SPRINT TRAINING Coach Steve S. Silvey Assistant Track & Field Coach the University of Oregon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Energy and Training Module ITU Competitive Coach
37 energy and training module ITU Competitive Coach Produced by the International Triathlon Union, 2007 38 39 energy & training Have you ever wondered why some athletes shoot off the start line while others take a moment to react? Have you every experienced a “burning” sensation in your muscles on the bike? Have athletes ever claimed they could ‘keep going forever!’? All of these situations involve the use of energy in the body. Any activity the body performs requires work and work requires energy. A molecule called ATP (adenosine triphosphate) is the “energy currency” of the body. ATP powers most cellular processes that require energy including muscle contraction required for sport performance. Where does ATP come from and how is it used? ATP is produced by the breakdown of fuel molecules—carbohydrates, fats, and proteins. During physical activity, three different processes work to split ATP molecules, which release energy for muscles to use in contraction, force production, and ultimately sport performance. These processes, or “energy systems”, act as pathways for the production of energy in sport. The intensity and duration of physical activity determines which pathway acts as the dominant fuel source. Immediate energy system Fuel sources ATP Sport E.g. carbohydrates, energy performance proteins, fats “currency” Short term energy system E.g. swimming, cycling, running, transitions Long term energy system During what parts of a triathlon might athletes use powerful, short, bursts of speed? 1 2 What duration, intensity, and type of activities in a triathlon cause muscles to “burn”? When in a triathlon do athletes have to perform an action repeatedly for longer than 10 or 15 3 minutes at a moderate pace? 40 energy systems Long Term (Aerobic) System The long term system produces energy through aerobic (with oxygen) pathways. -
Shoes Approved by World Athletics - As at 01 October 2021
Shoes Approved by World Athletics - as at 01 October 2021 1. This list is primarily a list concerns shoes that which have been assessed by World Athletics to date. 2. The assessment and whether a shoe is approved or not is determined by several different factors as set out in Technical Rule 5. 3. The list is not a complete list of every shoe that has ever been worn by an athlete. If a shoe is not on the list, it can be because a manufacturer has failed to submit the shoe, it has not been approved or is an old model / shoe. Any shoe from before 1 January 2016 is deemed to meet the technical requirements of Technical Rule 5 and does not need to be approved unless requested This deemed approval does not prejudice the rights of World Athletics or Referees set out in the Rules and Regulations. 4. Any shoe in the list highlighted in blue is a development shoe to be worn only by specific athletes at specific competitions within the period stated. NON-SPIKE SHOES Shoe Company Model Track up to 800m* Track from 800m HJ, PV, LJ, SP, DT, HT, JT TJ Road* Cross-C Development Shoe *not including 800m *incl. track RW start date end date ≤ 20mm ≤ 25mm ≤ 20mm ≤ 25mm ≤ 40mm ≤ 25mm 361 Degrees Flame NO NO NO NOYES NO Adidas Adizero Adios 3 NO YES NO YES YES YES Adidas Adizero Adios 4 NO YES NO YES YES YES Adidas Adizero Adios 5 NO YES NO YES YES YES Adidas Adizero Adios 6 NO YES NO YES YES YES Adidas Adizero Adios Pro NO NO NO NOYES NO Adidas Adizero Adios Pro 2 NO NO NO NOYES NO Adidas Adizero Boston 8 NO NO NO NOYES NO Adidas Adizero Boston 9 NO NO NO -
Indoor Track and Field DIVISION I MEN’S
