Direct Modulation of Secretory Chloride Channels by Arachidonic and Other

Total Page:16

File Type:pdf, Size:1020Kb

Direct Modulation of Secretory Chloride Channels by Arachidonic and Other Proc. Natl. Acad. Sci. USA Vol. 87, pp. 5706-5709, August 1990 Physiology/Pharmacology Direct modulation of secretory chloride channels by arachidonic and other cis unsaturated fatty acids (tracheal epithelia/colonic epithelia/cystic fibrosis/T84 cells/asthma) TZYH-CHANG HWANG*, SANDRA E. GUGGINOt, AND WILLIAM B. GUGGINO* Departments of *Physiology and of tMedicine and Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 Communicated by John W. Littlefield, May 7, 1990 ABSTRACT The effect of fatty acids on Cl- channels and bronectin (10 ,ug/ml), collagen (6 mg/ml), and bovine serum transepithelial Cl- secretion is investigated. Patch-clamp ex- albumin (100 ug/ml) and were maintained at 370C in 5% periments show that arachidonic acid blocks Cl- channels in a C02/95% air. T84 cells were grown in a 1:1 solution of dose-dependent manner. Kinetic analysis shows that the mean Dulbecco's modified Eagle's medium and Ham's F-12 me- open time is decreased 10-fold with 25 FM arachidonic acid. dium, supplemented with 10% fetal calfserum and penicillin/ There is a linear relationship between the reciprocal of mean streptomycin (100 units; 100 mg/ml). For transepithelial open time and blocker concentration within the range of 1 to 25 short circuit experiments, the cells were seeded onto collagen IAM. The reciprocal ofmean blocked time does not change with gel supports (0.2 cm2), which were prepared as described arachidonic acid concentration. Other cis unsaturated fatty (17). acids, including oleic, linoleic, and ricinoleic acids, demon- Patch-Clamp Experiments. For patch-clamp experiments, strate similar blocks. Trans unsaturated acids such as elaidic human fetal tracheal epithelial cells were transferred onto acid and saturated fatty acids, including stearic, palmitic, and glass chips coated with collagen/fibronectin/bovine serum myristic acids, do not inhibit the channel at 20 pM. Ricinoleic albumin as described above. In all experiments, single chan- acid decreases short circuit current in T84 cells, a colonic nel currents were recorded from excised apical membrane carcinoma cell line that secretes CL. Our results suggest that patches in an inside-out configuration (18). Data were re- the direct effect of arachidonic and other fatty acids on Cl- corded by an EPC-7 patch-clamp amplifier (List Electronics, secretion is to block Cl- channel current. Darmstadt, F.R.G.), filtered at 1 kHz (Frequency Devices, Haverhill, MA), digitized with a PCM-601 digital audio processor (Sony), and stored on a video cassette recorder Outwardly rectifying, secretory Cl- channels are involved in (JVC). The bath solution contained 150 mM NaCl, 2 mM fluid production in airway and intestinal epithelial cells (1). In MgCl2, 1 mM EGTA, 5 mM Hepes, and 0.5 mM CaCl2 (free epithelial cells from cystic fibrosis patients, secretory Cl- Ca2' was 110 nM measured with Fura-2). The pipette solu- channel activation by cAMP-dependent protein kinase or tion contained 150 mM NaCl, 2 mM CaCl2, and 5 mM Hepes. protein kinase C is defective (2-5). This abnormality is The pH of both solutions was adjusted to 7.3 with Tris base. thought to contribute to the production of thick mucous in Kinetic Analysis. Kinetic analysis was done with P-Clamp cystic fibrosis. Mucous plugging is also a clinical manifesta- software (version 5.05, Axon Instruments, Burlingame, CA). tion in patients with asthma (6), but the underlying mecha- The histograms were constructed by defining one-half of the nism is unknown. Arachidonic acid metabolites are respon- open channel current as the threshold. The first bin was not sible for the bronchospasm in asthma attacks (7-9), and these included in histogram fitting because of the limited band- chemical mediators are produced in many types of airway width. The long, interburst, closed events lasted from several cells (10-12). Likewise, increased arachidonic acid and ei- hundred milliseconds to minutes and varied from patch to cosanoids are a manifestation of inflammatory bowel disease patch (19). Because it was difficult to collect enough long (13-15). Because arachidonic and other fatty acids contribute closed events for kinetic analysis and because the long closed to clinical symptoms of diseases in Cl- transporting epithelia events varied between channels, we chose to analyze only and are known to be involved in signal transduction, we open and closed events within the bursts. The higher filter evaluated the role of these compounds in direct modulation frequency in our experiments (1 kHz instead of 400 Hz) of Cl- channel activity. resulted in shorter mean open and closed times than those reported by others (19). Short Circuit Current Measurement. The short circuit MATERIALS AND METHODS currents were measured on T84 cells with a DVC-1000 volt- Materials. All fatty acids except elaidic acid were pur- age-current clamp (World Precision Instruments, New Ha- chased from Sigma. Elaidic acid was from Alltech Associ- ven, CT) in modified Ussing chambers as described (20). The ates. Arachidonic acid from either Sigma or Alltech had a temperature of the bath was maintained at 37°C by a water similar effect in the present report. Diphenylamine-2-carbox- jacket. Bath solutions contained 140 mM NaCl, 2.3 mM ylate (DPC) was from Fluka. All fatty acids were dissolved in K2HPO4, 0.4 mM KH2PO4, 1.3 mM CaCl2, 1.2 mM dimethyl sulfoxide as stocks and were stored at -20°C before MgCl2-6H2O, 10 mM Hepes, and 5 mM glucose. use. The final concentration ofarachidonic acid was obtained by 1:1000 dilution ofthe stocks to keep the dimethyl sulfoxide at 0.1%. At this concentration, dimethyl sulfoxide alone has RESULTS no effect on the single channel kinetics (16). Effect of Arachidonic Acid on Channel Kinetics. Cl- chan- Cell Culture. Human fetal tracheal cells were grown in nels in excised inside-out apical membrane patches from flasks coated with a mixture containing distilled water, fi- human fetal tracheal cells were activated by depolarizing the membrane potential to values ranging from +50 to +120 mV. The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" Abbreviations: DPC, diphenylamine-2-carboxylate; I&,S short circuit in accordance with 18 U.S.C. §1734 solely to indicate this fact. current. 5706 Downloaded by guest on September 26, 2021 Physiology/Pharmacology: Hwang et al. Proc. Natl. Acad. Sci. USA 87 (1990) 5707 Control, +50 mV In the absence of fatty acid, the channel opens in bursts _Lu L. -... interspersed with long closed periods. The kinetic behavior MI~~~~Wm"' WUNo TIInt - i -- T within the bursts shows little variation from channel to 1 I' r -Trlljl- channel (19). Both open time and closed time histograms of Arachidonic acid 5 jlM events within the bursts can be fitted with one exponential (Fig. 2A). After the addition of arachidonic acid, the mean open time decreases (Fig. 2B) from 144 ± 10 ms (n = 6) in control to 11 ± 1 ms (n = 4) in the presence of 25 tkM fl arachidonic acid. In contrast, arachidonic acid has only a small effect on the mean closed time, suggesting that current interruptions induced by arachidonic acid are similar in 10 AtM duration to the normal closed events. The reciprocal of the mean open time (Fig. 3A) increases linearly over a concen- iUE tration of 1-25 LM, whereas the reciprocal ofthe closed time (Fig. 3B) is independent of the fatty acid concentration. Effect of Other Fatty Acids. Other cis unsaturated fatty 25 jAM acids, like linoleic (18:2, cis-9,12) and oleic (18:1, cis-9) acids, reduce Cl- channel activity with a potency similar to that of arachidonic acid (Fig. 3A). Ricinoleic acid, which contains an additional hydroxyl group compared to oleic acid, has a comparable potency (Fig. 3A). Trans unsaturated and long-chain saturated fatty acids do J 2 pA not affect channel kinetics. The mean open times of these 400 mAec fatty acids at 20 AM are 134 ± 32 ms (n = 3), 104 ± 13 ms (n = 4), 115 ± 10 ms (n = 3), and 140 ± 18 ms (n = 4) for elaidic FIG. 1. Dose-dependent inhibition of airway Cl- channels by (18:1, trans-9), stearic (18:0), palmitic (16:0), and myristic arachidonic acid. Top trace, channel activity in control condition. The channel is predominantly open with occasional brief closings. (14:0) acids, respectively. Because ofthe limited solubility of The other traces are recordings at different concentrations of ara- long-chain saturated fatty acids, the shorter chain, water- chidonic acid as indicated. In the presence of arachidonic acid, the soluble fatty acid butyric acid was tested. Butyrate (50 mM) number of flickery closings increases as the fatty acid concentration (4:0) does not affect channel kinetics or shift the reversal increases. Arrows indicate the closed state. The voltage is the bath potential (data not shown), suggesting that saturated fatty potential in reference to pipette ground. acids at high concentration do not affect channel gating and do not permeate the channel. Arachidonyl alcohol, with the Addition of arachidonic acid (20:4, cis-5,8,11,14) to the carboxyl group replaced by a hydroxyl group, does not block intracellular face ofthe membrane causes rapid interruptions the channel at 20 tLM. These data suggest that the structural in open channel current (Fig. 1). At 25 ,uM, the channel requirements for inhibition are a carboxyl group and a kinked opening probability decreases from 97.8% ± 0.3% (n = 6) to long carbon chain. 76.8% ± 2.2% (n = 4). However, arachidonic acid does not Short Circuit Current Experiments. The influence of fatty change the single channel conductance because current am- acids on transepithelial chloride secretion in T84 cells was plitudes at +50 mV before (2.0 ± 0.1 pA; n = 9) and after (2.1 tested.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,692,728 B2 Weipert Et Al
    USOO6692728B2 (12) United States Patent (10) Patent No.: US 6,692,728 B2 Weipert et al. (45) Date of Patent: Feb. 17, 2004 (54) POLYESTERS BASED ON HYDROXY FATTY (52) U.S. Cl. ......................... 424/59; 424/497; 424/489; ACDS AND LOWER HYDROXY ALKYL 424/70.11; 424/78.37; 424/78.08; 514/785; ACDS AND USES THEREOF 560/171; 560/172; 560/176; 560/183; 525/400 (58) Field of Search .......................... 424/59, 497, 489, (75) Inventors: Paul David Weipert, High Point, NC 424/70.11, 78.37; 514/785; 560/172,176, (US); Bharat B. Desai, Spartanburg, 183; 525/400 SC (US) (73) Assignee: Ethox Chemicals LLC, Greenville, SC ") References Cited (US) U.S. PATENT DOCUMENTS ( c: ) Notice: Subject to any disclaimer, the term of this 5,502,116 A 3/1996 Noda ......................... 525/415 patent is extended or adjusted under 35 5,614,576 A * 3/1997 Rutherford et al. ......... 524/270 U.S.C. 154(b) by 0 days. 5,851,937 A * 12/1998 Wu et al. ................... 442/394 * cited by examiner (21) Appl. No.: 10/388,426 (22) Filed: Mar 17, 2003 Primary Examiner Sabiha Qazi 9 (74) Attorney, Agent, or Firm-Isaac A. Angres (65) Prior Publication Data (57) ABSTRACT US 2003/0175222 A1 Sep. 18, 2003 The present invention provides biodegradable polyesters Related U.S. Application Data based on lower hydroxy acids and hydroxy fatty acids. The resulting polyesters are useful as cosmetic vehicles for (62) Division of application No. 09/805,894, filed on Mar. 15, Sunscreens, skin lotions and by themselves are also useful as 2001, now Pat.
