Affymetrix Probe Set Gene Symbol

Total Page:16

File Type:pdf, Size:1020Kb

Affymetrix Probe Set Gene Symbol Supplementary Table S1. Gene list of probesets differentially modulated in US28-expressing cells compared to mock-transfected cells. Microarray data from mock and US28-transfected cells were analyzed with the LIMMA software and a false discovery rate criteria of 0.02 produced 577 differentially modulated probe sets. Affymetrix probe set Gene Symbol 1437990_x_at Hbb-bh1 1434572_at Hdac9 1450377_at Thbs1 1419537_at Tcfec 1438040_a_at Hsp90b1 1421321_a_at Net1 1460302_at Thbs1 1427844_a_at Cebpb 1429764_at 1500005K14Rik 1439040_at Cenpe 1421027_a_at Mef2c 1424768_at Cald1 1423756_s_at Igfbp4 1426081_a_at Dio2 1460729_at Rock1 1423072_at 1438310_at 1421425_a_at Rcan2 1438403_s_at Malat1 1423566_a_at Hsph1 1441559_at LOC627626 1455980_a_at Gas2l3 1420917_at Prpf40a 1458943_at 1439127_at AI314180 1450035_a_at Prpf40a 1417263_at Ptgs2 1435741_at Pde8b 1420874_at Twf1 1416190_a_at Sec61a1 1415823_at Scd2 1435640_x_at A130040M12Rik 1415859_at Eif3c 1453988_a_at Ide 1434357_a_at Kpnb1 1421992_a_at Igfbp4 1451956_a_at Oprs1 1438833_at Casc5 1426951_at Crim1 1437110_at 2810474O19Rik 1443832_s_at Sdpr 1422748_at Zeb2 1417303_at Mvd 1453623_a_at Rad23a 1417389_at Gpc1 1424398_at Dhx36 1433491_at Epb4.1l2 1418572_x_at Tnfrsf12a 1427334_s_at 2810474O19Rik 1456080_a_at Serinc3 1449018_at Pfn1 1426710_at Calm3 AFFX-b-ActinMur/M12481_5_at Actb 1452360_a_at Jarid1a 1437810_a_at Hbb-bh1 1420654_a_at Gbe1 1451866_a_at Hgf 1422317_a_at Il1rl1 1417860_a_at Spon2 1416805_at 1110032E23Rik 1424173_at Tmem48 1417871_at Hsd17b7 1442884_at Hgf 1452741_s_at Gpd2 1418571_at Tnfrsf12a 1436763_a_at Klf9 1425810_a_at Csrp1 1422845_at Canx 1418431_at Kif5b 1437250_at Mreg 1437497_a_at Hsp90aa1 1428936_at Atp2b1 1415824_at Scd2 1422556_at Gna13 1422807_at Arf5 1419149_at Serpine1 1436533_at Trove2 1417168_a_at Usp2 1426118_a_at Tomm40 1415807_s_at Sfrs2 1426640_s_at Trib2 1418280_at Klf6 1456214_at Pcdh7 1442116_at Gpr176 1426371_at Mlstd2 1450051_at Atrx 1424486_a_at Txnrd1 1423117_at Pum1 1422243_at Fgf7 1456603_at 1500005K14Rik 1418206_at Sdf2l1 1452684_at Akt1s1 1416162_at Rad21 1421813_a_at Psap 1416568_a_at Acin1 1427100_at Metrn 1455034_at Nr4a2 1434599_a_at Tjp2 1423414_at Ptgs1 1421141_a_at Foxp1 1422809_at Rims2 1416311_s_at Tuba3a 1431789_s_at Tmed5 1422993_s_at Refbp2 1416335_at Mif 1452073_at 6720460F02Rik 1426184_a_at Pdcd6ip 1419469_at Gnb4 1417951_at Eno3 1416779_at Sdpr 1427483_at Slc25a24 1450750_a_at Nr4a2 AFFX-b-ActinMur/M12481_M_at Actb 1435191_at Cdsn 1450378_at Tapbp 1451285_at Fus 1421063_s_at Snurf 1437422_at Sema5a 1416191_at Sec61a1 1450886_at Gsg2 1448541_at Klc1 1434879_at Cdc34 1437406_x_at Igfbp4 1437104_at Arfgef1 1428158_at Akt1s1 1456791_at Zfp800 1419256_at Spnb2 1448127_at Rrm1 1426472_at Zfp52 1421313_s_at Cttn 1422763_at Gipc1 