Indoor Track and Field DIVISION I MEN’S Highlights Florida claims top spot in men’s indoor track: At the end of the two-day gamut of ups and downs that is the Division I NCAA Indoor Track and Field National Champion- ships, Florida coach Mike Holloway had a hard time thinking of anything that went wrong for the Gators. “I don’t know,” Holloway said. “The worst thing that happened to me was that I had a stomachache for a couple of days.” There’s no doubt Holloway left the Randal Tyson Track Center feeling better on Saturday night. That’s because a near-fl awless performance by the top-ranked Gators re- sulted in the school’s fi rst indoor national championship. Florida had come close before, fi nishing second three times in Holloway’s seven previous years as head coach. “It’s been a long journey and I’m just so proud of my staff . I’m so proud of my athletes and everybody associated with the program,” Holloway said. “I’m almost at a loss for words; that’s how happy I am. “It’s just an amazing feeling, an absolutely amazing feeling.” Florida began the day with 20 points, four behind host Arkansas, but had loads of chances to score and didn’t waste time getting started. After No. 2 Oregon took the lead with 33 points behind a world-record performance in the heptathlon from Ashton Eaton and a solid showing in the mile, Florida picked up seven points in the 400-meter dash. -
The International Ski Competition Rules (Icr)
THE INTERNATIONAL SKI COMPETITION RULES (ICR) BOOK II CROSS-COUNTRY APPROVED BY THE 51ST INTERNATIONAL SKI CONGRESS, COSTA NAVARINO (GRE) EDITION MAY 2018 INTERNATIONAL SKI FEDERATION FEDERATION INTERNATIONALE DE SKI INTERNATIONALER SKI VERBAND Blochstrasse 2; CH- 3653 Oberhofen / Thunersee; Switzerland Telephone: +41 (33) 244 61 61 Fax: +41 (33) 244 61 71 Website: www.fis-ski.com ________________________________________________________________________ All rights reserved. Copyright: International Ski Federation FIS, Oberhofen, Switzerland, 2018. Oberhofen, May 2018 Table of Contents 1st Section 200 Joint Regulations for all Competitions ................................................... 3 201 Classification and Types of Competitions ................................................... 3 202 FIS Calendar .............................................................................................. 5 203 Licence to participate in FIS Races (FIS Licence) ...................................... 7 204 Qualification of Competitors ....................................................................... 8 205 Competitors Obligations and Rights ........................................................... 9 206 Advertising and Sponsorship .................................................................... 10 207 Competition Equipment and Commercial Markings .................................. 12 208 Exploitation of Electronic Media Rights .................................................... 13 209 Film Rights .............................................................................................. -
A Parent's Guide to Cross-Country
A Parent's Guide to Cross-Country What is cross-country? Cross-country is a team running sport that takes place in the fall on a measured 5000 meter (3.1 miles) High School course or 2 mile course for the Jr. High over varied surfaces and terrain. Our home course is located in City Park on the levee near Troy Memorial Stadium and Hobart Arena. How is cross-country scored? A cross-country meet is scored by adding up the places of the top 5 finishers for each team. As in golf, the low score wins. For example, a team that scores 26 points places ahead of a team that scores 29 points, as follows: Troy Piqua 1 2 4 3 5 7 6 8 10 9 Totals: 26 pts 29pts Troy Wins A team's 6th and 7th finishers can also figure in the scoring if they place ahead of other teams' top 5 finishers. When that is the case, they become "pushers" by pushing up their opponents' scores, as follows: Troy Piqua 2 1 3 4 6 5 8 7 9 (10)(11) 12 Totals: 28 pts 29 pts Troy Wins Only a team's 6th and 7th finishers can be pushers, regardless of how many of its runners may finish ahead of an opposing team's top 5 finishers. This is also known as displacing another team's scoring runner(s). This is why the 6th and 7th runners are just as important as the top 5. What happens in case of a scoring tie? If a tie in scoring occurs, then the team who has their 6th runner in first wins. -
Maximal Time Spent at Vo2max from Sprint to the Marathon
