On Integration and Volumes of Supermanifolds

Total Page:16

File Type:pdf, Size:1020Kb

On Integration and Volumes of Supermanifolds ON INTEGRATION AND VOLUMES OF SUPERMANIFOLDS A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2021 Thomas M. Honey Department of Mathematics Contents Abstract 6 Declaration 7 Copyright Statement 8 Acknowledgements 9 1 Introduction and Review 10 1.1 The Usual Case . 11 1.1.1 The Grassmannian Manifolds . 11 1.1.2 The Grassmannian as a Homogeneous space . 13 1.1.3 The Unitary Group . 15 1.1.4 The Stiefel Manifolds and the Grassmannian . 16 1.1.5 Other Homogeneous Spaces . 17 1.1.6 Principal Bundle Structures . 18 1.1.7 Volumes of Homogeneous Spaces . 20 1.1.8 Volume of the Unitary Group . 21 1.1.9 Volume of the Flag Manifolds . 23 1.2 The Super Case: A Summary . 23 2 Supermanifolds 27 2.1 Smooth Supermanifolds . 28 2.1.1 Superdomains and Supermanifolds . 30 2.1.2 Integration on Supermanifolds . 36 2.2 The Grassmannian Supermanifold . 39 2.2.1 Complex Supermanifolds . 39 2 2.2.2 The Grassmannian supermanifolds . 41 3 Hermitian Forms and the Kronecker Product 44 3.1 Hermitian Forms . 45 3.1.1 Bilinear forms . 45 3.1.2 Superinvolutions . 48 3.1.3 Sesquilinear forms . 54 3.1.4 Hermitian forms over supercommutative rings . 56 3.1.5 Hermitian Form on hom(U; V )................... 59 3.1.6 Coordinates . 60 3.2 Linear Superalgebra . 69 3.2.1 Vectorisation and the Kronecker Product . 69 3.2.2 Vectorisation . 70 3.2.3 The Kronecker Product . 71 3.3 The Super Case . 74 3.3.1 The Kronecker Product and the Berezinian . 75 3.3.2 Super Vectorisation and the Trace . 82 3.4 The Hermitian Form on hom(U; V ).................... 83 4 The Volume Element 85 4.1 Complex structures and Hermitian manifolds . 86 4.1.1 Cpjq as a Hermitian space . 86 4.1.2 Cpjq the Hermitian supermanifold . 88 4.2 Grassmannian Supermanifolds as Hermitian Manifolds . 90 4.2.1 The Usual Case . 91 4.3 The Super Case and the Volume Element . 95 5 Calculations 99 5.1 The Usual Case . 100 5.2 The Super Case . 104 5.3 1j0 × (p + 1)jq ................................ 105 5.4 0j1 × pj(q +1)................................ 105 pjp 5.5 Grrjs(C ).................................. 105 3 5.6 r; s > 0; q < r ................................ 106 2j1 5.7 Gr1j1(C ).................................. 107 3j1 5.8 Gr1j1(C ).................................. 108 3j1 5.9 Gr2j0(C ).................................. 109 2j1 5.10 Gr2j0(C ).................................. 111 3j1 5.11 Gr2j1(C ).................................. 112 3j2 5.12 Gr2j0(C ).................................. 112 3j2 5.13 Gr1j1(C ).................................. 114 3j2 5.14 Gr2j1(C ).................................. 115 3j2 5.15 Gr2j2(C ).................................. 115 3j2 5.16 Gr3j1(C ).................................. 116 4j2 5.17 Gr2j0(C ).................................. 116 4j2 5.18 Gr1j1(C ).................................. 119 6 Conclusions and Discussion 120 Bibliography 124 A An Introduction to Superalgebra and on Conventions 128 A.1 Superalgebra . 129 A.1.1 Superrings . 129 A.1.2 Super Vector Spaces . 132 A.1.3 Modules over supercommutative rings . 135 A.2 Free Finitely Generated Modules . 139 A.2.1 Duality and the Tensor Product . 141 A.2.2 The Double Dual . 141 A.2.3 Trace . 142 A.2.4 The Berezinian . 143 A.2.5 Canonical Ideal of a Superring . 144 A.2.6 The Berezinian Module . 144 A.3 Coordinates . 145 A.3.1 The Dual Space . 147 A.3.2 Scalar Multiplication and Matrices . 150 4 A.3.3 The Double Dual . 151 A.3.4 The Trace . 151 A.3.5 The Berezinian . 153 Word count 36798 5 The University of Manchester Thomas M. Honey Doctor of Philosophy On Integration and Volumes of Supermanifolds January 11, 2021 In this thesis we investigate the volumes of certain supermanifolds. The volumes of supermanifolds have been studied before in particular in [1]. This thesis builds on that work. We develop the necessary tools to study mainly the volume of the complex Grassmannian supermanifolds. In the first two chapters we review the problem and how it has been solved for ordinary Grassmannian manifolds. We contrast that with the super case and then introduce briefly what a supermanifold is and give an exposition on what integration entails in the super case. In the third chapter we develop the tools we need to calculate the volume of the Grassmannian supermanifolds as Hermitian supermanifolds. We develop Hermitian forms in the super case and we conclude that the natural Hermitian form on the space of matrices isn't positive definite. We then develop the Kronecker product and vectorisation in the super case. With these developed we show