Hans-Jurgen Busse

Total Page:16

File Type:pdf, Size:1020Kb

Hans-Jurgen Busse International Journal of Systematic and Evolutionary Microbiology (2016), 66, 9–37 DOI 10.1099/ijsem.0.000702 Review Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus Hans-Ju¨rgen Busse Correspondence Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Hans-Ju¨rgen Busse Veterina¨rplatz, 1A-1210 Vienna, Austria hans-juergen.busse@ vetmeduni.ac.at In this paper, the taxonomy of the genus Arthrobacter is discussed, from its first description in 1947 to the present state. Emphasis is given to intrageneric phylogeny and chemotaxonomic characteristics, concentrating on quinone systems, peptidoglycan compositions and polar lipid profiles. Internal groups within the genus Arthrobacter indicated from homogeneous chemotaxonomic traits and corresponding to phylogenetic grouping and/or high 16S rRNA gene sequence similarities are highlighted. Furthermore, polar lipid profiles and quinone systems of selected species are shown, filling some gaps concerning these chemotaxonomic traits. Based on phylogenetic groupings, 16S rRNA gene sequence similarities and homogeneity in peptidoglycan types, quinone systems and polar lipid profiles, a description of the genus Arthrobacter sensu lato and an emended description of Arthrobacter roseus are provided. Furthermore, reclassifications of selected species of the genus Arthrobacter into novel genera are proposed, namely Glutamicibacter gen. nov. (nine species), Paeniglutamicibacter gen. nov. (six species), Pseudoglutamicibacter gen. nov. (two species), Paenarthrobacter gen. nov. (six species) and Pseudarthrobacter gen. nov. (ten species). The genus Arthrobacter was proposed by Conn & Dimmick Arthrobacter Fischer, emend. (1947) to encompass three species, including the type species Morphology. Varied, with a tendency to go through a of the genus, ‘Arthrobacter globiforme’. The type species was more or less definite life cycle, the most characteristic later renamed as Arthrobacter globiformis (Skerman et al., features of which are Gram-negative rods in young 1980); the second species, Arthrobacter tumescens,wasreclas- cultures and Gram-positive coccoid forms (arthros- sified in another genus (Collins et al., 1989; Manaia et al., pores?) in old cultures, with intermediate stages that 2004), and the third species, ‘Arthrobacter helvolum’, was may be clubs, branched forms, or short unbranched never mentioned again in a taxonomic paper. It has to be filaments. Large (1 to 2 m) spherical bodies are some- emphasized here that it was not reclassified as ‘Pseudoclavi- times observed which have been termed ‘cystites’. bacter helvolum’, as stated by Busse et al. (2012). Originally, the genus was described as follows: Cultural characteristics. Growth on surface of solid media soft and smooth, not dry and wrinkled or hard and leathery, as ordinarily in Mycobacterium Abbreviations: DGDG, digalactosyldiacyglycerol; DMDG, dimannosyl- and the Actinomycetoceae. Colonies on poured diacylglycerol; DMG, dimannosylglyceride; DPG, diphosphatidylglycerol; plates ordinarily small (punctiform). Growth in MDMMG, monoacyldimannosylmonoacylglycerol; MGDG, monogalacto- broth usually slow and never profuse. syldiacylglycerol; PE, phosphatidylethanolamine; PG, phosphatidyl- glycerol; PI, phosphatidylinositol; TeMDG, tetramannosyldiacylglycerol; Physiology. Can ordinarily use either ammonium salts TMDG, trimannosyldiacylglycerol. or nitrates as sole sources of nitrogen. Can utilize Downloaded from www.microbiologyresearch.org by 000702 G 2015 IUMS Printed in Great Britain 9 IP: 54.70.40.11 On: Mon, 04 Feb 2019 19:10:17 H.