Thuja Occidentalis) Swamps in Northern New York: Effects and Interactions of Multiple Variables

Total Page:16

File Type:pdf, Size:1020Kb

Thuja Occidentalis) Swamps in Northern New York: Effects and Interactions of Multiple Variables SUNY College of Environmental Science and Forestry Digital Commons @ ESF Dissertations and Theses Fall 12-16-2017 Plant Species Richness and Diversity of Northern White-Cedar (Thuja occidentalis) Swamps in Northern New York: Effects and Interactions of Multiple Variables Robert Smith SUNY College of Environmental Science and Forestry, [email protected] Follow this and additional works at: https://digitalcommons.esf.edu/etds Recommended Citation Smith, Robert, "Plant Species Richness and Diversity of Northern White-Cedar (Thuja occidentalis) Swamps in Northern New York: Effects and Interactions of Multiple Variables" (2017). Dissertations and Theses. 7. https://digitalcommons.esf.edu/etds/7 This Open Access Thesis is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. PLANT SPECIES RICHNESS AND DIVERSITY OF NORTHERN WHITE-CEDAR (Thuja occidentalis) SWAMPS IN NORTHERN NEW YORK: EFFECTS AND INTERACTIONS OF MULTIPLE VARIABLES by Robert L. Smith II A thesis submitted in partial fulfillment of the requirements for the Master of Science Degree State University of New York College of Environmental Science and Forestry Syracuse, New York November 2017 Department of Environmental and Forest Biology Approved by: Donald J. Leopold, Major Professor René H. Germain, Chair, Examining Committee Donald J. Leopold, Department Chair S. Scott Shannon, Dean, The Graduate School ACKNOWLEDGEMENT I would like to thank my major professor, Dr. Donald J. Leopold, for his great advice during our many meetings and email exchanges. In addition, his visit to my study site and recommended improvements to my thesis were very much appreciated. I also thank my committee members, Dr. H. Brian Underwood and Dr. Gregory McGee, for taking some of your valuable time to meet with me, answering my many questions, and providing me with some great advice during these meetings and ecolunch. I also thank Jason Wagner, Chief, Fort Drum Natural Resources branch, for sponsoring me and allowing me to conduct my research on Fort Drum. I thank Dr. Steve Stehman for his statistical advice, which was thoroughly used during my analysis, and both Dr. Russell Briggs and Chuck Schirmer for answering questions I had concerning my soil analysis. This work would not be possible without the funding from the Edna Bailey Sussman Foundation and the TA positions that kept me financially secure for two years of my graduate studies. Much thanks need to go to my lab mates, past and present, (Grete Bader, Kristen Haynes, Toby Liss, Kali Mattingly, Jim Molloy, Alex Petzke, Jess Saville, and Justine Weber) for the very valuable conversations we had during meetings, ecolunch, and the office. Also, many thanks to Geoff Griffiths and Margaret Roberts who took the time to talk to me, look through my data, and provided me with sound advice on how to go forward with my analysis. I would like to especially thank Chellby Kilheffer for the great amount of time she took out of her very busy schedule to go over my research data, discuss its significance, and teach me how to code in R. Thanks to all the ecolunch participants who watched me present my research four times and were still very attentive and helpful. Extra special thanks must go to my wife, Gala, who has supported me for the seven years that I have been going to school and proofread all my papers during this time. This support came after all the support she gave me during my 20 years in the Army! I truly could not have done this without her. ii TABLE OF CONTENTS LIST OF TABLES……………………………………………………...……..............................vi LIST OF FIGURES……...................……………….…………….…..…………………............ vii LIST OF APPENDICES................................................................................................................ix ABSTRACT...................................................................................................................................x PREFACE......................................................................................................................................1 CHAPTER 1. Investigating the Effects of Abiotic Factors on Vascular Plant Species Richness and Diversity in Northern White-Cedar Swamps Abstract.................................................................................................................................... 2 1. Introduction…...................................................................................................................... 2 2. Methods............................................................................................................................... 6 2.1. Study Area.................................................................................................................... 6 2.2. Disturbance History...................................................................................................... 8 2.3. Plot Sampling Design................................................................................................... 8 2.4. Vegetation Sampling Methods .................................................................................... 10 2.5. Soil Specific Conductivity and pH Sampling Methods................................................ 10 2.6. Water Table Depth and Fluctuation Sampling Methods............................................... 11 2.7. Canopy Gap Sampling Method..................................................................................... 11 2.8. Microtopography Sampling Method............................................................................. 11 2.9. Statistical Analyses....................................................................................................... 12 3. Results.................................................................................................................................. 13 3.1. Disturbance History...................................................................................................... 13 3.2. Environmental Variables.............................................................................................. 13 3.3. Species Richness........................................................................................................... 14 3.4. Linear Relationship between Environmental Variables and Plot Richness.................. 