the relation between the Berezinian, or superdeterminant, and the Kronecker product. In the fourth chapter we investigate what the volume element of the Grassmannian supermanifolds coming from a natural Hermitian form is and apply the results of the previous chapter so that we can calculate it. In the fifth and last chapter of the main part of the thesis we calculate the volume of the Grassmannian supermanifolds for different values of the relevant parameters. In [1] there is a conjectured formula for the volume of the Grassmannian supermanifolds and we contrast our results with that. We have provided an appendix on superalgebra to provide a guide on the conven- tions and notations used in the main text. 6 Declaration No portion of the work referred to in the thesis has been submitted in support of an application for another degree or qualification of this or any other university or other institute of learning. 7 Copyright Statement i. The author of this thesis (including any appendices and/or schedules to this thesis) owns certain copyright or related rights in it (the \Copyright") and s/he has given The University of Manchester certain rights to use such Copyright, including for administrative purposes. ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended) and regulations issued under it or, where appropriate, in accordance with licensing agreements which the University has from time to time. This page must form part of any such copies made. iii. The ownership of certain Copyright, patents, designs, trade marks and other intel- lectual property (the \Intellectual Property") and any reproductions of copyright works in the thesis, for example graphs and tables (\Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property and/or Reproductions. iv. Further information on the conditions under which disclosure, publication and com- mercialisation of this thesis, the Copyright and any Intellectual Property and/or Reproductions described in it may take place is available in the University IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any rele- vant Thesis restriction declarations deposited in the University Library, The Univer- sity Library's regulations (see http://www.manchester.ac.uk/library/aboutus/regul- ations) and in The University's Policy on Presentation of Theses. 8 Acknowledgements I would first like to thank my supervisors Hovhannes Khudaverdian and Theodore Voronov for their support over the years that it has taken to produce this thesis and for their help to further my mathematics education. I would secondly like to thank all the other mathematics teachers that have con- tributed to my education including others at the University of Manchester, those at the University of Aberdeen where I completed my undergraduate degree in mathematics and finally my teachers at school. I would also like to thank my friends, office mates and the mathematics postgradu- ate students in Manchester in general. They made my time there especially enjoyable. Finally I want to thank my family who have always been there to support me. 9 Chapter 1 Introduction and Review 10 1.1. THE USUAL CASE 11 We are primarily concerned with calculating the volumes of certain Hermitian su- pjq permanifolds. In particular the Grassmannian supermanifolds, Grrjs(C ), the com- plex supermanifolds of rjs planes in Cpjq. The volume of the simplest of these super- manifolds, the complex projective superspaces CPpjq was obtained in [1]. A conjecture pjq on what the volume of Grrjs(C ) was made in that paper and the following is an pjq investigation of whether or when this conjecture holds. Grrjs(C ) are the "super" n version of the complex manifolds Grk(C ), the space of k dimensional subspaces of Cn. In addition to [1], recently the question for the volume of symplectic superman- ifolds was considered in [2]. There a general formula for the volume of symplectic supermanifolds is obtained however we don't use the methods derived from there. In n this chapter we will give the exposition on working with Grk(C ) and how one usually n obtains the volume of Grk(C ) which we'll call the usual case. Then we will contrast pjq that with what happens in the super case when one wants to consider Grrjs(C ). The exposition on the super case will be brief in order to highlight the contrast. Details and precise definitions on supermanifolds will be given in the following chapter. 1.1 The Usual Case 1.1.1 The Grassmannian Manifolds As we stated above, before we embark on laying out the situation for the super case, we will give a detailed summary of what we can say about the volumes of the ordinary Grassmannian manifolds.