International Journal of Environmental Research and Public Health Article Maximal Time Spent at VO2max from Sprint to the Marathon Claire A. Molinari 1,2, Johnathan Edwards 3 and Véronique Billat 1,* 1 Unité de Biologie Intégrative des Adaptations à l’Exercice, Université Paris-Saclay, Univ Evry, 91000 Evry-Courcouronnes, France; [email protected] 2 BillaTraining SAS, 32 rue Paul Vaillant-Couturier, 94140 Alforville, France 3 Faculté des Sciences de la Motricité, Unité d’enseignement en Physiologie et Biomécanique du Mouvement, 1070 Bruxelles, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)-786117308 Received: 6 November 2020; Accepted: 8 December 2020; Published: 10 December 2020 Abstract: Until recently, it was thought that maximal oxygen uptake (VO2max) was elicited only in middle-distance events and not the sprint or marathon distances. We tested the hypothesis that VO2max can be elicited in both the sprint and marathon distances and that the fraction of time spent at VO2max is not significantly different between distances. Methods: Seventy-eight well-trained males (mean [SD] age: 32 [13]; weight: 73 [9] kg; height: 1.80 [0.8] m) performed the University of Montreal Track Test using a portable respiratory gas sampling system to measure a baseline VO2max. Each participant ran one or two different distances (100 m, 200 m, 800 m, 1500 m, 3000 m, 10 km or marathon) in which they are specialists. Results: VO2max was elicited and sustained in all distances tested. The time limit (Tlim) at VO2max on a relative scale of the total time (Tlim at VO2max%Ttot) during the sprint, middle-distance, and 1500 m was not significantly different (p > 0.05). -
The Relationship Between Strength, Power, and Sprint Acceleration in Division I Men’S Soccer Players Christopher Bellon East Tennessee State University
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2016 The Relationship Between Strength, Power, and Sprint Acceleration in Division I Men’s Soccer Players Christopher Bellon East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Exercise Physiology Commons, and the Kinesiology Commons Recommended Citation Bellon, Christopher, "The Relationship Between Strength, Power, and Sprint Acceleration in Division I Men’s Soccer Players" (2016). Electronic Theses and Dissertations. Paper 3087. https://dc.etsu.edu/etd/3087 This Dissertation - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. The Relationship Between Strength, Power, and Sprint Acceleration in Division I Men’s Soccer Players _____________________ A dissertation presented to the faculty of the Department of Exercise and Sport Science East Tennessee State University In partial fulfillment of the requirements for the degree Doctor of Philosophy in Sport Physiology and Performance _____________________ by Christopher R. Bellon August 2016 _____________________ Brad H. DeWeese, EdD, Chair Kimitake Sato, PhD Kenneth P. Clark, PhD Michael H. Stone, PhD Keywords: Short-to-Long Approach, Speed, Rate of Force Development ABSTRACT The Relationship Between Strength, Power, and Sprint Acceleration in Division I Men’s Soccer Players by Christopher R. Bellon The purposes of this dissertation were three-fold. The first was to identify the approximate distances characterizing early-, mid-, and late-acceleration in a population of Division I men’s collegiate soccer players. -
Race Walking Officiating Handbook
Race Walking Officiating Handbook Revised October 2016 1 INDEX Introduction …………………………………………………….. 3 The Rules of Race Walking, Sources and Publication ………….. 4 USATF Rules of Competition – Race Walking ………………… 4, 5, 6 Race Walk Officials ……………………………………....…….. 6 General Rules ………………………………………...….……… 6, 7 Records …………………………………………...….………….. 7 Judging Race Walk Events …………………………...….……… 8, 9, 10. 11 How to Make Race Walking Judging Decisions ……………….. 11, 12, 13,14, 15 Recommended Judging Positions ………………………………. 16, 17, 18 Duties of the Chief Judge ………………………………………. 18, 19 Procedures for Making Race Walking Calls ……………………. 20 Red Card Collectors …………………………………………….. 20 Duties of the Recorder ………………………………………….. 