Bagger-CH1 29..41
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wolfhart Zimmermann: Life and Work
JID:NUPHB AID:14268 /FLA [m1+; v1.280; Prn:28/02/2018; 9:46] P.1(1-11) Available online at www.sciencedirect.com ScienceDirect Nuclear Physics B ••• (••••) •••–••• www.elsevier.com/locate/nuclphysb Wolfhart Zimmermann: Life and work Klaus Sibold Institut für Theoretische Physik, Universiät Leipzig, Postfach 100920, D-04009 Leipzig, Germany Received 19 December 2017; received in revised form 17 January 2018; accepted 22 January 2018 Editor: Hubert Saleur Abstract In this report, I briefly describe the life and work of Wolfhart Zimmermann. The highlights of his scien- tific achievements are sketched and some considerations are devoted to the man behind the scientist. The report is understood as being very personal: at various instances I shall illustrate facets of work and person by anecdotes. © 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3. 1. Introduction The present report is based on a colloquium talk given at the end of a memorial symposium to honour Wolfhart Zimmermann: Max Planck Institute for Physics, Munich (May 22–23, 2017) I borrowed freely from the following obituaries: Physik-Journal 15 (2016) Nr. 12 S.50 W. Hollik, E. Seiler, K. Sibold Nucl. Phys. B193 (2016) 877–878 W. Hollik, E. Seiler, K. Sibold IAMP News Bulletin, Jan. 2017 p. 26–30 M. Salmhofer, E. Seiler, K. Sibold 2. The beginning Wolfhart Zimmermann was born on February 17, 1928 in Freiburg im Breisgau (Germany) as the son of a medical doctor. He had an older sister with whom he liked to play theater and, when E-mail address: [email protected]. -
Creative Discomfort: the Culture of the Gelfand Seminar at Moscow University Slava Gerovitch
Creative Discomfort: The Culture of the Gelfand Seminar at Moscow University Slava Gerovitch 1 Memory Israel Gelfand’s weekly seminar at Moscow State University, which ran continu- ously from 1943 to 1989, has gained a legendary status in the Russian mathematics community. It has been praised as “maybe the greatest seminar in the history of the Mechanical-Mathematical Faculty of Moscow University,”1 “probably the best seminar in the history of mathematics,”2 and even “one of the most productive seminars in the history of science.”3 According to seminar participants, the seminar “ardently followed all that was new in mathematics anywhere in the world”4 and “made a decisive impact on mathematical life in Moscow.”5 Many outstanding mathematicians remember the seminar fondly as their crucial coming-of-age experience. Before we conjure up an idyllic image of a harmonic chorus of great mathe- maticians conversing magnificently on topics of utmost scholarly importance, let us read a bit more from the memoirs of the same seminar participants. The seminar has 1Tikhomirov (2008), p. 10. 2Interview with Aleksei Sosinskii, 20 October 2009 (http://polit.ru/article/2009/10/20/absossinsky_ about_imgelfand/). 3Tikhomirov (2008), p. 25. 4Landis (2007), p. 69. 5Arnold (2009), p. 40. S. Gerovitch (&) Department of Mathematics, Massachusetts Institute of Technology, Massachusetts, USA e-mail: [email protected] © Springer International Publishing Switzerland 2016 51 B. Larvor (ed.), Mathematical Cultures, Trends in the History of Science, DOI 10.1007/978-3-319-28582-5_4 -
From Russia with Math
HERBHigher Education in Russia and Beyond From Russia with Math ISSUE 4(6) WINTER 2015 Dear colleagues, We are happy to present the sixth issue of Higher Education in Russia and Beyond, a journal that is aimed at bringing current Russian, Central Asian and Eastern European educational trends to the attention of the international higher education research community. The new issue unfolds the post-Soviet story of Russian mathematics — one of the most prominent academic fields. We invited the authors who could not only present the post-Soviet story of Russian math but also those who have made a contribution to its glory. The issue is structured into three parts. The first part gives a picture of mathematical education in the Soviet Union and modern Russia with reflections on the paths and reasons for its success. Two papers in the second section are devoted to the impact of mathematics in terms of scientific metrics and career prospects. They describe where Russian mathematicians find employment, both within and outside the academia. The last section presents various academic initiatives which highlight the specificity of mathematical education in contemporary Russia: international study programs, competitions, elective courses and other examples of the development of Russian mathematical school at leading universities. ‘Higher Education in Russia and Beyond’ editorial team Guest editor for this issue – Vladlen Timorin, professor and dean of the Faculty of Mathematics at National Research University Higher School of Economics. HSE National Research University Higher School of Economics Higher School of Economics incorporates 49 research is the largest center of socio-economic studies and one of centers and 14 international laboratories, which are the top-ranked higher education institutions in Eastern involved in fundamental and applied research. -