Recommended publications
  • Creative Discomfort: the Culture of the Gelfand Seminar at Moscow University Slava Gerovitch
    Creative Discomfort: The Culture of the Gelfand Seminar at Moscow University Slava Gerovitch 1 Memory Israel Gelfand’s weekly seminar at Moscow State University, which ran continu- ously from 1943 to 1989, has gained a legendary status in the Russian mathematics community. It has been praised as “maybe the greatest seminar in the history of the Mechanical-Mathematical Faculty of Moscow University,”1 “probably the best seminar in the history of mathematics,”2 and even “one of the most productive seminars in the history of science.”3 According to seminar participants, the seminar “ardently followed all that was new in mathematics anywhere in the world”4 and “made a decisive impact on mathematical life in Moscow.”5 Many outstanding mathematicians remember the seminar fondly as their crucial coming-of-age experience. Before we conjure up an idyllic image of a harmonic chorus of great mathe- maticians conversing magnificently on topics of utmost scholarly importance, let us read a bit more from the memoirs of the same seminar participants. The seminar has 1Tikhomirov (2008), p. 10. 2Interview with Aleksei Sosinskii, 20 October 2009 (http://polit.ru/article/2009/10/20/absossinsky_ about_imgelfand/). 3Tikhomirov (2008), p. 25. 4Landis (2007), p. 69. 5Arnold (2009), p. 40. S. Gerovitch (&) Department of Mathematics, Massachusetts Institute of Technology, Massachusetts, USA e-mail: [email protected] © Springer International Publishing Switzerland 2016 51 B. Larvor (ed.), Mathematical Cultures, Trends in the History of Science, DOI 10.1007/978-3-319-28582-5_4
    [Show full text]
  • From Russia with Math
    HERBHigher Education in Russia and Beyond From Russia with Math ISSUE 4(6) WINTER 2015 Dear colleagues, We are happy to present the sixth issue of Higher Education in Russia and Beyond, a journal that is aimed at bringing current Russian, Central Asian and Eastern European educational trends to the attention of the international higher education research community. The new issue unfolds the post-Soviet story of Russian mathematics — one of the most prominent academic fields. We invited the authors who could not only present the post-Soviet story of Russian math but also those who have made a contribution to its glory. The issue is structured into three parts. The first part gives a picture of mathematical education in the Soviet Union and modern Russia with reflections on the paths and reasons for its success. Two papers in the second section are devoted to the impact of mathematics in terms of scientific metrics and career prospects. They describe where Russian mathematicians find employment, both within and outside the academia. The last section presents various academic initiatives which highlight the specificity of mathematical education in contemporary Russia: international study programs, competitions, elective courses and other examples of the development of Russian mathematical school at leading universities. ‘Higher Education in Russia and Beyond’ editorial team Guest editor for this issue – Vladlen Timorin, professor and dean of the Faculty of Mathematics at National Research University Higher School of Economics. HSE National Research University Higher School of Economics Higher School of Economics incorporates 49 research is the largest center of socio-economic studies and one of centers and 14 international laboratories, which are the top-ranked higher education institutions in Eastern involved in fundamental and applied research.