    [Show full text]
  • Assessment Report on Ricinus Communis L., Oleum Final
    2 February 2016 EMA/HMPC/572973/2014 Committee on Herbal Medicinal Products (HMPC) Assessment report on Ricinus communis L., oleum Final Based on Article 10a of Directive 2001/83/EC as amended (well-established use) Herbal substance(s) (binomial scientific name Ricinus communis L., oleum (castor oil) of the plant, including plant part) Herbal preparation Fatty oil obtained from seeds of Ricinus communis L. by cold expression Pharmaceutical forms Herbal preparation in liquid or solid dosage forms for oral use Rapporteur C. Purdel Peer-reviewer B. Kroes 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2016. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ................................................................................................................... 2 1. Introduction ....................................................................................................................... 4 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof .. 4 1.2. Search and assessment methodology ..................................................................... 6 2. Data on medicinal use ........................................................................................................ 6 2.1. Information about products on the market .............................................................
    [Show full text]
  • Castor Oil Induces Laxation and Uterus Contraction Via Ricinoleic Acid Activating Prostaglandin EP3 Receptors Sorin Tunarua, Till F
    Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors Sorin Tunarua, Till F. Althoffa, Rolf M. Nüsingb, Martin Dienerc, and Stefan Offermannsa,d,1 aDepartment of Pharmacology, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; dMedical Faculty, bInstitute for Clinical Pharmacology, J. W. Goethe University Frankfurt, 60590 Frankfurt, Germany; and cInstitute for Veterinary Physiology, Justus Liebig University, 35392 Giessen, Germany Edited by John H. Exton, Vanderbilt University School of Medicine, Nashville, TN, and approved April 25, 2012 (received for review January 30, 2012) Castor oil is one of the oldest drugs. When given orally, it has by the enteric nervous system or are direct effects on intestinal a laxative effect and induces labor in pregnant females. The smooth muscle remained unclear. effects of castor oil are mediated by ricinoleic acid, a hydroxylated The present study was undertaken to elucidate the molecular fatty acid released from castor oil by intestinal lipases. Despite the mechanism underlying the biological effect of castor oil-derived wide-spread use of castor oil in conventional and folk medicine, ricinoleic acid. Based on cellular signaling studies and an siRNA the molecular mechanism by which ricinoleic acid acts remains screening approach, we identified prostaglandin E2 receptors as unknown. Here we show that the EP3 prostanoid receptor is spe- targets of ricinoleic acid and show that the EP3 receptor medi- cifically activated by ricinoleic acid and that it mediates the phar- ates the effects of castor oil on the motility of the uterus and macological effects of castor oil. In mice lacking EP3 receptors, the the intestine.
    [Show full text]
  • Poster Presenter Groups