1423757_x_at Igfbp4 1437992_x_at Gja1 1453550_a_at Mlstd2 1422842_at Xrn2 1437106_at Jarid1a 1427742_a_at Klf6 1423060_at Pa2g4 1430533_a_at Ctnnb1 1416849_at Cisd1 1419473_a_at Cck 1452397_at 2810474O19Rik 1434700_at 6030408C04Rik 1420867_at Tmed2 1418823_at Arf6 1416726_s_at Ube2s 1426519_at P4ha1 1418230_a_at Lims1 1425523_at Rbm25 1420551_at 2310039E09Rik 1420951_a_at Son 1451092_a_at Rangap1 1438661_a_at Arf2 1450915_at Ap3b1 1417014_at Hspb8 1426471_at Zfp52 1424187_at Ccdc80 1425379_at Hgf 1452811_at Atic 1452180_at Phf17 1421269_at Ugcg 1424334_at Tspan17 1435645_at Mmd 1424778_at Reep3 1424197_s_at Fance 1421315_s_at Cttn 1421811_at Thbs1 1430619_a_at Mvk 1430247_at Daam2 1425576_at Ahcyl1 1437149_at Slc6a6 1416525_at Spop 1429776_a_at Dnajb6 1417434_at Gpd2 1415893_at Sgpl1 1430514_a_at Cd99 1419038_a_at Csnk2a1 1449548_at Efnb2 1429299_at Ddah1 1422996_at Acot2 1418911_s_at Acsl4 1430326_s_at Uqcrq 1426051_a_at Cenpb 1426226_at Dyrk1a 1437856_at Ipmk 1451358_a_at Racgap1 1448803_at Golga4 1455642_a_at Tspan17 1416497_at Pdia4 1427764_a_at Tcfe2a 1448538_a_at D4Wsu53e 1422865_at Runx1 1417613_at Ier5 1416102_at Ywhaz 1453960_a_at Capzb 1449484_at Stc2 1420559_a_at Shox2 1451012_a_at Csda 1460717_at Tspyl1 1448865_at Hsd17b7 1447863_s_at Nr4a2 1450629_at Lima1 1450971_at Gadd45b 1450037_at Usp9x 1439606_at 1453556_x_at Cd99 1448296_x_at Tuba3a 1456341_a_at Klf9 1415888_at Hdgf 1420937_at Cpsf2 1416447_at Tmem30a 1434776_at Sema5a 1451290_at Map1lc3a 1419254_at Mthfd2 1418760_at Rdh11 1439555_at Rlf 1428127_at 4921506J03Rik 1460353_at Tmem48 1456131_x_at Dag1 1425711_a_at Akt1 1452938_at Anks1b 1424770_at Cald1 1429060_at Malat1 1449311_at Bach1 1422528_a_at Zfp36l1 1460661_at Edg3 1448870_at Ltbp1 1455033_at B430201A12Rik 1428868_a_at Oaz1 1428850_x_at Cd99 1428207_at Bcl7a 1426831_at Ahcyl1 1421845_at Golph3 1435082_at Sypl 1455836_at Papola 1432646_a_at 2900097C17Rik 1448219_a_at Ywhaz 1416132_at Efr3a 1451345_at Mtap 1448914_a_at Csf1 1450970_at Got1 1453708_a_at Gsto2 1450403_at Stat2 1436892_at Spred2 1450075_at Polh 1460241_a_at St3gal5 1450105_at Adam10 1423025_a_at Schip1 1450089_a_at Srprb 1423495_at Decr2 1458847_at 1425676_a_at Elovl1 1419066_at Ier5l 1420908_at Cd2ap 1421546_a_at Racgap1 1421604_a_at Klf3 1421346_a_at Slc6a6 1438556_a_at Tmod3 1424874_a_at Ptbp1 1416750_at Oprs1 1447930_at Baz1a 1454758_a_at Tsc22d1 1448721_at D1Ertd622e 1423997_at Csde1 1431304_a_at Tmem183a 1460741_x_at D17Wsu92e 1427396_a_at Csde1 1427310_at Bptf 1439075_at Polr3f 1416365_at Hsp90ab1 1417949_at Ilf2 1436722_a_at Actb 1426888_at Ehmt2 1423393_at Clic4 1449060_at Kif2c 1438684_at Nuak1 1452885_at Sfrs2ip 1456200_at Ipmk 1455905_at 2610507B11Rik 1434106_at Epm2aip1 1422822_at Stard5 1435521_at Msi2 1433589_at D6Wsu116e 1452394_at Cars 1448851_a_at Dnajc5 1426764_at Oaz2 1422959_s_at Zfp313 1425487_at Slu7 1426600_at Slc2a1 1423293_at