    [Show full text]
  • Felix Berezin Life and Death of the Mastermind of Supermathematics
    January 29, 2007 11:38 WSPC/Trim Size: 9in x 6in for Proceedings Foreword iii FELIX BEREZIN LIFE AND DEATH OF THE MASTERMIND OF SUPERMATHEMATICS Edited by M. Shifman January 29, 2007 11:38 WSPC/Trim Size: 9in x 6in for Proceedings Foreword iv Copyright page The Editor and Publisher would like to thank the American Math- ematical Society for their kind permission to reprint the articles of V. Maslov, R. Minlos, M. Shubin, N. Vvedenskaya and the first article of A. Vershik from the American Mathematical Society Translations, Series 2, Advances in the Mathematical Sciences, Volume 175, 1996. Paintings Alexandra Rozenman Black-and-white sketches Yuri Korjevsky Graphic design Leigh Simmons Photographs Elena Karpel’s collection FELIX BEREZIN: LIFE AND DEATH OF THE MASTERMIND OF SUPERMATHEMATICS January 29, 2007 11:38 WSPC/Trim Size: 9in x 6in for Proceedings Foreword FOREWORD M. SHIFMAN W.I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455, USA [email protected] The story of this Memorial Volume is as follows. In the fall of 2005 Arkady Vainshtein mentioned in passing that he had received Elena Karpel’s essay on Felix Berezin from his friend Dmitri Gitman. Of course, every student and every practitioner of modern field theory knows the Berezin integral over the Grassmann variables, which con- stitutes the basis of the current approach to theories with fermions and quantization of gauge theories (introduction of ghosts). Without using the Berezin integral, string theory and supersymmetry stud- ies, which are at the focus of modern high-energy physics, would be extremely hard, if not impossible.
    [Show full text]
  • Lectures on Statistical Physics
    Felix Berezin Lectures on Statistical Physics Translated from the Russian and edited by D. Leites Abdus Salam School of Mathematical Sciences Lahore, Pakistan Summary. The book is an edited and updated transcript of the lectures on Sta- tistical Physics by the founder of supersymmetry theory | Felix Berezin. The lectures read at the Department of Mechanics and Mathematics of Moscow State University in 1966{67 contain inimitable Berezin's uniform approach to the Bose and Fermi particles, and his unique approach to quantization. These approaches were used with incredible success in the study of solid state physics, disorder and chaos (K. Efetov), and in a recent (and not yet generally accepted claim of) solution of one of Clay's Millennium problems (A. Dynin). The book is addressed to mathematicians (from sophomore level up) and physi- cists of any level. ISBN 978-969-9236-02-0 °c Dimitry Leites, translation into English and editing, 2009. °c Felix Berezin; his heirs, 2009. Contents Author's Preface . v Editor's preface . vi Part I The Classical Statistical Physics 1 Background from Classical Mechanics . 3 1 The Ensemble of Microscopic Subsystems ::::::::::::::::: 9 2 Physical assumptions. Ergodic Hypothesis. Gibbs's distribution. 9 3 An heuristic deduction of the Gibbs distribution . 14 4 A complete deduction of the Gibbs distribution . 17 5 Relation to thermodynamics . 24 6 Properties of the entropy . 33 7 Analytical appendix to Chapter 1 . 39 2 Real gases ::::::::::::::::::::::::::::::::::::::::::::::::: 43 8 Physical assumptions . 43 9 The Gibbs Distribution in the Small Canonical Ensemble . 46 10 The correlation functions in the small ensemble . 50 11 The Bogolyubov equations .
    [Show full text]
  • Felix Berezin
    FELIX BEREZIN This book is about Felix Berezin, an outstanding Soviet mathematician who in the 1960s and 70s was the driving force behind the emergence of the branch of mathematics now known as supermathematics. PART The integral over the anticoommuting Grassmann variables he introduced in the 1960s laid the ONE foundation for the path integral formulation of quantum field theory with fermions, the heart of modern supersymmetric field theories and superstrings. The Berezin integral is named for him, as is the closely related construction of the Berezinian which may be regarded as the superanalog of the determinant. PART In a masterfully written memoir Berezin’s widow, Elena Karpel, narrates a remarkable story of TWO Berezin’s life and his struggle for survival in the totalitarian Soviet regime. This story is supple- mented by recollections of Berezin’s close friends and colleagues. Berezin’s acccomplishments of Supermathematics Life and death of the mastermind in mathematics, his novel ideas and breakthrough works, are reviewed in two articles written by Andrei Losev and Robert Minlos. ABOUT M. Shifman is the Ida Cohen Fine Professor of Physics at the University of Minnesota. After receiv- THE EDITOR ing his PhD (1976) from the Institute of Theoretical and Experimental Physics in Moscow he went through all stages of the academic career there. In 1990 he moved to the USA to assume his present position as a member of the William I. Fine Theoretical Physics Institute at the University of Minnesota. In 1997 he was elected as a Fellow of the American Physical Society. He has had the honor of receiving the 1999 Sakurai Prize for Theoretical Particle Physics and the 2006 Julius Edgar Lilienfeld Prize for outstanding contributions to physics.