-J. Busse glucose and sometimes other sugars as sources of cells are Gram-positive but may be weakly so. Not carbon and energy, but ordinarily without producing acid-fast. sufficient quantities of acid to have appreciable effect The cell walls do not contain both meso-diaminopime- on the pH of highly buffered media (e.g. containing lic acid and arabinose. peptone). Gelatin usually slowly liquefied. Ordinarily cause blackening of Mueller’s tellurite agar. Chemoorganotrophs: Metabolism respiratory, never fermentative. Molecular oxygen is the term- Habitat. Primarily soil. inal electron acceptor. Type species. A. globiforme (Conn) Conn and Dimmick. Little or no acid is produced from glucose in peptone Concerning the description of the genus Arthrobacter,the medium. Do not attack cellulose. Catalase-positive. Approved Lists of Bacterial Names (Skerman et al.,1980) All species grow in a medium containing soil extract refer to Keddie (1974), which concentrates on cultural, mor- and yeast extract. Nutrient agar (peptone+meat phological and physiological characteristics. This description extract) is suitable for laboratory strains which do has been the basis for the classification of numerous novel not require terregens factor or vitamin B but may species of the genus Arthrobacter: 12 be inhibitory to newly isolated strains (Topping, 1937). Cells which in complex medium undergo a marked Strict aerobes. change in form during the growth cycle. Older cul- tures (generally 2–7 days) are composed entirely or Temperature optimum 20–30 8C; most strains grow largely of coccoid cells. In some strains the coccoid at 10 8C but usually not at 37 8C. Do not survive cells are uniform in size and spherical, and resemble heating at 63 8C for 30 min in skim milk. Grow micrococci; in others they are spherical to ovoid or best at a neutral to slightly alkaline pH. slightly elongate. In some cultures larger coccoid The G+C content of the DNA of the species exam- cells some 2–4 times the size of the remainder may ined ranges from ca. 60–72 moles %(T ). occur; these may predominate under some cultural m conditions. On transfer to fresh complex medium Type species: Arthrobacter globiformis (Conn) Conn growth occurs by enlargement (swelling) of the coc- and Dimmick 1947, 301. coid cells followed by elongation from one or By 1995, the following 16 additional species, that have not occasionally two parts of the cell to give rods which been reclassified in other genera to date, were assigned to usually have a diameter less than that of the enlarged the genus Arthrobacter, considering the genus descriptions coccoid cell (referred to a figure). In the larger coccoid given by either Conn & Dimmick (1947) or Keddie (1974): cells outgrowth may occur at two, three or rarely four Arthrobacter aurescens Phillips1953, Arthrobacter citreus parts of the cell (referred to a figure). In both cases sub- Sacks 1954, Arthrobacter crystallopoietes Ensign and Ritten- sequent growth and division give rise to irregular rods berg, 1963, Arthrobacter histidinolovorans Adams 1954, which vary considerably in size and shape and include Arthrobacter ilicis Collins et al. 1982a, Arthrobacter mysorens straight, bent and curved, wedge-shaped and club- Nand and Rao 1972, Arthrobacter nicotianae Giovannozzi- shaped forms (referred to a figure). A proportion of Sermanni 1959, Arthrobacter nicotinovorans Kodama et al. the rods are arranged at an angle to each other giving 1992, Arthrobacter oxydans Sguros 1954, Arthrobacter pascens V formations but more complex angular arrangements Lochhead and Burton 1953, Arthrobacter polychromogenes often occur. Post-fission outgrowths, usually from the Schippers-Lammertse et al. 1963, Arthrobacter protophormiae proximal ends of one or both cells of a pair of rods (Lysenko 1959) Stackebrandt et al. 1984, Arthrobacter ramosus (referred to a figure), and bud-like outgrowths from Jensen 1960, Arthrobacter sulfureus Stackebrandt et al. 1984, segments of septate rods (referred to a figure), especially Arthrobacter uratoxydans Stackebrandt et al. 1984 and Arthro- in richer media, may give the appearance of rudimen- bacter ureafaciens (Krebs and Eggleston 1939) Clark 1955. tary branching but true mycelia are not formed. As the exponential phase proceeds the rods become shorter With the reclassification of Micrococcus agilis in the genus and are eventually replaced by the coccoid cells charac- Arthrobacter as Arthrobacter agilis, the description of teristic of stationary phase cultures (referred to a the genus Arthrobacter was emended as follows (Koch et al., figure). The coccoid cells are formed either by a gradual 1995): shortening of the rods at each successive division or, ‘a marked rod-coccus growth cycle occurs during especially in richer media, by multiple fragmentation growth in complex media; stationary-phase cultures of larger rods (referred to a figure). The rods are non- (generally after 2 to 7 days) are composed entirely motile or motile by one subpolar or a few lateral fla- or largely of coccoid cells that are 0.6 to 1.0 mmin gella. Do not form endospores. diameter; one species forms only spherical cells.’ Gram-positive. However, the rods may be readily Another 51 species of the genus Arthrobacter have since been decolorized and may show only Gram-positive described, including four novel species assigned to the genus granules in otherwise Gram-negative cells. Coccoid since 2012, namely Arthrobacter cryoconiti (Margesin et al., Downloaded from www.microbiologyresearch.org by 10 International Journal of Systematic and Evolutionary Microbiology 66 IP: 54.70.40.11 On: Mon, 04 Feb 2019 19:10:17
Recommended publications
  • Chapter 1.0: Introduction
    CHAPTER 1.0: INTRODUCTION 1.1 Why study Antarctica? The Antarctic includes some of the most extreme terrestrial environments by very low temperature, frequent freeze-thaw and wet-dry cycles, low and transient precipitation, reduced humidity, rapid drainage and limited organic nutrients which are considered as unfavorable condition (Yergeau et al., 2006). Located in the Earth‟s south hemisphere, Antarctica has received considerable amount of attention due to its untapped resources. Renowned for its cold, harsh conditions, there is an abundance of microbial life which has undergone their own adaption and evolutionary processes to survive. Since, Antarctic microbial habitats have remained relatively conserved for many years; there are unique opportunities for studying microbial evolution (Vincent, 2000). Besides that, presence of psychrophiles and other extermophiles in the environment are interesting specimens of nature‟s wonder. Psychrophilic enzymes produced have high potential in biotechnology for example the conservation of energy by reducing the need of heat treatment, the application of eurythermal polar cyanobacteria for wastewater treatment in cold climates (Tang et al., 1997) and the integration of proteases, lipases and cellulases into detergents to improve its mode of action in cold water. 1.2 Antarctic microorganisms Although bacterial researches have been conducted since early 1900s by Ekelof (Boyd and Boyd, 1962), little is known about the presence and characteristics of bacteria in the Antarctica. Microorganisms dominate Antarctic biology compare to other continent (Friedmann, 1993) as well as they are fundamental to the functioning of Antarctic ecosystems. Baseline knowledge of prokaryotic biodiversity in Antarctica is still limited (Bohannan 1 and Hughes, 2003). Among these microorganisms, bacteria are an important part of the soil.
    [Show full text]
  • Arthrobacter Paludis Sp. Nov., Isolated from a Marsh
    TAXONOMIC DESCRIPTION Zhang et al., Int J Syst Evol Microbiol 2018;68:47–51 DOI 10.1099/ijsem.0.002426 Arthrobacter paludis sp. nov., isolated from a marsh Qi Zhang,1 Mihee Oh,1 Jong-Hwa Kim,1 Rungravee Kanjanasuntree,1 Maytiya Konkit,1 Ampaitip Sukhoom,2 Duangporn Kantachote2 and Wonyong Kim1,* Abstract A novel Gram-stain-positive, strictly aerobic, non-endospore-forming bacterium, designated CAU 9143T, was isolated from a hydric soil sample collected from Seogmo Island in the Republic of Korea. Strain CAU 9143T grew optimally at 30 C, at pH 7.0 and in the presence of 1 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences revealed that strain CAU 9143T belonged to the genus Arthrobacter and was closely related to Arthrobacter ginkgonis SYP-A7299T (97.1 % T similarity). Strain CAU 9143 contained menaquinone MK-9 (H2) as the major respiratory quinone and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two glycolipids and two unidentified phospholipids as the major polar lipids. The whole-cell sugars were glucose and galactose. The peptidoglycan type was A4a (L-Lys–D-Glu2) and the major cellular fatty T acid was anteiso-C15 : 0. The DNA G+C content was 64.4 mol% and the level of DNA–DNA relatedness between CAU 9143 and the most closely related strain, A. ginkgonis SYP-A7299T, was 22.3 %. Based on phenotypic, chemotaxonomic and genetic data, strain CAU 9143T represents a novel species of the genus Arthrobacter, for which the name Arthrobacter paludis sp. nov. is proposed. The type strain is CAU 9143T (=KCTC 13958T,=CECT 8917T).