21 Operating the Red Card Posting Board ………………………… 21, 22 Umpire Calls …………………………………………………… 22 Uniform …………………………………………………………. 22 Judging Philosophy & Practices ………………………………… 22, 23, 24 Appendix 1: Race Walk Judging Paddles ……………………….. 25 Appendix 2: Sample Red Card Posting Board ………………….. 26 Appendix 3: Race Walking Judge Certification Process ……….. 27 Appendix 4: Race Walking Judges Resources ………………….. 27 USATF Track & Field Race Walking Elected Committee………. 28 Other Race Walking Judging Persons …………………………… 28 IAAF Pit Lane Rule ……………………………………………… 29 2 ------INTRODUCTION----- Race walking is growing in popularity across the United States and throughout the world. Competent Race Walking Judges are necessary at all levels of competition. Race walking is a discipline included within the sport of Athletics, which includes track and field, race walking and long distance running. USA Track & Field (USATF) is the national governing body of the sport of Athletics in the United States. The USATF National Race Walking Committee is responsible for the development of this handbook. Specialized officials, called Race Walking Judges and Race Walking Officials, in addition to the other required competition officials work together to conduct events in the discipline. -
2019 Men's USMS Long Distance All Americans
2019 Men's USMS Long Distance All Americans Age Time or Group Gender Event First Name Last Name Age Club Abbr. USMS # Distance Records 35-39 M Sprint Distance OW Stephen Rouch 39 INDY 169M-ROUCH 0:21:28.00 40-44 M Sprint Distance OW Todd Lantry 44 OREG 379D-02619 0:26:02.00 45-49 M Sprint Distance OW Chad Hagedorn 47 PSM 369S-08195 0:23:03.00 50-54 M Sprint Distance OW Rob Allen 54 NEM 029W-01W95 0:21:24.00 55-59 M Sprint Distance OW Stuart Cromarty 55 NEM 0298-03437 0:21:08.00 60-64 M Sprint Distance OW Guy Davis 60 GBM 029-034PR 0:22:01.00 65-69 M Sprint Distance OW Scott Lautman 67 BWAQ 369B-02M55 0:26:49.00 70-74 M Sprint Distance OW Frank McElroy 71 GSM 079W-01YE4 0:26:50.00 75-79 M Sprint Distance OW Thomas Spence 75 O*H* 1897-01PFX 0:34:35.00 18-24 M Middle Distance OW Joby Bernstein 24 TOC 389A-09DD7 0:41:49.10 25-29 M Middle Distance OW Andrew Cosgarea 27 TOC 389J-0AYE4 0:40:08.90 30-34 M Middle Distance OW Chad La Tourette 31 TOC 389S-09H5H 0:40:11.05 35-39 M Middle Distance OW Quinn Fitzgerald 36 TOC 384W-03ZEB 0:43:39.95 40-44 M Middle Distance OW Trevor Gillis 44 LAMV 389B-03J54 0:40:36.00 45-49 M Middle Distance OW Nico Ghilardi 49 SMM 389Z-03F54 0:44:00.00 50-54 M Middle Distance OW Jorge Angel 52 TVM 3893-06M7G 0:44:41.65 55-59 M Middle Distance OW Jeff Erwin 55 SAWS 5997-01J0A 0:41:13.10 60-64 M Middle Distance OW Peter Guadagni 64 WCM 3898-03GFZ 0:48:02.20 65-69 M Middle Distance OW Doug Brockbank 66 OREG 379F-0269M 0:53:33.20 70-74 M Middle Distance OW Joel Wilson 71 CRUZ 389P-03EYR 0:48:13.95 75-79 M Middle Distance -
Sprinters Falsify the Deliberate Practice Model of Expertise
You can’t teach speed: sprinters falsify the deliberate practice model of expertise Michael P. Lombardo1 and Robert O. Deaner2 1 Department of Biology, Grand Valley State University, Allendale, MI, USA 2 Department of Psychology, Grand Valley State University, Allendale, MI, USA ABSTRACT Many scientists agree that expertise requires both innate talent and proper training. Nevertheless, the highly influential deliberate practice model (DPM) of expertise holds that talent does not exist or makes a negligible contribution to performance. It predicts that initial performance will be unrelated to achieving expertise and that 10 years of deliberate practice is necessary. We tested these predictions in the domain of sprinting. In Studies 1 and 2 we reviewed biographies of 15 Olympic champions and the 20 fastest American men in U.S. history. In all documented cases, sprinters were exceptional prior to initiating training, and most reached world class status rapidly (Study 1 median D 3 years; Study 2 D 7.5). In Study 3 we surveyed U.S. national collegiate championships qualifiers in sprintersn ( D 20) and throwers (n D 44). Sprinters