    Metabolic Engineering X- Poster Presentation Schedule Poster Group 1 (Sunday, June 15 and Monday, June 16) Poster Abstract Title Last Name First Name Number The Genetic and Metabolic Regulation of Rhamnolipids Biosynthesis in Pseudomonas Aeruginosa Reveals New Abdel- 1 Engineering Strategies for Heterologous Expression Mawgoud Ahmad M. Isotopically Nonstationary 13C Flux Analysis of 2 Isobutyraldehyde Production in Synechococcus Elongatus Adebiyi Adeola Characterization of LDH Genes for L-Lactic Acid Production in 3 Pichia Pastoris Almeida Pollyne B. A. Identification of Key Metabolite Concentrations and Enzyme Saturations Determining the Physiological States of Glucose-Fed 4 E. coli for the Production of 1,4-Butanediol Andreozzi Stefano New Advances in 13C Metabolic Flux Analysis: Complete-MFA, 5 Co-Culture MFA and Dynamic MFA Antoniewicz Maciek R. Parallel Labeling Experiments: A Novel Approach for Validating 6 Metabolic Network Models Au Jennifer Synthetic Microbial Metabolism Refactoring for the Production 7 of a Chemical Synthon, 2,4-Dihydroxybutyric Acid Auriol Clément Implementation of a Disassociated Fatty Acid Synthase System (FAS type II) in Saccharomyces Cerevisiae for Fatty Acid and 8 Wax Ester Production Azevedo Flávio Production of 4-Hydroxybutyric Acid By Metabolically Engineered Mannheimia Succiniciproducens and Its Conversion 9 to Gamma-Butyrolactone By Acid Treatment Bang Junho Challenges in Reverse Engineering of Industrial Fermentation 10 Strains Benjamin Kirsten R. Metabolic Engineering for Ricinoleic Acid Production in Y. 11 Lipolytica Beopoulos Athanasios Fatty Acid Overproduction in a Genetically Engineered Puryvate 12 Decarboxylase-Negative Strain of Saccharomyces Cerevisiae Bergman Alexandra Isolation, Characterization and Metabolic Engineering of a 13 Thermophilic Bacillus for Green Chemical Production Bosma Elleke F.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Dysmenorrhea
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Dysmenorrhea Chemical Activity Count (+)-ADLUMINE 1 (+)-ALLOMATRINE 1 (+)-ALPHA-VINIFERIN 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 4 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-GALLOCATECHIN 1 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 2 (+)-PSEUDOEPHEDRINE 1 (+)-T-CADINOL 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 3 (-)-ANABASINE 1 (-)-ARGEMONINE 1 (-)-BETONICINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-DICENTRINE 2 (-)-EPIAFZELECHIN 1 (-)-EPICATECHIN 1 (-)-EPIGALLOCATECHIN-GALLATE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (15:1)-CARDANOL 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 Chemical Activity Count 1,8-CINEOLE 6 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 11-HYDROXY-DELTA-8-THC 1 11-HYDROXY-DELTA-9-THC 1 12,118-BINARINGIN 1 12-ACETYLDEHYDROLUCICULINE 1 13',II8-BIAPIGENIN 1 13-OXYINGENOL-ESTER 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-EPIMETHUENINE 1 16-HYDROXYINGENOL-ESTER 1 2'-HYDROXY-FLAVONE 1 2'-O-GLYCOSYLVITEXIN 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-METHYLBUT-3-ENE-2-OL 1 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 2 3,4-DIMETHOXYTOLUENE 1 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 2 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 1 3-ACETYLACONITINE 3 3-ACETYLNERBOWDINE 1 3-BETA-ACETOXY-20,25-EPOXYDAMMARANE-24-OL 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Epilepsy
