storage with CO2
    PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12-14, 2018 SGP-TR-213 High Efficiency and Large-scale Subsurface Energy Storage with CO2 Mark R. Fleming1, Benjamin M. Adams2, Jimmy B. Randolph1,3, Jonathan D. Ogland-Hand4, Thomas H. Kuehn1, Thomas A. Buscheck3, Jeffrey M. Bielicki4, Martin O. Saar*1,2 1University of Minnesota, Minneapolis, MN, USA; 2ETH-Zurich, Zurich, Switzerland; 3TerraCOH Inc., Minneapolis, MN, USA; 4The Ohio State University, Columbus, OH, USA; 5Lawrence Livermore National Laboratory, Livermore, CA, USA. *Corresponding Author: [email protected] Keywords: geothermal energy, multi-level geothermal systems, sedimentary basin, carbon dioxide, electricity generation, energy storage, power plot, CPG ABSTRACT Storing large amounts of intermittently produced solar or wind power for later, when there is a lack of sunlight or wind, is one of society’s biggest challenges when attempting to decarbonize energy systems. Traditional energy storage technologies tend to suffer from relatively low efficiencies, severe environmental concerns, and limited scale both in capacity and time. Subsurface energy storage can solve the drawbacks of many other energy storage approaches, as it can be large scale in capacity and time, environmentally benign, and highly efficient. When CO2 is used as the (pressure) energy storage medium in reservoirs underneath caprocks at depths of at least ~1 km (to ensure the CO2 is in its supercritical state), the energy generated after the energy storage operation can be greater than the energy stored. This is possible if reservoir temperatures and CO2 storage durations combine to result in more geothermal energy input into the CO2 at depth than what the CO2 pumps at the surface (and other machinery) consume.
    [Show full text]
  • Lecture 8: Maximum and Minimum Work, Thermodynamic Inequalities
    Lecture 8: Maximum and Minimum Work, Thermodynamic Inequalities Chapter II. Thermodynamic Quantities A.G. Petukhov, PHYS 743 October 4, 2017 Chapter II. Thermodynamic Quantities Lecture 8: Maximum and Minimum Work, ThermodynamicA.G. Petukhov,October Inequalities PHYS 4, 743 2017 1 / 12 Maximum Work If a thermally isolated system is in non-equilibrium state it may do work on some external bodies while equilibrium is being established. The total work done depends on the way leading to the equilibrium. Therefore the final state will also be different. In any event, since system is thermally isolated the work done by the system: jAj = E0 − E(S); where E0 is the initial energy and E(S) is final (equilibrium) one. Le us consider the case when Vinit = Vfinal but can change during the process. @ jAj @E = − = −Tfinal < 0 @S @S V The entropy cannot decrease. Then it means that the greater is the change of the entropy the smaller is work done by the system The maximum work done by the system corresponds to the reversible process when ∆S = Sfinal − Sinitial = 0 Chapter II. Thermodynamic Quantities Lecture 8: Maximum and Minimum Work, ThermodynamicA.G. Petukhov,October Inequalities PHYS 4, 743 2017 2 / 12 Clausius Theorem dS 0 R > dS < 0 R S S TA > TA T > T B B A δQA > 0 B Q 0 δ B < The system following a closed path A: System receives heat from a hot reservoir. Temperature of the thermostat is slightly larger then the system temperature B: System dumps heat to a cold reservoir. Temperature of the system is slightly larger then that of the thermostat Chapter II.