Rpa1 1452118_at Rrp1b 1425686_at Cflar 1418030_at Slco3a1 1416435_at Ltbr 1425859_a_at Psmd4 1433670_at Emp2 1428514_at Cpne3 1417767_at Cyb5b 1416130_at Prnp 1460460_a_at Gorasp2 1420989_at 4933411K20Rik 1442133_at Ado 1435566_s_at Araf 1418901_at Cebpb 1429156_at 2610036L11Rik 1454875_a_at Rbbp4 1437283_at Tnpo2 1416691_at Gtpbp2 1433813_at Tmem48 1432372_a_at Spr 1422741_a_at Bbx 1452160_at Tiparp 1420474_at Mtpn 1453995_a_at Htf9c 1451346_at Mtap 1449188_at Midn 1427718_a_at Mdm2 1428354_at Foxk2 1451506_at Mef2c 1424318_at 1110067D22Rik 1454021_a_at Exosc10 1423937_at Kctd5 1438735_at Rsf1 1419275_at Dazap1 1448225_at Gpaa1 1427062_at Rbbp8 1427578_a_at Eif6 1417766_at Cyb5b 1428132_at Cdc42se1 1437479_x_at Tbx3 1453307_a_at Anapc5 1421491_a_at Tmem49 1448406_at Eid1 1451111_at Nup133 1416362_a_at Fkbp4 1431101_a_at Srd5a1 1428130_at Lman1 1451507_at Mef2c 1448158_at Sdc1 1423071_x_at 1428112_at Armet 1441949_x_at Slc39a6 1425330_a_at Ppm1b 1425019_at Ubxd4 1425742_a_at Tsc22d1 1417213_a_at Rbm6 1424225_at Asb8 1422195_s_at Tbx15 1436507_at Irak2 1438215_at Sfrs3 1429665_at 6230416J20Rik 1430193_at Casc5 1431213_a_at LOC67527 1428882_at Wipi2 1431432_at Cfl2 1439757_s_at Epha4 1420095_s_at Zscan21 1451146_at Zfp386 1419690_at 2610002M06Rik 1421127_at Tmem42 1440769_at 2010305A19Rik 1451446_at Antxr1 1439964_at Tmem170 1427943_at Acyp2 1428229_at Prkd3 1424254_at Ifitm1 1455385_at Sh3glb1 1458679_a_at Tatdn1 1456518_at 4930422I07Rik 1431204_at 4930578N16Rik 1436236_x_at Cotl1 1436038_a_at Pigp 1427934_at Lyrm2 1437624_x_at Nudt16l1 1419595_a_at Ggh 1433953_at Zfp277 1421624_a_at Enah 1426489_s_at Bfar 1439906_at 1424692_at 2810055F11Rik 1416302_at Ebf1 1417932_at Il18 1434689_at Zfp637 1445606_a_at 2900009J06Rik 1447844_at 1419636_at 4833420G17Rik 1448540_a_at 0610012G03Rik 1442214_at Nfib 1430526_a_at Smarca2 1455372_at Cpeb3 1437997_x_at Mrpl48 1419006_s_at Peli2 1423871_at Tmem63a 1437552_at 2410127L17Rik 1429712_at RP24-87L14.2 1443966_at 1441531_at Plcb4 1453141_at 0610009L18Rik 1456161_at 0610040B10Rik 1441944_s_at Gpr135 1460363_at Tnrc6c 1416368_at Gsta4 1419602_at Hoxa2 1448919_at Cd302 1452770_at Vkorc1 1448104_at Aldh6a1 1457285_at Zfp187 1443790_x_at 4930414L22Rik 1428326_s_at Hrsp12 1435708_at Gls 1455393_at Cp 1454898_s_at Iah1 1449874_at Ly96 1434252_at Tmcc3 1416803_at Fkbp7 1418746_at Pnkd 1436617_at Cetn4 1455862_at Ubtd2 1456984_at Scml2 1430662_at 9430091E24Rik 1419477_at Clec2d 1430032_at Rbm4b 1452682_at 4632404H22Rik 1459274_at Gpr135 1424189_at Pigc 1455164_at Cdgap 1436938_at Rbms3 1449466_at Clec3b 1442757_at Lrch1 1434853_x_at Mkrn1 1428259_at Pxdn 1433891_at Lgr4 1457632_s_at Meis2 1453312_at Iqwd1 1428023_at 3110009E18Rik 1440273_at 1431510_s_at 2010110K16Rik 1435266_at A930041I02Rik 1429671_at 2410018M08Rik 1443939_at OTTMUSG00000008561 1451501_a_at Ghr 1452751_at Ebf3 1418355_at Nucb2 1440169_x_at