    Dr. Duke's Phytochemical and Ethnobotanical Databases List of Chemicals for Epilepsy Chemical Activity Count (+)-ALPHA-VINIFERIN 1 (+)-BORNYL-ISOVALERATE 1 (+)-CATECHIN 3 (+)-EUDESMA-4(14),7(11)-DIENE-3-ONE 1 (+)-HERNANDEZINE 1 (+)-ISOCORYDINE 1 (+)-PSEUDOEPHEDRINE 1 (+)-SYRINGARESINOL-DI-O-BETA-D-GLUCOSIDE 1 (+)-T-CADINOL 1 (-)-16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 (-)-ALPHA-BISABOLOL 2 (-)-ANABASINE 1 (-)-APOGLAZIOVINE 1 (-)-BETONICINE 1 (-)-BORNYL-CAFFEATE 1 (-)-BORNYL-FERULATE 1 (-)-BORNYL-P-COUMARATE 1 (-)-DICENTRINE 2 (-)-EPIAFZELECHIN 1 (-)-EPICATECHIN 1 (-)-EPIGALLOCATECHIN-GALLATE 1 (1'S)-1'-ACETOXYCHAVICOL-ACETATE 1 (15:1)-CARDANOL 1 (E)-4-(3',4'-DIMETHOXYPHENYL)-BUT-3-EN-OL 1 1,7-BIS-(4-HYDROXYPHENYL)-1,4,6-HEPTATRIEN-3-ONE 1 1,8-CINEOLE 4 10-ACETOXY-8-HYDROXY-9-ISOBUTYLOXY-6-METHOXYTHYMOL 1 Chemical Activity Count 10-DEHYDROGINGERDIONE 1 10-GINGERDIONE 1 11-HYDROXY-DELTA-8-THC 1 11-HYDROXY-DELTA-9-THC 1 13',II8-BIAPIGENIN 1 13-OXYINGENOL-ESTER 1 16,17-DIHYDROXY-16BETA-KAURAN-19-OIC 1 16-EPIMETHUENINE 1 16-HYDROXYINGENOL-ESTER 1 2'-O-GLYCOSYLVITEXIN 1 2-BETA,3BETA-27-TRIHYDROXYOLEAN-12-ENE-23,28-DICARBOXYLIC-ACID 1 2-METHYLBUT-3-ENE-2-OL 2 20-DEOXYINGENOL-ESTER 1 22BETA-ESCIN 1 24-METHYLENE-CYCLOARTANOL 1 3,3'-DIMETHYLELLAGIC-ACID 1 3,4-DIMETHOXYTOLUENE 1 3,4-METHYLENE-DIOXYCINNAMIC-ACID-BORNYL-ESTER 2 3,4-SECOTRITERPENE-ACID-20-EPI-KOETJAPIC-ACID 1 3-ACETYLACONITINE 1 3-ACETYLNERBOWDINE 1 3-BETA-HYDROXY-2,3-DIHYDROWITHANOLIDE-F 1 3-HYDROXY-FLAVONE 1 3-N-BUTYL-PHTHALIDE 3 3-O-ACETYLOLEANOLIC-ACID 1 3-OXO-11-ALPHA-HYDROXYOLEAN-12-ENE-30-OIC-ACID
    [Show full text]
  • Effects of Oleic and Ricinoleic Acids on Net Jejunal Water and Electrolyte Movement
    Effects of Oleic and Ricinoleic Acids on Net Jejunal Water and Electrolyte Movement PERFUSION STUDIES IN MAN HELMUT V. AMMON, PAUL J. THOMAS, and SIDNEY F. PHILLIPS From the Gastroenterology Unit, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901 ABSTRA CT To examine the effects of oleic acid by bacterial hydration of unsaturated dietary fatty acids and ricinoleic acid on jejunal absorption, steady-state (2), are chemically similar to a known cathartic, ricino- jejunal perfusions were performed in healthy volunteers. leic acid. This hypothesis of the action of hydroxy fatty Taurocholate, used to solubilize the fatty acids, did not acids is supported by the results of other investigations: influence absorption. Both fatty acids (concentration, the study of animals with an experimental "blind loop 10 mM) reversed electrolyte and water net movement; syndrome" (3), perfusion of the intestine with fatty that is, they induced fluid secretion; this effect was acid solutions (4), and analysis of steatorrheal stools rapidly reversible. Ricinoleic acid (the active principle in man (5). Specifically, hydroxy fatty acids provoke of castor oil) was the more potent, producing fluid se- water secretion in the rat colon (4) and impair net cretion when perfused at concentrations at which oleic fluid movement in the human colon (6). In the canine acid was without effect. However, ricinoleic acid was ileum, however, water absorption has been blocked not absorbed more slowly than was oleic acid, and hence only by 10-hydroxystearic acid and ricinoleic acid (the was associated with higher intraluminal concentrations. active principle of castor oil) but also by oleic acid (7).