    [Show full text]
  • Thermodynamics for Cryogenics
    Thermodynamics for Cryogenics Ram C. Dhuley USPAS – Cryogenic Engineering June 21 – July 2, 2021 Goals of this lecture • Revise important definitions in thermodynamics – system and surrounding, state properties, derived properties, processes • Revise laws of thermodynamics and learn how to apply them to cryogenic systems • Learn about ‘ideal’ thermodynamic processes and their application to cryogenic systems • Prepare background for analyzing real-world helium liquefaction and refrigeration cycles. 2 Ram C. Dhuley | USPAS Cryogenic Engineering (Jun 21 - Jul 2, 2021) Introduction • Thermodynamics deals with the relations between heat and other forms of energy such as mechanical, electrical, or chemical energy. • Thermodynamics has its basis in attempts to understand combustion and steam power but is still “state of the art” in terms of practical engineering issues for cryogenics, especially in process efficiency. James Dewar (invented vacuum flask in 1892) https://physicstoday.scitation.org/doi/10.1063/1.881490 3 Ram C. Dhuley | USPAS Cryogenic Engineering (Jun 21 - Jul 2, 2021) Definitions • Thermodynamic system is the specified region in which heat, work, and mass transfer are being studied. • Surrounding is everything else other than the system. • Thermodynamic boundary is a surface separating the system from the surrounding. Boundary System Surrounding 4 Ram C. Dhuley | USPAS Cryogenic Engineering (Jun 21 - Jul 2, 2021) Definitions (continued) Types of thermodynamic systems • Isolated system has no exchange of mass or energy with its surrounding • Closed system exchanges heat but not mass • Open system exchanges both heat and mass with its surrounding Thermodynamic State • Thermodynamic state is the condition of the system at a given time, defined by ‘state’ properties • More details on next slides • Two state properties define a state of a “homogenous” system • Usually, three state properties are needed to define a state of a non-homogenous system (example: two phase, mixture) 5 Ram C.
    [Show full text]
  • Chap. 2. the First Law of Thermodynamics Law of Energy Conservation
    Chap. 2. The First Law of Thermodynamics! Law of Energy Conservation! System - part of the world we are interest in ! Surroundings - region outside the system! World or Universe - system plus surroundings! Open system - transfer of matter between system and surroundings! Closed system - no transfer of matter! Isolated system - closed, no mechanical and thermal contact ! Internal energy of system work done on system! (initial)! Internal energy of system Heat transferred to system! (final)! First law holds however small the heat and work are.! Infinitesimal changes:! work on system due to expansion or contraction! electric or other work on system ! First law holds however small the heat and work are.! Infinitesimal changes:! work on system due to expansion or contraction! electric or other work on system! At constant volume,! Heat capacity at constant volume - the amount of heat transferred to the system per unit increase of temperature! First law holds however small the heat and work are.! Infinitesimal changes:! work due to expansion or contraction! electric or other work! At constant volume,! Heat capacity at constant volume - the amount of heat transferred to the system per unit increase of temperature! Most processes occur at constant pressure. What is the relation between heat absorbed at constant pressure and the energy?! Enthalpy:! heat content, a state function in the unit of energy! The heat absorbed at constant pressure is the same as enthalpy change of the system given that its pressure is the same as the external pressure.! Enthalpy:!
    [Show full text]
  • ME182: Engineering Thermodynamics
    ME182: Engineering Thermodynamics Teaching Scheme Credits Marks Distribution Theory Marks Practical Marks Total L T P C Marks ESE CE ESE CE 4 0 0 4 70 30 0 0 100 Course Content: Sr. Teaching Topics No. Hrs. 1 Basic Concepts: 05 Microscopic & macroscopic point of view, thermodynamic system and control volume, thermodynamic properties, processes and cycles, Thermodynamic equilibrium, Quasi-static process, homogeneous and heterogeneous systems, zeroth law of thermodynamics and different types of thermometers. 2 First law of Thermodynamics: 05 First law for a closed system undergoing a cycle and change of state, energy, PMM1, first law of thermodynamics for steady flow process, steady flow energy equation applied to nozzle, diffuser, boiler, turbine, compressor, pump, heat exchanger and throttling process, unsteady flow energy equation, filling and emptying process. 3 Second law of thermodynamics: 06 Limitations of first law of thermodynamics, Kelvin-Planck and Clausius statements and their equivalence, PMM2, refrigerator and heat pump, causes of irreversibility, Carnot theorem, corollary of Carnot theorem, thermodynamic temperature scale. 4 Entropy: 05 Clausius theorem, property of entropy, inequality of Clausius, entropy change in an irreversible process, principle of increase of entropy and its applications, entropy change for non-flow and flow processes, third law of thermodynamics. 5 Energy: 08 Energy of a heat input in a cycle, energy destruction in heat transfer process, energy of finite heat capacity body, energy of closed and steady flow system, irreversibility and Gouy-Stodola theorem and its applications, second law efficiency. 6 P-v, P-T, T-s and h-s diagrams for a pure substance. 03 7 Maxwell’s equations, TDS equations, Difference in heat capacities, 04 ratio of heat capacities, energy equation, joule-kelvin effect and clausius-clapeyronequation.