    [Show full text]
  • Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample
    geosciences Article Stress-Tolerance and Taxonomy of Culturable Bacterial Communities Isolated from a Central Mojave Desert Soil Sample Andrey A. Belov 1,*, Vladimir S. Cheptsov 1,2 , Elena A. Vorobyova 1,2, Natalia A. Manucharova 1 and Zakhar S. Ezhelev 1 1 Soil Science Faculty, Lomonosov Moscow State University, Moscow 119991, Russia; [email protected] (V.S.C.); [email protected] (E.A.V.); [email protected] (N.A.M.); [email protected] (Z.S.E.) 2 Space Research Institute, Russian Academy of Sciences, Moscow 119991, Russia * Correspondence: [email protected]; Tel.: +7-917-584-44-07 Received: 28 February 2019; Accepted: 8 April 2019; Published: 10 April 2019 Abstract: The arid Mojave Desert is one of the most significant terrestrial analogue objects for astrobiological research due to its genesis, mineralogy, and climate. However, the knowledge of culturable bacterial communities found in this extreme ecotope’s soil is yet insufficient. Therefore, our research has been aimed to fulfil this lack of knowledge and improve the understanding of functioning of edaphic bacterial communities of the Central Mojave Desert soil. We characterized aerobic heterotrophic soil bacterial communities of the central region of the Mojave Desert. A high total number of prokaryotic cells and a high proportion of culturable forms in the soil studied were observed. Prevalence of Actinobacteria, Proteobacteria, and Firmicutes was discovered. The dominance of pigmented strains in culturable communities and high proportion of thermotolerant and pH-tolerant bacteria were detected. Resistance to a number of salts, including the ones found in Martian regolith, as well as antibiotic resistance, were also estimated.
    [Show full text]
  • Taxonomy and Systematics of Plant Probiotic Bacteria in the Genomic Era
    AIMS Microbiology, 3(3): 383-412. DOI: 10.3934/microbiol.2017.3.383 Received: 03 March 2017 Accepted: 22 May 2017 Published: 31 May 2017 http://www.aimspress.com/journal/microbiology Review Taxonomy and systematics of plant probiotic bacteria in the genomic era Lorena Carro * and Imen Nouioui School of Biology, Newcastle University, Newcastle upon Tyne, UK * Correspondence: Email: [email protected]. Abstract: Recent decades have predicted significant changes within our concept of plant endophytes, from only a small number specific microorganisms being able to colonize plant tissues, to whole communities that live and interact with their hosts and each other. Many of these microorganisms are responsible for health status of the plant, and have become known in recent years as plant probiotics. Contrary to human probiotics, they belong to many different phyla and have usually had each genus analysed independently, which has resulted in lack of a complete taxonomic analysis as a group. This review scrutinizes the plant probiotic concept, and the taxonomic status of plant probiotic bacteria, based on both traditional and more recent approaches. Phylogenomic studies and genes with implications in plant-beneficial effects are discussed. This report covers some representative probiotic bacteria of the phylum Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, but also includes minor representatives and less studied groups within these phyla which have been identified as plant probiotics. Keywords: phylogeny; plant; probiotic; PGPR; IAA; ACC; genome; metagenomics Abbreviations: ACC 1-aminocyclopropane-1-carboxylate ANI average nucleotide identity FAO Food and Agriculture Organization DDH DNA-DNA hybridization IAA indol acetic acid JA jasmonic acid OTUs Operational taxonomic units NGS next generation sequencing PGP plant growth promoters WHO World Health Organization PGPR plant growth-promoting rhizobacteria 384 1.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Aestuariimicrobium Ganziense Sp. Nov., a New Gram-Positive Bacterium Isolated from Soil in the Ganzi Tibetan Autonomous Prefecture, China
    Aestuariimicrobium ganziense sp. nov., a new Gram-positive bacterium isolated from soil in the Ganzi Tibetan Autonomous Prefecture, China Yu Geng Yunnan University Jiang-Yuan Zhao Yunnan University Hui-Ren Yuan Yunnan University Le-Le Li Yunnan University Meng-Liang Wen yunnan university Ming-Gang Li yunnan university Shu-Kun Tang ( [email protected] ) Yunnan Institute of Microbiology, Yunnan University https://orcid.org/0000-0001-9141-6244 Research Article Keywords: Aestuariimicrobium ganziense sp. nov., Chemotaxonomy, 16S rRNA sequence analysis Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-215613/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Archives of Microbiology on March 12th, 2021. See the published version at https://doi.org/10.1007/s00203-021-02261-2. Page 1/11 Abstract A novel Gram-stain positive, oval shaped and non-agellated bacterium, designated YIM S02566T, was isolated from alpine soil in Shadui Towns, Ganzi County, Ganzi Tibetan Autonomous Prefecture, Sichuan Province, PR China. Growth occurred at 23–35°C (optimum, 30°C) in the presence of 0.5-4 % (w/v) NaCl (optimum, 1%) and at pH 7.0–8.0 (optimum, pH 7.0). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain YIM S02566T was most closely related to the genus Aestuariimicrobium, with Aestuariimicrobium kwangyangense R27T and Aestuariimicrobium soli D6T as its closest relative (sequence similarities were 96.3% and 95.4%, respectively). YIM S02566T contained LL-diaminopimelic acid in the cell wall.