Ifnar2 1444703_at 2810403D21Rik 1448986_x_at Dnase2a 1441870_s_at Pkd2 1447585_s_at Slc5a3 1438110_at Zbtb1 1448330_at Gstm1 1455638_at Zfp319 1451154_a_at Cugbp2 1416872_at Tspan6 1439011_at 1456721_at Thsd7a 1439369_x_at Slc9a3r2 1441879_x_at Mkrn1 1424242_at Bphl 1429063_s_at Kif16b 1434378_a_at Mxd4 1434957_at Cdon 1457913_at 5730601F06Rik 1427217_at Zfp455 1436713_s_at Meg3 1441623_at 1425627_x_at Gstm1 1423954_at C3 1416298_at Mmp9 1433571_at Serinc5 1450660_at Pts 1416700_at Rnd3 1418046_at Nap1l2 1436172_at Samd9l 1434299_x_at Rabl4 1418538_at Kdelr3 1436207_at Tcf3 1451538_at Sox9 1429001_at Pir 1437811_x_at 1440346_at Jmjd3 1427298_at Dnm3os 1437003_at 1460694_s_at Svil 1443934_at 9230110C19Rik 1435991_at Nr3c2 1434571_at Vps13b 1441259_s_at Ift122 1437473_at Maf 1448501_at Tspan6 1425626_at Gstm1 1455154_at Gli3 1429893_at Il17rd 1417852_x_at Clca1 1454711_at Trio 1441937_s_at Pink1 1429549_at Col27a1 1437917_at D530037H12Rik 1448028_at Tbc1d24 1438953_at Figf 1419182_at Svep1 1438954_x_at Figf 1448377_at Slpi 1436584_at Spry2
Recommended publications
  • The Wiskott-Aldrich Syndrome: the Actin Cytoskeleton and Immune Cell Function
    Disease Markers 29 (2010) 157–175 157 DOI 10.3233/DMA-2010-0735 IOS Press The Wiskott-Aldrich syndrome: The actin cytoskeleton and immune cell function Michael P. Blundella, Austen Wortha,b, Gerben Boumaa and Adrian J. Thrashera,b,∗ aMolecular Immunology Unit, UCL Institute of Child Health, London, UK bDepartment of Immunology, Great Ormond Street Hospital NHS Trust, Great Ormond Street, London, UK Abstract. Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive primary immunodeficiency characterised by immune dysregulation, microthrombocytopaenia, eczema and lymphoid malignancies. Mutations in the WAS gene can lead to distinct syndrome variations which largely, although not exclusively, depend upon the mutation. Premature termination and deletions abrogate Wiskott-Aldrich syndrome protein (WASp) expression and lead to severe disease (WAS). Missense mutations usually result in reduced protein expression and the phenotypically milder X-linked thrombocytopenia (XLT) or attenuated WAS [1–3]. More recently however novel activating mutations have been described that give rise to X-linked neutropenia (XLN), a third syndrome defined by neutropenia with variable myelodysplasia [4–6]. WASP is key in transducing signals from the cell surface to the actin cytoskeleton, and a lack of WASp results in cytoskeletal defects that compromise multiple aspects of normal cellular activity including proliferation, phagocytosis, immune synapse formation, adhesion and directed migration. Keywords: Wiskott-Aldrich syndrome, actin polymerization, lymphocytes,
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Functional Roles of Bromodomain Proteins in Cancer
    cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes.