Felix Berezin Life and Death of the Mastermind of Supermathematics
January 29, 2007 11:38 WSPC/Trim Size: 9in x 6in for Proceedings Foreword iii FELIX BEREZIN LIFE AND DEATH OF THE MASTERMIND OF SUPERMATHEMATICS Edited by M. Shifman January 29, 2007 11:38 WSPC/Trim Size: 9in x 6in for Proceedings Foreword iv Copyright page The Editor and Publisher would like to thank the American Math- ematical Society for their kind permission to reprint the articles of V. Maslov, R. Minlos, M. Shubin, N. Vvedenskaya and the first article of A. Vershik from the American Mathematical Society Translations, Series 2, Advances in the Mathematical Sciences, Volume 175, 1996. Paintings Alexandra Rozenman Black-and-white sketches Yuri Korjevsky Graphic design Leigh Simmons Photographs Elena Karpel’s collection FELIX BEREZIN: LIFE AND DEATH OF THE MASTERMIND OF SUPERMATHEMATICS January 29, 2007 11:38 WSPC/Trim Size: 9in x 6in for Proceedings Foreword FOREWORD M. SHIFMAN W.I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455, USA [email protected] The story of this Memorial Volume is as follows. In the fall of 2005 Arkady Vainshtein mentioned in passing that he had received Elena Karpel’s essay on Felix Berezin from his friend Dmitri Gitman. Of course, every student and every practitioner of modern field theory knows the Berezin integral over the Grassmann variables, which con- stitutes the basis of the current approach to theories with fermions and quantization of gauge theories (introduction of ghosts). Without using the Berezin integral, string theory and supersymmetry stud- ies, which are at the focus of modern high-energy physics, would be extremely hard, if not impossible. -
Lectures on Statistical Physics
Felix Berezin Lectures on Statistical Physics Translated from the Russian and edited by D. Leites Abdus Salam School of Mathematical Sciences Lahore, Pakistan Summary. The book is an edited and updated transcript of the lectures on Sta- tistical Physics by the founder of supersymmetry theory | Felix Berezin. The lectures read at the Department of Mechanics and Mathematics of Moscow State University in 1966{67 contain inimitable Berezin's uniform approach to the Bose and Fermi particles, and his unique approach to quantization. These approaches were used with incredible success in the study of solid state physics, disorder and chaos (K. Efetov), and in a recent (and not yet generally accepted claim of) solution of one of Clay's Millennium problems (A. Dynin). The book is addressed to mathematicians (from sophomore level up) and physi- cists of any level. ISBN 978-969-9236-02-0 °c Dimitry Leites, translation into English and editing, 2009. °c Felix Berezin; his heirs, 2009. Contents Author's Preface . v Editor's preface . vi Part I The Classical Statistical Physics 1 Background from Classical Mechanics . 3 1 The Ensemble of Microscopic Subsystems ::::::::::::::::: 9 2 Physical assumptions. Ergodic Hypothesis. Gibbs's distribution. 9 3 An heuristic deduction of the Gibbs distribution . 14 4 A complete deduction of the Gibbs distribution . 17 5 Relation to thermodynamics . 24 6 Properties of the entropy . 33 7 Analytical appendix to Chapter 1 . 39 2 Real gases ::::::::::::::::::::::::::::::::::::::::::::::::: 43 8 Physical assumptions . 43 9 The Gibbs Distribution in the Small Canonical Ensemble . 46 10 The correlation functions in the small ensemble . 50 11 The Bogolyubov equations . -
Felix Berezin
FELIX BEREZIN This book is about Felix Berezin, an outstanding Soviet mathematician who in the 1960s and 70s was the driving force behind the emergence of the branch of mathematics now known as supermathematics. PART The integral over the anticoommuting Grassmann variables he introduced in the 1960s laid the ONE foundation for the path integral formulation of quantum field theory with fermions, the heart of modern supersymmetric field theories and superstrings. The Berezin integral is named for him, as is the closely related construction of the Berezinian which may be regarded as the superanalog of the determinant. PART In a masterfully written memoir Berezin’s widow, Elena Karpel, narrates a remarkable story of TWO Berezin’s life and his struggle for survival in the totalitarian Soviet regime. This story is supple- mented by recollections of Berezin’s close friends and colleagues. Berezin’s acccomplishments of Supermathematics Life and death of the mastermind in mathematics, his novel ideas and breakthrough works, are reviewed in two articles written by Andrei Losev and Robert Minlos. ABOUT M. Shifman is the Ida Cohen Fine Professor of Physics at the University of Minnesota. After receiv- THE EDITOR ing his PhD (1976) from the Institute of Theoretical and Experimental Physics in Moscow he went through all stages of the academic career there. In 1990 he moved to the USA to assume his present position as a member of the William I. Fine Theoretical Physics Institute at the University of Minnesota. In 1997 he was elected as a Fellow of the American Physical Society. He has had the honor of receiving the 1999 Sakurai Prize for Theoretical Particle Physics and the 2006 Julius Edgar Lilienfeld Prize for outstanding contributions to physics. -