    [Show full text]
  • Second Law Analysis of Rankine Cycle
    Chapter 10 Lyes KADEM [Thermodynamics II] 2007 Refrigeration Cycles The objective of refrigeration cycles is to transfer the heat from a low temperature region to a high temperature region. - if the objective of the cycle is to decrease the lowest temperature, we call it: a Refrigeration cycle. - if the objective of the cycle is to increase the highest temperature, we call it: a heat pump. Carnot cycle As the Carnot cycle is the ideal cycle, let us first try to convert it to a refrigeration cycle, and then we will discuss practical limitations. Figure (10.1) shows a reversed Carnot cycle, the efficiency of this cycle will be: TL η 1−= TH However, if we try to apply the Carnot cycle, we will face some technical difficulties: 1-2: It is not advisable to compress a mixture of vapor and gas, since the liquid droplets would cause excessive wear. → shift point 1 to the right (saturated vapor). 3-4: It would be quite expensive to construct a device to be used in the expansion process that would be nearly isentropic (no losses allowed). It is much simpler to reduce the pressure irreversibly by using an expansion valve (isenthalpic process). Refrigeration cycles 44 Chapter 10 Lyes KADEM [Thermodynamics II] 2007 Figure.10.1. Reversed Carnot cycle. The Ideal vapor-compression refrigeration cycle 1-2: isentropic compression in a compressor. 2-3: isobaric heat rejection in a condenser. 3-4: throttling in an expansion device. 4-1: isobaric heat absorption in an evaporator. Figure.10.2. Ideal vapor- refrigeration cycle. Refrigeration cycles 45 Chapter 10 Lyes KADEM [Thermodynamics II] 2007 The coefficient of performance (COP) of a refrigeration cycle is: benefit Q& in COPR == Cost W&in The coefficient of performance (COP) of a heat pump is: benefit Q&out COPHP == Cost W&in COP can attain 4 for refrigerators and perhaps 5 for heat pumps.
    [Show full text]
  • A Proof of Clausius' Theorem for Time Reversible Deterministic Microscopic
    A proof of Clausius’ theorem for time reversible deterministic microscopic dynamics Denis J. Evans, Stephen R. Williams, and Debra J. Searles Citation: The Journal of Chemical Physics 134, 204113 (2011); doi: 10.1063/1.3592531 View online: http://dx.doi.org/10.1063/1.3592531 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/134/20?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Statistical Mechanics of Infinite Gravitating Systems AIP Conf. Proc. 970, 222 (2008); 10.1063/1.2839122 Gravitational clustering: an overview AIP Conf. Proc. 970, 205 (2008); 10.1063/1.2839121 Comment on “Comment on ‘Simple reversible molecular dynamics algorithms for Nosé-Hoover chain dynamics’ ” [J. Chem. Phys.110, 3623 (1999)] J. Chem. Phys. 124, 217101 (2006); 10.1063/1.2202355 Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte J. Chem. Phys. 122, 044903 (2005); 10.1063/1.1842059 Fluctuations and asymmetry via local Lyapunov instability in the time-reversible doubly thermostated harmonic oscillator J. Chem. Phys. 115, 5744 (2001); 10.1063/1.1401158 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 130.102.82.118 On: Thu, 01 Sep 2016 03:57:30 THE JOURNAL OF CHEMICAL PHYSICS 134, 204113 (2011) A proof of Clausius’ theorem for time reversible deterministic microscopic dynamics Denis J. Evans,1 Stephen R. Williams,1,a) and Debra J. Searles2 1Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia 2Queensland Micro- and Nanotechnology Centre and School of Biomolecular and Physical Sciences, Griffith University, Brisbane, Qld 4111, Australia (Received 17 February 2011; accepted 28 April 2011; published online 27 May 2011) In 1854 Clausius proved the famous theorem that bears his name by assuming the second “law” of thermodynamics.
