Open Access Atmos. Chem. Phys., 14, 3789–3800, 2014 Atmospheric www.atmos-chem-phys.net/14/3789/2014/ doi:10.5194/acp-14-3789-2014 Chemistry © Author(s) 2014. CC Attribution 3.0 License. and Physics An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow T. P. Riedel1,2,*, G. M. Wolfe3,4, K. T. Danas2, J. B. Gilman5,6, W. C. Kuster5,6, D. M. Bon5,6, A. Vlasenko7, S.-M. Li7, E. J. Williams5,6, B. M. Lerner5,6, P. R. Veres5,6, J. M. Roberts5, J. S. Holloway5, B. Lefer8, S. S. Brown5, and J. A. Thornton2 1Department of Chemistry, University of Washington, Seattle, Washington, USA 2Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA 3Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA 4Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA 5NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, Colorado, USA 6Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA 7Air Quality Research Division, Science and Technology Branch, Environment Canada, Toronto, Canada 8Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA *Present address: Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA Correspondence to: J. A. Thornton (
[email protected]) Received: 13 October 2013 – Published in Atmos. Chem. Phys. Discuss.: 6 November 2013 Revised: 17 February 2014 – Accepted: 19 February 2014 – Published: 16 April 2014 Abstract.