Aspects of the Many-Body Problem in Nuclear Physics
Aspects of the Many-Body Problem in Nuclear Physics DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alexander Signatur Dyhdalo, MSc, BSc Graduate Program in Physics The Ohio State University 2018 Dissertation Committee: Prof. Richard Furnstahl, Advisor Prof. Robert Perry Prof. Michael Lisa Prof. Junko Shigemitsu c Copyright by Alexander Signatur Dyhdalo 2018 Abstract Low-energy nuclear physics has seen a renaissance of activity recently with the advent of the nuclear effective field theory (EFT) approach, the power of renormalization group techniques, and advances in the computational cost-effectiveness and sophistication of quan- tum many-body methods. Nevertheless challenges remain in part from ambiguities of the nuclear Hamiltonian via regulator artifacts and the scaling of the many-body methods to heavier systems. Regulator artifacts arise due to a renormalization inconsistency in the nuclear EFT as currently formulated in Weinberg power counting, though their ultimate impact on nuclear observables is unknown at present. This results in a residual cutoff dependence in the EFT to all orders. We undertake an examination of these regulator artifacts using perturba- tive energy calculations of uniform matter as a testbed. Our methodology has found that the choice of regulator determines the shape of the energy phase space and that different regulators weight distinct phase space regions differently. Concerning many-body calculations, at present only phenomenological energy density functionals are able to solve for the full table of nuclides. However these functionals are currently unconnected to QCD and have no existing method for systematic improvement. -
A Brief History of String Theory
THE FRONTIERS COLLECTION Dean Rickles A BRIEF HISTORY OF STRING THEORY From Dual Models to M-Theory 123 THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur Unit of Interdisciplinary Studies, Bar-Ilan University, 52900, Gières, France e-mail: [email protected] Laura Mersini-Houghton Department of Physics, University of North Carolina, Chapel Hill, NC 27599-3255 USA e-mail: [email protected] Maximilian Schlosshauer Department of Physics, University of Portland 5000 North Willamette Boulevard Portland, OR 97203, USA e-mail: [email protected] Mark P. Silverman Department of Physics, Trinity College, Hartford, CT 06106, USA e-mail: [email protected] Jack A. Tuszynski Department of Physics, University of Alberta, Edmonton, AB T6G 1Z2, Canada e-mail: [email protected] Rüdiger Vaas Center for Philosophy and Foundations of Science, University of Giessen, 35394, Giessen, Germany e-mail: [email protected] H. Dieter Zeh Gaiberger Straße 38, 69151, Waldhilsbach, Germany e-mail: [email protected] For further volumes: http://www.springer.com/series/5342 THE FRONTIERS COLLECTION Series editors A. C. Elitzur L. Mersini-Houghton M. Schlosshauer M. P. Silverman J. A. Tuszynski R. Vaas H. D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. -
Memories of a Theoretical Physicist
Memories of a Theoretical Physicist Joseph Polchinski Kavli Institute for Theoretical Physics University of California Santa Barbara, CA 93106-4030 USA Foreword: While I was dealing with a brain injury and finding it difficult to work, two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with whom I was recently collaborating), suggested that a new direction might be good. Steve in particular regarded me as a good writer and suggested that I try that. I quickly took to Steve's suggestion. Having only two bodies of knowledge, myself and physics, I decided to write an autobiography about my development as a theoretical physicist. This is not written for any particular audience, but just to give myself a goal. It will probably have too much physics for a nontechnical reader, and too little for a physicist, but perhaps there with be different things for each. Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow history of where I started and where I got to. Probably the target audience is theoretical physicists, especially young ones, who may enjoy comparing my struggles with their own.1 Some dis- claimers: This is based on my own memories, jogged by the arXiv and IN- SPIRE. There will surely be errors and omissions. And note the title: this is about my memories, which will be different for other people. Also, it would not be possible for me to mention all the authors whose work might intersect mine, so this should not be treated as a reference work. -