recalled being faster as youths than did throwers, whereas throwers recalled greater strength and throwing ability. Sprinters’ best performances in their first season of high school, generally the onset of formal training, were consistently faster than 95–99% of their peers. Collectively, these results falsify the DPM for sprinting. Because speed is foundational for many sports, they challenge the DPM generally. Subjects Evolutionary Studies, Psychiatry and Psychology Keywords Expertise, Deliberate practice model of expertise, Athletic performance, Sprinting, Evolutionary psychology, Display, Talent, Running, Sports, Training Submitted 11 April 2014 Accepted 2 June 2014 “I can make you faster, but I can’t make you fast.” Published 26 June 2014 Jerry Baltes, Head Coach, Grand Valley State University cross-country and track and Corresponding author field Michael P. -
Design of a Randomised Controlled Trial
BMJ Open Sport Exerc Med: first published as 10.1136/bmjsem-2020-000780 on 16 June 2020. Downloaded from Open access Protocol Enhanced injury prevention programme for recreational runners (the SPRINT study): design of a randomised controlled trial Tryntsje Fokkema ,1 Robert- Jan de Vos,2 Edwin Visser,3 Patrick Krastman,1,4 John IJzerman,5 Bart W Koes,1,6 Jan A N Verhaar,2 Sita M A Bierma- Zeinstra,1,2 Marienke van Middelkoop1 To cite: Fokkema T, ABSTRACT running one of the top three sports with the de Vos R- J, Visser E, et al. Introduction Running- related injuries (RRIs) are most reported injuries.3 More than half of Enhanced injury prevention frequent, but no effective injury prevention measures programme for recreational these RRIs required medical treatment. Also runners (the SPRINT study): have been identified yet. Therefore, we have set up the the number of RRIs per 1000 training hours design of a randomised INSPIRE trial in 2017, in which the effectiveness of an is high. In 2018, there were 6.3 injuries per online injury prevention programme was tested. Although controlled trial. BMJ Open 1000 training hours in running compared Sport & Exercise Medicine this programme was not effective in reducing the number 2020;6:e000780. doi:10.1136/ with 3.4 injuries per 1000 training hours of all of RRIs, we gained new insights from this study, which 3 bmjsem-2020-000780 we used to design an enhanced, online multidisciplinary sports together. These numbers emphasise injury prevention programme. The aim of this study is to the need for injury prevention in recreational runners. -
Drake Relays Records
DRAKE RELAYS RECORDS EVENT ATHLETE MARK YEAR METRIC Men's Invitational 100-Meter Dash Harvey Glance, Auburn 10.01 1976 200-Meter Dash Wallace Spearmon, Saucony 20.02 2012 400-Meter Dash Kirani James, Nike 44.22 2015 800-Meter Run Randy Wilson, Oklahoma 1:45.86 1978 1,500-Meter Run Steve Scott, Sub Four Track Club 3:38.27 1984 Mile Alan Webb, Nike 3:51.71 2007 5,000-Meter Run Nick Rose, Mason-Dixon TC 13:27.20 1977 10,000-Meter Run Kipsubal Koskei, Albuquerque TC 28:07.40 1980 110-Meter Hurdles Hansle Parchment, Jamaica 13.14 2014 400-Meter Hurdles Danny Harris, Iowa State 48.28 1986 4x110 Shuttle Hurdle Relay Team USA Blue 52.94 2015 3,000-Meter Steeplechase Henry Marsh, Brigham Young 8:31.02 1977 4x100 Meter Relay Texas- El Paso 39.93 2004 Long Jump Ralph Boston, Tennessee State 26-1 1/4 1961 7.95 Triple Jump Christian Taylor, Li-Ning 56-02 2013 17.12 High Jump Derek Drouin, Nike 7-10.5 2014 2.4 Pole Vault Jeff Hartwig, Nike 19-0.75 2007 5.81 Shot Put Christian Cantwell, Nike 72-06.25 2006 22.1 Discus Mac Wilkins, Athletics West 211-0 1978 64.31 Decathlon Kip Janvrin, VISA/Nike 8,198 1996 University Men 4x100-Meter Relay Alabama 38.96 1983 4x200-Meter Relay Texas-El Paso 1:20.53 1994 Sprint Medley Relay Alabama 3:12.19 1983 4x400-Meter Relay Southern Illinois 3:00.78 1984 4x800-Meter Relay Nebraska 7:14.89 1985 2xMile Relay Kansas State 7:16.30 1970 Distance Medley Relay Southern Methodist 9:30.45 1983 College Men 4x100-Meter Relay Lincoln 39.57 2012 4x200-Meter Relay Wayland Baptist 1:22.42 1985 Sprint Medley Relay Prairie View 3:14.43y