    [Show full text]
  • Poincaré's Proof of Clausius' Inequality
    PHILOSOPHIA SCIENTIÆ MANUEL MONLÉON PRADAS JOSÉ LUIS GOMEZ RIBELLES Poincaré’s proof of Clausius’ inequality Philosophia Scientiæ, tome 1, no 4 (1996), p. 135-150 <http://www.numdam.org/item?id=PHSC_1996__1_4_135_0> © Éditions Kimé, 1996, tous droits réservés. L’accès aux archives de la revue « Philosophia Scientiæ » (http://poincare.univ-nancy2.fr/PhilosophiaScientiae/) implique l’accord avec les conditions générales d’utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou im- pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la pré- sente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Poincaré's Proof of Clausius' Inequality Manuel Monléon Pradas José Luis Gomez Ribelles Universidad Politecnica de Valencla - Spain Dept. de Termodinamica Aplicada Philosopha Scientiœ, 1 (4), 1996,135-150. Manuel Monléon & JoséL. Ribelles Abstract* Clausius's inequality occupies a central place among thermodynamical results, as the analytical équivalent of the Second Law. Nevertheless, its proof and interprétation hâve always been dcbated. Poincaré developed an original attempt botb at interpreting and proving the resuit. Even if his attempt cannot be regarded as succeeded, he opened the way to the later development of continuum thermodynamics. Résumé. L'inégalité de Clausius joue un rôle central dans la thermodynamique, comme résultat analytiquement équivalent au Deuxième Principe. Mais son interprétation et sa démonstration ont toujours fait l'objet de débats. Poincaré a saisi les deux problèmes, en leur donnant des vues originales. Même si on ne peut pas dire que son essai était complètement réussi, il a ouvert la voie aux développements ultérieurs de la thermodynamique des milieux continus.
    [Show full text]
  • Microscale Heat Transfer at Low Temperatures (2005)
    Published in: Microscale Heat Transfer- Fundamentals and Applications, S. Kakac, et al. (ed.), Kluwer Academic Publishers (2005), pp. 93-124. MICROSCALE HEAT TRANSFER AT LOW TEMPERATURES RAY RADEBAUGH Cryogenic Technologies Group National Institute of Standards and Technology Boulder, Colorado, USA 1. Introduction This paper discusses the fundamentals and applications of heat transfer in small space and time domains at low temperatures. The modern trend toward miniaturization of devices requires a better understanding of heat transfer phenomena in small dimensions. In regenerative thermal systems, such as thermoacoustic, Stirling, and pulse tube refrigerators, miniaturization is often accompanied by increased operating frequencies. Thus, this paper also covers heat transfer in small time domains involved with possible frequencies up to several hundred hertz. Simple analytical techniques are discussed for the optimization of heat exchanger and regenerator geometry at all temperatures. The results show that the optimum hydraulic diameters can become much less than 100 m at cryogenic temperatures, although slip flow is seldom a problem. The cooling of superconducting or other electronic devices in Micro-Electro-Mechanical Systems (MEMS) requires a better understanding of the heat transfer issues in very small sizes. Space applications also benefit from a reduction in the size of cryocoolers, which has brought about considerable interest in microscale heat exchangers. Some recent developments in miniature heat exchangers for Joule-Thomson and Brayton cycle cryocoolers are discussed. Both single-phase and two-phase heat transfer are covered in the paper, but the emphasis is on single-phase gas flow. Some discussion of fabrication techniques is also included. Another application discussed here is the use of high frequency Stirling and pulse tube cryocoolers in smaller sizes and lower temperatures.