    [Show full text]
  • Analysis on Superspace: an Overview
    BULL. AUSTRAL. MATH. SOC. 58C50, 15A75, 17B70, 46S20, 81Q60 VOL. 50 (1994) [135-165] ANALYSIS ON SUPERSPACE: AN OVERVIEW VLADIMIR G. PESTOV The concept of superspace is fundamental for some recent physical theories, notably supersymmetry, and a mathematical feedback for it is provided by superanalysis and supergeometry. We survey the state of affairs in superanalysis, shifting our attention from supermanifold theory to "plain" superspaces. The two principal existing approaches to superspaces are sketched and links between them discussed. We examine a problem by Manin of representing even geometry (analysis) as a collective effect in infinite-dimensional purely odd geometry (analysis), by applying the technique of nonstandard (infinitesimal) analysis. FOREWORD "Superspace is the greatest invention since the wheel" (see [59]). I don't know how many of us would agree with this radical statement, and it was only intended to be a jocular epigraph, of course. However, the concept of superspace is thriving indeed in theoretical physics of our days. Under superspace physicists understand our space-time labeled not only with usual coordinates (x11), but also with anticommuting coordinates (0a), and endowed with a representation of a certain group or, better still, supergroup, whatever it means. The anticommuting coordinates represent certain internal degrees of freedom of the physical system. This concept was actually known in physics since the early 60s or late 50s [138, 138, 91, 28], but what made it so important was the discovery of supersymmetry [144, 131, 145], which is an essentially new form of symmetry unifying fermions (particles of matter) with bosons (particles carrying interaction between bosons).
    [Show full text]
  • Bagger-CH1 29..41
    Advisory Board Stephen Adler (IAS) Vladimir Akulov (New York) Aiyalam Balachandran (Syracuse) Eric Bergshoeff (Groningen) Ugo Bruzzo (SISSA) Roberto Casalbuoni (Firenze) Christopher Hull (London) JuurgenFuchs€ (Karlstad) Jim Gates (College Park) Bernard Julia (ENS) Anatoli Klimyk (Kiev) Dmitri Leites (Stockholm) Jerzy Lukierski (Wroclaw) Folkert Muuller-Hoissen€ (Goottingen)€ Peter Van Nieuwenhuizen (Stony Brook) Antoine Van Proeyen (Leuven) Alice Rogers (King’s College) Daniel Hernandez Ruiperez (Salamanca) Martin Schlichenmaier (Mannheim) Albert Schwarz (Davis) Ergin Sezgin (Texas A&M) Mikhail Shifman (Minneapolis) Kellogg Stelle (Imperial) Idea, organizing and compiling by Steven Duplij CONCISE ENCYCLOPEDIA OF SUPERSYMMETRY And noncommutative structures in mathematics and physics Edited by Steven Duplij Kharkov State University Warren Siegel State University of NY-SUNY and Jonathan Bagger Johns Hopkins University Library of Congress Cataloging-in-Publications Data ISBN-10 1-4020-1338-8 (HB) ISBN-13 978-1-4020-1338-6 (HB) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springeronline.com Printed on acid-free paper Reprinted with corrections, 2005 All Rights Reserved # 2005 Springer No part of the material protected by this copyright notice may be reproduced or utilized in any forms or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Printed in the Netherlands. Acknowledgements It is with great pleasure that I express my deep thanks to: high-level programming language expert Vladimir Kalashnikov (Forth, Perl, C) for his extensive help; to programmers Melchior Franz (LaTeX); Robert Schlicht (WinEdit), George Shepelev (Assem- bler), Eugene Slavutsky (Java), for their kindness in programming, especially for this volume; to Dmitry Kadnikov and Sergey Tolchenov for valuable help and information; and to Tatyana Kudryashova for checking my English.