    [Show full text]
  • TRAINING Datasets HGNC ID ENCODE Dataset ID ARID3A
    TRAINING datasets HGNC ID ENCODE dataset ID ARID3A SydhT+sHepg2Arid3anb100279Iggrab.1000.fasta.summary ARID3A SydhT+sK562Arid3asC8821Iggrab.1000.fasta.summary BACH1 SydhT+sH1hesCBaCh1sC14700Iggrab.1000.fasta.summary BACH1 SydhT+sK562BaCh1sC14700Iggrab.1000.fasta.summary BATF HaibT+sGm12878BaJPCr1x.1000.fasta.summary BHLHE40 HaibT+sHepg2Bhlhe40V0416101.1000.fasta.summary BHLHE40 SydhT+sA549Bhlhe40Iggrab.1000.fasta.summary BHLHE40 SydhT+sGm12878Bhlhe40CIggmus.1000.fasta.summary BHLHE40 SydhT+sHepg2Bhlhe40CIggrab.1000.fasta.summary BHLHE40 SydhT+sK562Bhlhe40nb100Iggrab.1000.fasta.summary BRCA1 SydhT+sH1hesCBrCa1Iggrab.1000.fasta.summary BRCA1 SydhT+sHelas3BrCa1a300Iggrab.1000.fasta.summary CEBPB HaibT+sGm12878CebpbsC150V0422111.1000.fasta.summary CEBPB HaibT+sHepg2CebpbsC150V0416101.1000.fasta.summary CEBPB HaibT+sK562CebpbsC150V0422111.1000.fasta.summary CEBPB SydhT+sA549CebpbIggrab.1000.fasta.summary CEBPB SydhT+sH1hesCCebpbIggrab.1000.fasta.summary CEBPB SydhT+sHelas3CebpbIggrab.1000.fasta.summary CEBPB SydhT+sHepg2CebpbForsklnStd.1000.fasta.summary CEBPB SydhT+sHepg2CebpbIggrab.1000.fasta.summary CEBPB SydhT+sImr90CebpbIggrab.1000.fasta.summary CEBPB SydhT+sK562CebpbIggrab.1000.fasta.summary CEBPD HaibT+sHepg2CebpdsC636V0416101.1000.fasta.summary CREB1 HaibT+sA549Creb1sC240V0416102Dex100nm.1000.fasta.summary CTCF HaibT+sA549CtCfsC5916PCr1xDex100nm.1000.fasta.summary CTCF HaibT+sA549CtCfsC5916PCr1xEtoh02.1000.fasta.summary CTCF HaibT+sECC1CtCfCV0416102Dm002p1h.1000.fasta.summary CTCF HaibT+sH1hesCCtCfsC5916V0416102.1000.fasta.summary
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Plasma Membrane Ca2+–Atpase in Rat and Human Odontoblasts Mediates Dentin Mineralization
    biomolecules Article Plasma Membrane Ca2+–ATPase in Rat and Human Odontoblasts Mediates Dentin Mineralization Maki Kimura 1,†, Hiroyuki Mochizuki 1,†, Ryouichi Satou 2, Miyu Iwasaki 2, Eitoyo Kokubu 3, Kyosuke Kono 1, Sachie Nomura 1, Takeshi Sakurai 1, Hidetaka Kuroda 1,4,† and Yoshiyuki Shibukawa 1,*,† 1 Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; [email protected] (M.K.); [email protected] (H.M.); [email protected] (K.K.); [email protected] (S.N.); [email protected] (T.S.); [email protected] (H.K.) 2 Department of Epidemiology and Public Health, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; [email protected] (R.S.); [email protected] (M.I.) 3 Department of Microbiology, Tokyo Dental College, Chiyodaku, Tokyo 101-0061, Japan; [email protected] 4 Department of Dental Anesthesiology, Kanagawa Dental University, 1-23, Ogawacho, Kanagawa, Yokosuka-shi 238-8570, Japan * Correspondence: [email protected] † These authors contributed equally to this study. Abstract: Intracellular Ca2+ signaling engendered by Ca2+ influx and mobilization in odontoblasts is critical for dentinogenesis induced by multiple stimuli at the dentin surface. Increased Ca2+ is exported by the Na+–Ca2+ exchanger (NCX) and plasma membrane Ca2+–ATPase (PMCA) to Citation: Kimura, M.; Mochizuki, H.; maintain Ca2+ homeostasis. We previously demonstrated a functional coupling between Ca2+ Satou, R.; Iwasaki, M.; Kokubu, E.; extrusion by NCX and its influx through transient receptor potential channels in odontoblasts. Kono, K.; Nomura, S.; Sakurai, T.; Although the presence of PMCA in odontoblasts has been previously described, steady-state levels of Kuroda, H.; Shibukawa, Y.