    [Show full text]
  • Marine Rare Actinomycetes: a Promising Source of Structurally Diverse and Unique Novel Natural Products
    Review Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products Ramesh Subramani 1 and Detmer Sipkema 2,* 1 School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji; [email protected] 2 Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317-483113 Received: 7 March 2019; Accepted: 23 April 2019; Published: 26 April 2019 Abstract: Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
    [Show full text]
  • Isolation of Arthrobacter Species from the Phyllosphere and Demonstration of Their Epiphytic fitness Tanja R
    ORIGINAL RESEARCH Isolation of Arthrobacter species from the phyllosphere and demonstration of their epiphytic fitness Tanja R. Scheublin1 & Johan H. J. Leveau1,2 1Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands 2Department of Plant Pathology, University of California, One Shields Avenue, Davis, California 95616 Keywords Abstract Arthrobacter, biodegradation, phylloplane, phylloremediation, soil, triadimenol Bacteria of the genus Arthrobacter are common inhabitants of the soil environ- ment, but can also be recovered from leaf surfaces (the phyllosphere). Using Correspondence enrichment cultures on 4-chlorophenol, we succeeded in specifically isolating Johan Leveau, University of California, Arthrobacter bacteria from ground cover vegetation in an apple orchard. Based Department of Plant Pathology, One Shields on 16S rRNA gene sequencing, the isolates were found to belong to at least Avenue, Davis, CA 95616. three different species of Arthrobacter. Compared to the model bacterial epi- Tel: +1 (530) 752 5046; Fax: +1 (530) 752 5674; E-mail: [email protected] phyte Pantoea agglomerans, the Arthrobacter isolates performed as well or even better in a standardized laboratory test of phyllosphere fitness. A similar perfor- Funding Information mance was observed with the well-characterized soil isolate Arthrobacter chloro- This work was supported as part of the phenolicus A6. These findings suggest that the frequently reported presence of BACSIN project within
    [Show full text]
  • Variation in Sodic Soil Bacterial Communities Associated with Different Alkali Vegetation Types
    microorganisms Article Variation in Sodic Soil Bacterial Communities Associated with Different Alkali Vegetation Types Andrea K. Borsodi 1,2,*, Márton Mucsi 1,3, Gergely Krett 1, Attila Szabó 2, Tamás Felföldi 1,2 and Tibor Szili-Kovács 3,* 1 Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; [email protected] (M.M.); [email protected] (G.K.); [email protected] (T.F.) 2 Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary; [email protected] 3 Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó út 15, H-1022 Budapest, Hungary * Correspondence: [email protected] (A.K.B.); [email protected] (T.S.-K.); Tel.: +36-13812177 (A.K.B.); +36-309617452 (T.S.-K.) Abstract: In this study, we examined the effect of salinity and alkalinity on the metabolic potential and taxonomic composition of microbiota inhabiting the sodic soils in different plant communities. The soil samples were collected in the Pannonian steppe (Hungary, Central Europe) under extreme dry and wet weather conditions. The metabolic profiles of microorganisms were analyzed using the MicroResp method, the bacterial diversity was assessed by cultivation and next-generation amplicon sequencing based on the 16S rRNA gene. Catabolic profiles of microbial communities varied primarily according to the alkali vegetation types. Most members of the strain collection were identified as plant associated and halophilic/alkaliphilic species of Micrococcus, Nesterenkonia, Citation: Borsodi, A.K.; Mucsi, M.; Nocardiopsis, Streptomyces (Actinobacteria) and Bacillus, Paenibacillus (Firmicutes) genera.