    [Show full text]
  • Analysis on Superspace: an Overview
    BULL. AUSTRAL. MATH. SOC. 58C50, 15A75, 17B70, 46S20, 81Q60 VOL. 50 (1994) [135-165] ANALYSIS ON SUPERSPACE: AN OVERVIEW VLADIMIR G. PESTOV The concept of superspace is fundamental for some recent physical theories, notably supersymmetry, and a mathematical feedback for it is provided by superanalysis and supergeometry. We survey the state of affairs in superanalysis, shifting our attention from supermanifold theory to "plain" superspaces. The two principal existing approaches to superspaces are sketched and links between them discussed. We examine a problem by Manin of representing even geometry (analysis) as a collective effect in infinite-dimensional purely odd geometry (analysis), by applying the technique of nonstandard (infinitesimal) analysis. FOREWORD "Superspace is the greatest invention since the wheel" (see [59]). I don't know how many of us would agree with this radical statement, and it was only intended to be a jocular epigraph, of course. However, the concept of superspace is thriving indeed in theoretical physics of our days. Under superspace physicists understand our space-time labeled not only with usual coordinates (x11), but also with anticommuting coordinates (0a), and endowed with a representation of a certain group or, better still, supergroup, whatever it means. The anticommuting coordinates represent certain internal degrees of freedom of the physical system. This concept was actually known in physics since the early 60s or late 50s [138, 138, 91, 28], but what made it so important was the discovery of supersymmetry [144, 131, 145], which is an essentially new form of symmetry unifying fermions (particles of matter) with bosons (particles carrying interaction between bosons).
    [Show full text]
  • Felix Berezin
    Мaquette de livre FELIX BEREZIN This book is about Felix Berezin, an outstanding Soviet mathematician who in the 1960s and 70s was the driving force behind the emergence of the branch of mathematics now known as supermathematics. The integral over the anticoomuting Grassman variables he introduced in the 1960’s laid the foundation for the path integral formulation of quantum field theory with fermions, the heart of modern supersymmetric field theories and superstrings. The Berezin integral is named for him as is the closely related construction of the Berezinian which may be regarded as the superanalog of the determinant. In a masterfully written memoir, Berezin’s widow, Elena Karpel, narrates a remarkable story of Berezin’s life and his struggle for survival in the totalitarian Soviet regime. This story is supple- Life and death of the mastermind mented by recollections of Berezin’s close friends and colleagues. Berezin’s accomplishments of Supermathematics in mathematics, his novel ideas and breakthrough works, are reviews in two articles written by Andrei Losev and Robert Minlos. edited by M. Shifman January 29, 2007 11:38 WSPC/Trim Size: 9in x 6in for Proceedings Foreword iii FELIX BEREZIN LIFE AND DEATH OF THE MASTERMIND OF SUPERMATHEMATICS Edited by M. Shifman January 29, 2007 11:38 WSPC/Trim Size: 9in x 6in for Proceedings Foreword iv Copyright page The Editor and Publisher would like to thank the American Math- ematical Society for their kind permission to reprint the articles of V. Maslov, R. Minlos, M. Shubin, N. Vvedenskaya and the first article of A. Vershik from the American Mathematical Society Translations, Series 2, Advances in the Mathematical Sciences, Volume 175, 1996.