15 3.5. Multiple Regression Model for Plot Richness and Variable Correlation…................. 19 3.6. Species Composition..................................................................................................... 20 3.7. Wetland Status.............................................................................................................. 23 3.8. State Protected Species................................................................................................. 23 3.9. Dominant Species......................................................................................................... 25 iii 3.10. Non-Native Species..................................................................................................... 28 3.11. Swamp Richness and Variable Heterogeneity............................................................ 28 4. Discussion............................................................................................................................. 29 4.1. Disturbance History....................................................................................................... 29 4.2. Area and Species Richness............................................................................................ 32 4.3. Linear Relationship between Environmental Variables and Plot Richness.................. 33 4.4. Multiple Regression Model for Plot Richness and Variable Correlation..................... 35 4.5. Species Composition.....................................................................................................37 4.6. Wetland Status...............................................................................................................38 4.7. State Protected Species.................................................................................................. 38 4.8. Dominant Species.......................................................................................................... 39 4.9. Non-Native Species....................................................................................................... 40 4.10. Swamp Richness and Variable Heterogeneity............................................................ 41 5. Conclusion............................................................................................................................ 43 Literature Cited.........................................................................................................................45 CHAPTER 2. Investigating the Effects of Deer Density on the Species Richness/Diversity in Northern White-Cedar Swamps. Abstract..................................................................................................................................... 54 1. Introduction........................................................................................................................... 54 2. Methods...............................................................................................................................
Recommended publications
  • Thuja Plicata Has Many Traditional Uses, from the Manufacture of Rope to Waterproof Hats, Nappies and Other Kinds of Clothing
    photograph © Daniel Mosquin Culturally modified tree. The bark of Thuja plicata has many traditional uses, from the manufacture of rope to waterproof hats, nappies and other kinds of clothing. Careful, modest, bark stripping has little effect on the health or longevity of trees. (see pages 24 to 35) photograph © Douglas Justice 24 Tree of the Year : Thuja plicata Donn ex D. Don In this year’s Tree of the Year article DOUGLAS JUSTICE writes an account of the western red-cedar or giant arborvitae (tree of life), a species of conifers that, for centuries has been central to the lives of people of the Northwest Coast of America. “In a small clearing in the forest, a young woman is in labour. Two women companions urge her to pull hard on the cedar bark rope tied to a nearby tree. The baby, born onto a newly made cedar bark mat, cries its arrival into the Northwest Coast world. Its cradle of firmly woven cedar root, with a mattress and covering of soft-shredded cedar bark, is ready. The young woman’s husband and his uncle are on the sea in a canoe carved from a single red-cedar log and are using paddles made from knot-free yellow cedar. When they reach the fishing ground that belongs to their family, the men set out a net of cedar bark twine weighted along one edge by stones lashed to it with strong, flexible cedar withes. Cedar wood floats support the net’s upper edge. Wearing a cedar bark hat, cape and skirt to protect her from the rain and INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite, A grove of 80- to 100-year-old Thuja plicata in Queen Elizabeth Park, Vancouver.
    [Show full text]
  • Dying Cedar Hedges —What Is the Cause?
    Points covered in this factsheet Symptoms Planting problems Physiological effects Environmental, Soil and Climate factors Insect, Disease and Vertebrate agents Dying Cedar Hedges —What Is The Cause? Attractive and normally trouble free, cedar trees can be great additions to the landscape. Dieback of cedar hedging in the landscape is a common prob- lem. In most cases, it is not possible to pinpoint one single cause. Death is usually the result of a combination of envi- ronmental stresses, soil factors and problems originating at planting. Disease, insect or animal injury is a less frequent cause. Identifying The Host Certain species of cedar are susceptible to certain problems, so identifying the host plant can help to identify the cause and whether a symptom is an issue of concern or is normal for that plant. The most common columnar hedging cedars are Thuja plicata (Western Red Cedar - native to the West Coast) and Thuja occidentalis (American Arborvitae or Eastern White ICULTURE, PLANT HEALTH UNIT Cedar). Both species are often called arborvitae. Common varieties of Western Red ce- dar are ‘Emerald Giant’, ‘Excelsa’ and Atrovirens’. ‘Smaragd’ and ‘Pyramidalis’ are com- mon varieties of Eastern White cedar hedging. Species of Cupressus (Cypress), Chamaecyparis nootkatensis (Yellow Cedar or False Cypress) and Chamaecyparis law- soniana (Port Orford Cedar or lawsom Cypress) are also used in hedging. Symptoms The pattern of symptom development/distribution can provide a clue to whether the prob- lem is biotic (infectious) or abiotic (non-infectious). Trees often die out in a group, in one section of the hedge, or at random throughout the hedge.