    [Show full text]
  • 2018-02-20-A.Globiforum FSAR-EN
    Final Screening Assessment for Arthrobacter globiformis strain ATCC 8010 Environment and Climate Change Canada Health Canada February 2018 Cat. No.: En14-312/2018E-PDF ISBN 978-0-660-24723-6 Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to: • Exercise due diligence in ensuring the accuracy of the materials reproduced; • Indicate both the complete title of the materials reproduced, as well as the author organization; and • Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with or with the endorsement of the Government of Canada. Commercial reproduction and distribution is prohibited except with written permission from the author. For more information, please contact Environment and Climate Change Canada’s Inquiry Centre at 1-800-668-6767 (in Canada only) or 819-997-2800 or email to [email protected]. © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment and Climate Change, 2016. Aussi disponible en français ii Synopsis Pursuant to paragraph 74(b) of the Canadian Environmental Protection Act, 1999 (CEPA), the Minister of the Environment and the Minister of Health have conducted a screening assessment of Arthrobacter globiformis (A. globiformis) strain ATCC 8010. A. globiformis strain ATCC 8010 is a soil bacterium that has characteristics in common with other strains of the species.
    [Show full text]
  • Download Download
    Iraqi Journal of Agricultural Sciences –2019:50(5):1425-1431 Abdulrazzaq et al. ISOLATION AND MOLECULAR DETECTION OF ARTHROBACTER SPECIES GROWN ON THE SURFACE OF DATE PALM TISSUE CULTURE MEDIA A. Abdulrazzaq H. S.Khierallah S. M. H. Al-Rubaye S.M. Bader Assist.Prof., Assist.Prof., Lecturer C.S. Researchers Dept. Microbiology,Coll. Veterinary Medicine, University of Baghdad Email: [email protected] ABSTRACT This study was aimed to found out the type of bacterial species grown on the surface of date palm tissue culture media. Shoot tips of date palm (Barhi cv.) were cultured on MS media supplemented with various combinations of hormones. During growth an infection was appeared in all cultures with gray colour. Primarily identification, proved a bacterial infection due to its colour and appearance. The genus Arthrobacter was isolated Antibiotic sensitivity test showed that the isolate was sensitive to ciprofloxacin,Trimethoprim, and Amikacin and resistant to Clarithromycin,Ceftriaxone and Gentamycin. Sequence analysis of 16 rRNA indicated a new isolates were closely related to the Glutamicibacter arilaitensis strain ebst40 and Arthrobacter arilaitensis strain L11 with the highest sequence similarity (100%) . Keywords: shoot tips, Glutamicibacter arilaitensis ,polymerase chain reaction, hormons, antibiotic sensitivity. مجلة العلوم الزراعية العراقية -2019 :50(5(:1425-1431 عبد الرزاق وآخرون العزل والنشخيص الجزيئي لبكتريا Arthrobacter النامية على سطح الوسط الزرعي لنسيج نخلة التمر اثير عبد الرزاق حسام سعد الدين خيراهلل سحر مهدي الربيعي صالح محسن بدر استاذ مساعد استاذ مساعد مدرس رئيس باحثين قسم أﻷحياء المجهرية كلية الطب البيطري جامعة بغداد المستخلص زرعت اطراف اﻻفرع لفسائل البرحي في وسط موراشيح وسكوج المجهزبتوليفات مختلفة من الهرمونات .
    [Show full text]
  • “Arthrobacter Saudimassiliensis” Sp. Nov. a New Bacterial Species Isolated from Air Samples in the Urban Environment of Makkah, Saudi Arabia
    Accepted Manuscript “Arthrobacter saudimassiliensis” sp. nov. a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia Anastasia Papadioti, Esam Ibraheem Azhar, Fehmida Bibi, Asif Jiman-Fatani, Sally M. Aboushoushah, Muhammad Yasir, Didier Raoult, Emmanouil Angelakis PII: S2052-2975(16)30156-1 DOI: 10.1016/j.nmni.2016.12.019 Reference: NMNI 286 To appear in: New Microbes and New Infections Received Date: 7 December 2016 Revised Date: 26 December 2016 Accepted Date: 26 December 2016 Please cite this article as: Papadioti A, Azhar EI, Bibi F, Jiman-Fatani A, Aboushoushah SM, Yasir M, Raoult D, Angelakis E, “Arthrobacter saudimassiliensis” sp. nov. a new bacterial species isolated from air samples in the urban environment of Makkah, Saudi Arabia, New Microbes and New Infections (2017), doi: 10.1016/j.nmni.2016.12.019. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 “Arthrobacter saudimassiliensis ” sp. nov. a new bacterial species isolated from air 2 samples in the urban environment of Makkah, Saudi Arabia 3 4 Running head: “Arthrobacter saudimassiliensis ” sp. nov. 5 6 Anastasia Papadioti 1, Esam Ibraheem Azhar 2,3 , Fehmida Bibi 2, Asif Jiman-Fatani 4, Sally 7 M.
    [Show full text]