    [Show full text]
  • Mathematical Education in Universities in the Soviet Union And
    sities and research centers or even in other Russian cities Mathematical Education in would regularly come to the seminars too. Seminar par- Universities in the Soviet ticipants would either present their own research or ex- plore the most recent results from abroad considered to be Union and Modern Russia important by seminar leaders. Soviet mathematicians, as well as the rest of the Soviet people, were typically not al- lowed to leave the country; Western mathematicians came Sergei Lando to Russia very rarely, and only a part of Western journals Professor of the Faculty of Mathematics, was available even in the best libraries, often after a serious National Research University time gap. Nevertheless, most of the important research re- Higher School of Economics, sults and theories reached the target audience. Practically Russian Federation all quickly developing domains of mathematics were well [email protected] represented at Mechmat in those years. During that period several Soviet mathematical journals Traditions of mathematical education in Russia on both that published quality papers were widely read all around school and university level, research done by Russian sci- the world, and many Western mathematicians decided to entists and its impact on the development of mathematics is study Russian in order to be able to read the Russian ver- considered by many a unique and valuable part of the world sions of the papers before their translations appear (which cultural heritage. In the present paper, we describe the de- could take some time). Publications in these journals were velopment of mathematical education in Russian universi- considered to be very honorable, and it was not an easy ties after 1955 — a period that proved to be most fruitful.
    [Show full text]
  • Curriculum Vitae Dmitry Maximovitch Gitman August 31, 2010
    Curriculum Vitae Dmitry Maximovitch Gitman August 31, 2010 Contents 1 Personal information 1 2 Education and academic titles 2 3 Academic Positions 2 4 Didactic Activities 3 5 Orientation of students and post-docs 3 6 Books published and in progress 5 7 Selected articles 6 8 Number of publications and international citations 10 9 Coordination of projects and research group 10 10 Summary of the main scientific results obtained 11 10.1 Quantum field theory with external backgrounds . ............... 11 10.2 General theory of constrained systems and their quantization ............... 15 10.3 Exact solutions of the relativistic wave equations and theory of self-adjoint extensions . 18 10.4 Path integrals; group theory in relativistic quantum mechanics and field theory; semi- classical methods and coherent states . ........... 22 10.5 Classical and pseudoclassical relativistic particle models and their quantization . 25 10.6 Theoryofhigherspins . ......... 27 10.7 Theory of two and four levels systems and applications to the quantum computation . 28 10.8 Quantum mechanics and field theory in non-commutative spaces ............. 29 10.9 QuantumStatistics. ......... 30 10.10Othersubjects ................................. 31 1 Personal information Born on July 2, 1944, Tashkent, Uzbekistan - USSR Brazilian Citizenship Languages: Russian, English, Portuguese and German Address: Instituto de Física da USP, Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, C.P. 66318, CEP 05315-970, São Paulo, SP, Brasil Telephone: 55-11-3091-6948. E-mail: [email protected], [email protected] Homepage: http://www.dfn.if.usp.br/pesq/tqr/pt/gitman 1 2 Education and academic titles 1961-1966: Graduation and Master’s degree — Department of Physics of Tomsk State University • — Russia.
    [Show full text]
  • Michael Marinov Michael Marinov, the Theorist Who, with Felix Berezin
    Site Index Michael Marinov Michael Marinov, the theorist who, with Felix Berezin, introduced the classical description of spin by anticommuting Grassmann variables, died of cancer on 17 January in Haifa, Israel. Born on 4 July 1939 in Moscow, Marinov studied at Moscow University and received his PhD in 1966 from the Institute of Theoretical and Experimental Physics (ITEP). His PhD study was devoted to spinning particles--the subject various aspects of which he continued to investigate throughout his life. During his 14 years at ITEP, Marinov went through all the stages of an academic career, from junior to senior researcher. Marinov achieved worldwide recognition in the area of quantum field theory and related problems in mathematical physics. He had a deep understanding of the path integral method and used it extensively in his studies. Most theorists in the 1970s viewed this approach as rather symbolic compared to the operator method. Marinov analyzed the relation of the method to canonical quantization in his review on path integrals published in Physics Reports in 1980. With the path integral method, the transition from classical to quantum physics can be understood as integration over paths near classical trajectories. A uniform treatment of bosons and fermions in the path integrals is another advantage of this method, which is based on the representation of fermions through anticommuting Grassmann variables. Berezin was largely responsible for advancing the calculus, including integration, on these variables. In 1975, Berezin and Marinov introduced a novel extension of that concept--namely, a classical description of spin by Grassmann 1 variables. This idea sounds strange for spin- /2 particles: We are used to viewing their spin properties as quantum phenomena.
    [Show full text]