    [Show full text]
  • Tepzz Z89z ¥B T
    (19) TZZ ZZ_¥_T (11) EP 2 089 013 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 31/167 (2006.01) A61K 31/192 (2006.01) 27.09.2017 Bulletin 2017/39 A61K 45/06 (2006.01) A61P 29/00 (2006.01) (21) Application number: 07854106.7 (86) International application number: PCT/US2007/081589 (22) Date of filing: 17.10.2007 (87) International publication number: WO 2008/051759 (02.05.2008 Gazette 2008/18) (54) COMBINATION OF ACETAMINOPHEN WITH IBUPROFEN FOR THE TREAMENT OF PAIN KOMBINATION VON ACETAMINOPHEN MIT IBUPROFEN ZUR BEHANDLUNG VON SCHMERZEN. COMBINAISON DE ACÉTAMINOPHÈNE ET IBUPROFÈNE POUR LE TRAITEMENT DE DOULEUR (84) Designated Contracting States: (74) Representative: Kirsch, Susan Edith et al AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Carpmaels & Ransford LLP HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE One Southampton Row SI SK TR London WC1B 5HA (GB) (30) Priority: 20.10.2006 US 853509 P (56) References cited: EP-A- 0 012 621 EP-A- 0 109 281 (43) Date of publication of application: WO-A-2006/004449 US-A- 5 409 709 19.08.2009 Bulletin 2009/34 • MIRANDA ET AL: "Synergism between (73) Proprietor: Johnson & Johnson Consumer Inc. paracetamol and nonsteroidal anti-inflammatory Skillman, NJ 08558 (US) drugs in experimental acute pain" PAIN, ELSEVIER SCIENCE PUBLISHERS, (72) Inventors: AMSTERDAM, NL, vol. 121, no. 1-2, March 2006 • SWANN, Jim (2006-03), pages 22-28, XP005330893 ISSN: Waterloo, ON N2L 5Y8 (CA) 0304-3959 • CUMMINS, Peter Guelph, ON N1L 1B4 (CA) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Assessment Report on Ricinus Communis L., Oleum Draft
    7 July 2015 EMA/HMPC/572973/2014 Committee on Herbal Medicinal Products (HMPC) Assessment report on Ricinus communis L., oleum Draft Based on Article 10a of Directive 2001/83/EC as amended (well-established use) Herbal substance(s) (binomial scientific name of the plant, including plant part) Ricinus communis L., oleum (castor oil) Herbal preparation Fatty oil obtained from seeds of Ricinus communis L. by cold expression Pharmaceutical forms Herbal preparation in liquid or solid dosage forms for oral use Rapporteur C. Purdel Peer-reviewer B. Kroes Note: This draft assessment report is published to support the public consultation of the draft European Union herbal monograph on Ricinus communis L., oleum. It is a working document, not yet edited, and shall be further developed after the release for consultation of the monograph. Interested parties are welcome to submit comments to the HMPC secretariat, which will be taken into consideration but no ‘overview of comments received during the public consultation’ will be prepared on comments that will be received on this assessment report. The publication of this draft assessment report has been agreed to facilitate the understanding by Interested Parties of the assessment that has been carried out so far and led to the preparation of the draft monograph. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/ contact An agency of the European Union © European Medicines Agency, 2015. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ..................................................................................................................
    [Show full text]
  • Evaluation of the Anti-Diarrheal Activity of the Leaf Extract of Croton Macrostachyus Hocsht. Ex Del.(Euphorbiaceae) in Mice Model
    Degu et al. BMC Complementary and Alternative Medicine (2016) 16:379 DOI 10.1186/s12906-016-1357-9 RESEARCH ARTICLE Open Access Evaluation of the anti-diarrheal activity of the leaf extract of Croton macrostachyus Hocsht. ex Del. (Euphorbiaceae) in mice model Amsalu Degu1* , Ephrem Engidawork2 and Workineh Shibeshi2 Abstract Background: Traditional healers in Ethiopia use a wide range of medicinal plants with antidiarrheal properties. Among these, Croton macrostachyus is one such plant claimed to have an antidiarrheal activity in Ethiopian folklore medicine. Previous studies showed that the crude extract is endowed with the claimed property. The present study was undertaken to further the claim by screening different fractions for the said activity so that it could serve as a basis for subsequent studies. Methods: The fractions were obtained by successive extraction in soxhlet apparatus with solvents of different polarity (chloroform & methanol) followed by cold maceration of the deposit of the methanol fraction with distilled water. The antidiarrheal activity was evaluated using castor oil induced diarrheal model, charcoal meal test and anti-enteropooling test in mice. The test groups received various doses (300, 400, 500 mg/kg and an additional dose of 1000 mg/kg for the aqueous fraction) of the fractions, whereas positive controls received either Loperamide (3 mg/kg) or Atropine (5 mg/kg) and negative controls received vehicle (10 ml/kg). Results: In the castor oil induced model, the chloroform (at all test doses) and methanol (at 400 & 500 mg/kg) fractions significantly delayed diarrheal onset, decreased stool frequency and weight of feces. The aqueous fraction was however devoid of significant effect at all the tested doses.