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Hras Intracellular Trafficking and Signal Transduction Jodi Ho-Jung Mckay Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 HRas intracellular trafficking and signal transduction Jodi Ho-Jung McKay Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cancer Biology Commons, Cell Biology Commons, Genetics and Genomics Commons, and the Medical Cell Biology Commons Recommended Citation McKay, Jodi Ho-Jung, "HRas intracellular trafficking and signal transduction" (2007). Retrospective Theses and Dissertations. 13946. https://lib.dr.iastate.edu/rtd/13946 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. HRas intracellular trafficking and signal transduction by Jodi Ho-Jung McKay A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics Program of Study Committee: Janice E. Buss, Co-major Professor Linda Ambrosio, Co-major Professor Diane Bassham Drena Dobbs Ted Huiatt Iowa State University Ames, Iowa 2007 Copyright © Jodi Ho-Jung McKay, 2007. All rights reserved. UMI Number: 3274881 Copyright 2007 by McKay, Jodi Ho-Jung All rights reserved. UMI Microform 3274881 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O.
    [Show full text]
  • Supplemental Information IRF4 Transcription Factor-Dependent Cd11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 C
    Immunity, Volume 38 Supplemental Information IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses Andreas Schlitzer, Naomi McGovern, Pearline Teo, Teresa Zelante, Koji Atarashi, Donovan Low, Adrian W.S. Ho, Peter See, Amanda Shin, Pavandip Singh Wasan, Guillaume Hoeffel, Benoit Malleret, Alexander Heiseke, Samantha Chew, Laura Jardine, Harriet A. Purvis, Catharien M.U. Hilkens, John Tam, Michael Poidinger, E. Richard Stanley, Anne B. K rug, Laurent Renia, Baalasubramanian Sivasankar, Lai Guan Ng, Matthew Collin, Paola Ricciardi-Castagnoli, Kenya Honda, Muzlifah Haniffa, and Florent Ginhoux Supplemental Inventory 1. Supplemental Figures and Tables Figure S1, Related to Figure 1 Figure S2, Related to Figure 2 and 3 Figure S3, Related to Figure 4 Figure S4, Related to Figure 5 Figure S5, Related to Figure 5 Figure S6, Related to Figure 7 Table S1, Related to Figure 3 Table S2, Related to Figure 6 Table S3, Related to Figure 6 2. Supplemental Experimental Procedures 3. Supplemental References Supplementary figure 1 Sorting strategy for mouse lung and small intestinal DC A Sorting strategy, Lung Singlets Dapi-CD45+ 250K 250K 250K 105 200K 200K 200K 104 A I - 150K 150K 150K C P C C 3 10 S A S S 100K 100K S 100K D S S 102 50K 50K 50K 0 0 0 0 0 50K 100K 150K 200K 250K 0 50K 100K 150K 200K 250K 0 103 104 105 0 103 104 105 FSC FSC-W CD45 GR1 Auto Fluor.- MHCII+ GR1- SSClow CD11c+ CD11b+ 250K 105 105 105 200K 4 104 10 104 150K I 3 I 3 4 3 0 10 3 C 2 H 10 10 100K 1 S D C D S C M 2 C 10 50K 0 0 0 0 0 102 103 104 105 0 103 104 105 0 103 104 105 0 103 104 105 Auto fluor.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • A Human Population-Based Organotypic in Vitro Model for Cardiotoxicity Screening1