    [Show full text]
  • Benchmarking a Cryogenic Code for the FREIA Helium Liquefier
    FREIA Report 2020/01 July 9, 2020 Department of Physics and Astronomy Uppsala University Benchmarking a Cryogenic Code for the FREIA Helium Liquefier Elias Waagaard Supervisor: Volker Ziemann Subject reader: Roger Ruber Bachelor Thesis, 15 credits Uppsala University Uppsala, Sweden Department of Physics and Astronomy Uppsala University Box 516 SE-75120 Uppsala Sweden Papers in the FREIA Report Series are published on internet in PDF format. Download from http://uu.diva-portal.org Abstract The thermodynamics inside the helium liquifier in the FREIA laboratory still contains many unknowns. The purpose of this project is to develop a theoretical model and im- plement it in MATLAB, with the help of the CoolProp library. This theoretical model of the FREIA liquefaction cycle aims at finding the unknown parameters not specified in the manual of the manufacturer, starting from the principle of enthalpy conservation. Inspiration was taken from the classical liquefaction cycles of Linde-Hampson, Claude and Collins. We developed a linear mathematical model for cycle components such as turboexpanders and heat exchangers, and a non-linear model for the liquefaction in the phase separator. Liquefaction yields of 10% and 6% were obtained in our model simula- tions, with and without liquid nitrogen pre-cooling respectively - similar to those in the FREIA liquefier within one percentage point. The sensors placed in FREIA showed simi- lar pressure and temperature values, even though not every point could be verified due to the lack of sensors. We observed an increase of more than 50% in yield after adjustments of the heat exchanger design in the model, especially the first one.
    [Show full text]
  • Lesson 8 Methods of Producing Low Temperatures
    Lesson 8 Methods of producing Low Temperatures 1 Version 1 ME, IIT Kharagpur The specific objectives of the lesson : In this lesson the basic concepts applicable to refrigeration is introduced. This chapter presents the various methods of producing low temperatures, viz. Sensible cooling by cold medium, Endothermic mixing of substances, Phase change processes, Expansion of liquids, Expansion of gases, Thermoelectric refrigeration, Adiabatic demagnetization. At the end of this lesson students should be able to: 1. Define refrigeration (Section 8.1) 2. Express clearly the working principles of various methods to produce low temperatures (Section 8.2) 8.1. Introduction Refrigeration is defined as “the process of cooling of bodies or fluids to temperatures lower than those available in the surroundings at a particular time and place”. It should be kept in mind that refrigeration is not same as “cooling”, even though both the terms imply a decrease in temperature. In general, cooling is a heat transfer process down a temperature gradient, it can be a natural, spontaneous process or an artificial process. However, refrigeration is not a spontaneous process, as it requires expenditure of exergy (or availability). Thus cooling of a hot cup of coffee is a spontaneous cooling process (not a refrigeration process), while converting a glass of water from room temperature to say, a block of ice, is a refrigeration process (non-spontaneous). “All refrigeration processes involve cooling, but all cooling processes need not involve refrigeration”. Refrigeration is a much more difficult process than heating, this is in accordance with the second laws of thermodynamics. This also explains the fact that people knew ‘how to heat’, much earlier than they learned ‘how to refrigerate’.
    [Show full text]
  • Second-Law Analysis
    Second-Law Analysis 9S.0 OBJECTIVES The first law of thermodynamics is widely used in design to make energy balances around equipment. Much less used are the entropy balances based on the second law of thermodynamics. Although the first law can determine energy transfer requirements in the form of heat and shaft work for specified changes to streams or batches of materials, it cannot even give a clue as to whether energy is being used efficiently. As shown in this chapter, calculations with the second law or a combined first and second law can determine energy efficiency. The calculations are difficult to do by hand, but are readily carried out with a process simulation program. When the second-law efficiency of a process is found to be low, a better process should be sought. The average second-law efficiency for chemical plants is in the range of only 20-25%. Therefore, chemical engineers need to spend more effort in improving energy efficiency. After studying this supplement, the reader should 1. Understand the limitations of the first law of thermodynamics. 2. Understand the usefulness of the second law and a combined statement of the first and second laws. 3. Be able to specify a system and surroundings for conducting a second-law analysis. 4. Be able to derive and apply a combined statement of the first and second laws for the determination of lost work or exergy. 5. Be able to determine the second-law efficiency of a process and pinpoint the major areas of inefficiency (lost work). 6. Understand the causes of lost work and how to remedy them.
    [Show full text]