    [Show full text]
  • Faecal Free Fatty Acids in Tropical Sprue and Their Inhibition of Atpases
    Gut: first published as 10.1136/gut.24.4.300 on 1 April 1983. Downloaded from Gut, 1983. 24, 30W-305 Faecal free fatty acids in tropical sprue and their possible role in the production of diarrhoea by inhibition of ATPases C TIRUPPATHI, K A BALASUBRAMANIAN, P G HILL, AND V I MATHAN From the Wellcome Research Unit, Christian Medical College Hospital, Vellore, India SUMMARY Faecal excretion of fatty acids is increased in patients with tropical sprue because of unabsorbed dietary fatty acids. The excretion of fatty acids correlates well with faecal wet weight. In vitro unsaturated fatty acids inhibited Na K-ATPase and Mg-ATPase isolated from basolateral membranes of enterocytes and colonocytes. These findings are a possible explanation for the observed abnormalities in water and electrolyte absorption by the colon in patients with tropical sprue and steatorrhoea. Colonic water and electrolyte absorption is defective ward diet containing 50 g fat per day and the analysis in patients with tropical sprue.' Faecal free fatty was done after at least one week on this diet. The acids could play a role in the pathogenesis of this dietary fat was mnainly groundnut oil and analysis of functional defect of the colon in patients with a typical 24 hour diet showed that palmitic (16:0), tropical sprue and steatorrhoea. The precise role of oleic (18: 1). and linoleic (18:2) acids were the major http://gut.bmj.com/ fatty acids in the genesis of diarrhoea associated fatty acids (Fig. 1). with steatorrhoea is not clear' but it has been Faeces were passed into polyethylene containers suggested that hydroxv fatty acids could produce a and kept immediately by the patients in a freezer secretory diarrhoea.3 This paper reports the (-200C).
    [Show full text]
  • Diacylglycerol Acyltransferase Activity and Triacylglycerol Synthesis in Germinating Castor Seed Cotyledons Xiaohua He, Grace Q
    Diacylglycerol Acyltransferase Activity and Triacylglycerol Synthesis in Germinating Castor Seed Cotyledons Xiaohua He, Grace Q. Chen, Jiann-Tsyh Lin, and Thomas A. McKeon* Western Regional Research Center, USDA, Albany, California 94710 ABSTRACT: The central importance of storage lipid break- erolipid synthesis were present and active in soybean cotyle- down in providing carbon and energy during seed germination dons during seed germination (4). The synthesis of TAG has has been demonstrated by isolating the genes encoding the en- also been shown to occur during seed germination of some zymes involved in FA β-oxidation. In contrast, little is known plants, such as the pea (5), cucumber (6), and soybean (7). about the ability of germinating seeds to synthesize TAG. We These observations suggest the presence of DAG acyltrans- report that castor cotyledons are capable of TAG synthesis. The ferase (DGAT) in germinating seeds. Recently, we identified a rate of incorporation of ricinoleic acid into TAG reached a peak cDNA encoding DGAT from castor seed (RcDGAT) based on at 7 d after imbibition (DAI) (1.14 nmol/h/mg) and decreased rapidly thereafter, but was sustained at 20 DAI in cotyledons its homology to other plant-type DGAT1 cDNA (8) and inves- and true leaves. The castor DAG acyltransferase (RcDGAT) tigated the expression of the RcDGAT gene and DGAT activ- mRNA and protein were expressed throughout seed germina- ity in developing seeds (9). In this study we extend our exami- tion at levels considerably enhanced from that in the dormant nation of the RcDGAT gene and protein to cotyledons of ger- seed, thus indicating new expression.
    [Show full text]