    ALTEX preprint published July 8, 2018 doi:10.14573/altex.1805301 Research Article A human population-based organotypic in vitro model for cardiotoxicity screening1 Fabian A. Grimm1, Alexander Blanchette1, John S. House2, Kyle Ferguson1, Nan-Hung Hsieh1, Chimeddulam Dalaijamts1, Alec A. Wright1, Blake Anson5, Fred A. Wright3,4, Weihsueh A. Chiu1, Ivan Rusyn1 1Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA; 2Bioinformatics Research Center, 3Department of Biological Sciences, and 4Department of Statistics, North Carolina State University, Raleigh, NC, USA; 5Cellular Dynamics International, Madison, WI, USA Abstract Assessing inter-individual variability in responses to xenobiotics remains a substantial challenge, both in drug development with respect to pharmaceuticals and in public health with respect to environmental chemicals. Although approaches exist to characterize pharmacokinetic variability, there are no methods to routinely address pharmacodynamic variability. In this study, we aimed to demonstrate the feasibility of characterizing inter-individual variability in a human in vitro model. Specifically, we hypothesized that genetic variability across a population of iPSC- derived cardiomyocytes translates into reproducible variability in both baseline phenotypes and drug responses. We measured baseline and drug-related effects in iPSC-derived cardiomyocytes from 27 healthy donors on kinetic Ca2+ flux and high-content live cell imaging. Cells were treated in concentration-response with cardiotoxic drugs: isoproterenol (β- adrenergic receptor agonist/positive inotrope), propranolol (β-adrenergic receptor antagonist/negative inotrope), and cisapride (hERG channel inhibitor/QT prolongation). Cells from four of the 27 donors were further evaluated in terms of baseline and treatment-related gene expression. Reproducibility of phenotypic responses was evaluated across batches and time.
    [Show full text]
  • ADP-Ribosylation Factor, a Small GTP-Binding Protein, Is Required for Binding of the Coatomer Protein Fl-COP to Golgi Membranes JULIE G
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6408-6412, July 1992 Biochemistry ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein fl-COP to Golgi membranes JULIE G. DONALDSON*, DAN CASSEL*t, RICHARD A. KAHN*, AND RICHARD D. KLAUSNER* *Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, and tLaboratory of Biological Chemistry, Division of Cancer Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Communicated by Marc Kirschner, April 20, 1992 (receivedfor review February 11, 1992) ABSTRACT The coatomer is a cytosolic protein complex localized to the Golgi complex, although their functions have that reversibly associates with Golgi membranes and is Impli- not been defined. Distinct among these proteins is the ADP- cated in modulating Golgi membrane transport. The associa- ribosylation factor (ARF), originally identified as a cofactor tion of 13-COP, a component of coatomer, with Golgi mem- required for in vitro cholera toxin-catalyzed ADP- branes is enhanced by guanosine 5'-[v-thioltriphosphate ribosylation of the a subunit of the trimeric GTP-binding (GTP[yS]), a nonhydrolyzable analogue of GTP, and by a protein G, (G,.) (19). ARF is an abundant cytosolic protein mixture of aluminum and fluoride ions (Al/F). Here we show that reversibly associates with Golgi membranes (20, 21). that the ADP-ribosylation factor (ARF) is required for the ARF has been shown to be present on Golgi coated vesicles binding of (-COP. Thus, 13-COP contained in a coatomer generated in the presence of GTP[yS], but it is not a com- fraction that has been resolved from ARF does not bind to Golgi ponent of the cytosolic coatomer (22).
    [Show full text]