GREGOR WENTZEL February 17, 1898 - August 12, 1978
GREGOR WENTZEL February 17, 1898 - August 12, 1978 arXiv:0809.2102v1 [physics.hist-ph] 11 Sep 2008 BY PETER G.O. FREUND, CHARLES J. GOEBEL, YOICHIRO NAMBU AND REINHARD OEHME 1 Biographical sketch The initial of Gregor Wentzel's last name has found a solid place in the language of theoretical physics as the W of the fundamental WKB approxi- mation, which describes the semi-classical limit of any quantum system. Be- yond this fundamental contribution to quantum theory [1], Gregor Wentzel has played an important role in the theoretical physics of the first half of the twentieth century. Born in D¨usseldorfon 17 February, 1898, Gregor benefited from a rich and multi-faceted education. As the greatest events of his youth, Wentzel used to recall the local premi`eresof the symphonies of Gustav Mahler. A lifelong love for music was instilled in the young Gregor. During World War I he served in the army from 1917 to 1918. At the conclusion of that cataclysmic event, he continued his studies, migrating from university to university, as was customary in those days. First, until 1919 we find him at the University of Freiburg, then at the University of Greifswald, and as of 1920, just like Wolfgang Pauli and Werner Heisenberg and then later Hans Bethe among others, studying with the legendary teacher Arnold Sommerfeld at the Ludwig Maximilians University in Munich, where he obtained his Ph.D. with a thesis on Roentgen spectra [2]. Still in Munich he completed his Habilitation in 1922 and became a Privatdozent (roughly the equivalent of what today would be an assistant professor). -
Parallel Worlds
www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page i PARALLEL WORLDS www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page ii www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page iii Also by Michio Kaku Beyond Einstein Hyperspace Visions Einstein’s Cosmos www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page iv MICHIO KAKU DOUBLEDAY New York London Toronto Sydney Auckland www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page v PARALLEL WORLDS A JOURNEY THROUGH CREATION, HIGHER DIMENSIONS, AND THE FUTURE OF THE COSMOS www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page vi published by doubleday a division of Random House, Inc. doubleday and the portrayal of an anchor with a dolphin are regis- tered trademarks of Random House, Inc. Book design by Nicola Ferguson Illustrations by Hadel Studio Library of Congress Cataloging-in-Publication Data Kaku, Michio. Parallel worlds : a journey through creation, higher dimensions, and the future of the cosmos/Michio Kaku.—1st ed. p. cm. Includes bibliographical references 1. Cosmology. 2. Big bang theory. 3. Superstring theories. 4. Supergravity. I. Title. QB981.K134 2004 523.1—dc22 2004056039 eISBN 0-385-51416-6 Copyright © 2005 Michio Kaku All Rights Reserved v1.0 www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page vii This book is dedicated to my loving wife, Shizue. www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page viii www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page ix CONTENTS acknowledgments xi -
Dean Rickles a BRIEF HISTORY of STRING THEORY
THE FRONTIERS COLLECTION Dean Rickles A BRIEF HISTORY OF STRING THEORY From Dual Models to M-Theory 123 THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur Unit of Interdisciplinary Studies, Bar-Ilan University, 52900, Gières, France e-mail: [email protected] Laura Mersini-Houghton Department of Physics, University of North Carolina, Chapel Hill, NC 27599-3255 USA e-mail: [email protected] Maximilian Schlosshauer Department of Physics, University of Portland 5000 North Willamette Boulevard Portland, OR 97203, USA e-mail: [email protected] Mark P. Silverman Department of Physics, Trinity College, Hartford, CT 06106, USA e-mail: [email protected] Jack A. Tuszynski Department of Physics, University of Alberta, Edmonton, AB T6G 1Z2, Canada e-mail: [email protected] Rüdiger Vaas Center for Philosophy and Foundations of Science, University of Giessen, 35394, Giessen, Germany e-mail: [email protected] H. Dieter Zeh Gaiberger Straße 38, 69151, Waldhilsbach, Germany e-mail: [email protected] For further volumes: http://www.springer.com/series/5342 THE FRONTIERS COLLECTION Series editors A. C. Elitzur L. Mersini-Houghton M. Schlosshauer M. P. Silverman J. A. Tuszynski R. Vaas H. D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science.