    [Show full text]
  • Behavioral Responses of American Black Bears to Reduced Natural Foods: Home Range Size and Seasonal Migrations
    BEHAVIORAL RESPONSES OF AMERICAN BLACK BEARS TO REDUCED NATURAL FOODS: HOME RANGE SIZE AND SEASONAL MIGRATIONS Spencer J. Rettler1, David L. Garshelis, Andrew N. Tri, John Fieberg1, Mark A. Ditmer2 and James Forester1 SUMMARY OF FINDINGS American black bears (Ursus americanus) in the Chippewa National Forest demonstrated appreciable fat reserves and stable reproduction despite a substantial decline in natural food availability over a 30-year period. Here we investigated potential strategies that bears may have employed to adapt to this reduction in food. We hypothesized that bears increased their home range sizes to encompass more food and/or increased the frequency, duration and distance of large seasonal migrations to seek out more abundant food resources. We estimated home range sizes using both Minimum Convex Polygon and Kernel Density Estimate approaches and developed a method to identify seasonal migrations. Male home range sizes in the 2010s were approximately twice the size of those in the 1980s; whereas, female home ranges tripled in size from the 1980s to the 2010s. We found little difference in migration patterns with only slight changes to duration. Our results supported our hypothesis that home range size increased in response to declining foods, which may explain why body condition and reproduction has not changed. However, these increased movements, in conjunction with bears potentially consuming more human-related foods in the fall, may alter harvest vulnerability, and should be considered when managing the bear hunt. INTRODUCTION As a large generalist omnivore, American black bears (Ursus americanus; henceforth black bear or bear) demonstrate exceptional plasticity in response to changes in food availability.
    [Show full text]
  • Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part II Cupressoideae
    1 2 Bull. CCP 4 (2): 51-78. (10.2015) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part II Cupressoideae Summary The cone morphology of the Cupressoideae genera Calocedrus, Thuja, Thujopsis, Chamaecyparis, Fokienia, Platycladus, Microbiota, Tetraclinis, Cupressus and Juniperus are presented in young stages, at pollination time as well as at maturity. Typical cone diagrams were drawn for each genus. In contrast to the taxodiaceous Cupressaceae, in Cupressoideae outgrowths of the seed-scale do not exist; the seed scale is completely reduced to the ovules, inserted in the axil of the cone scale. The cone scale represents the bract scale and is not a bract- /seed scale complex as is often postulated. Especially within the strongly derived groups of the Cupressoideae an increased number of ovules and the appearance of more than one row of ovules occurs. The ovules in a row develop centripetally. Each row represents one of ascending accessory shoots. Within a cone the ovules develop from proximal to distal. Within the Cupressoideae a distinct tendency can be observed shifting the fertile zone in distal parts of the cone by reducing sterile elements. In some of the most derived taxa the ovules are no longer (only) inserted axillary, but (additionally) terminal at the end of the cone axis or they alternate to the terminal cone scales (Microbiota, Tetraclinis, Juniperus). Such non-axillary ovules could be regarded as derived from axillary ones (Microbiota) or they develop directly from the apical meristem and represent elements of a terminal short-shoot (Tetraclinis, Juniperus).
    [Show full text]
  • Nursery Catalog
    Tel: 503.628.8685 Fax: 503.628.1426 www.eshraghinursery.com 1 Eshraghi’s TOP 10 picks Our locations 1 Main Office, Shipping & Growing 2 Retail Store & Growing 26985 SW Farmington Road Farmington Gardens Hillsboro, OR 97123 21815 SW Farmington Road Beaverton, OR 97007 1 2 3 7 6 3 River Ranch Facility 4 Liberty Farm 4 5 10 N SUNSET HWY TO PORTLAND 8 9 TU HILLSBORO ALA TIN 26 VALL SW 185TH AVE. EY HWY. #4 8 BEAVERTON TONGUE LN. GRABEL RD . D R . E D G R ID E ALOHA R G B D I R R #3 SW 209TH E B T D FARMINGTON ROAD D N A I SIMPSON O O M O R R 10 217 ROSEDALE W R E S W V S I R N W O 219 T K C A J #2 #1 SW UNGER RD. SW 185TH AVE. 1 Acer circinatum ‘Pacific Fire’ (Vine Maple), page 6 D A SW MURRAY BLVD. N RO 2 palmatum (Japanese Maple), NGTO Acer 'Geisha Gone Wild' page 8 FARMI 3 Acer palmatum 'Mikawa yatsubusa' (Japanese Maple), page 10 #1 4 Acer palmatum dissectum 'Orangeola' (Japanese Maple), page 14 5 Hydrangea macrophylla 'McKay', Cherry Explosion PP28757 (Hydrangea), page 32 6 Picea glauca 'Eshraghi1', Poco Verde (White Spruce), page 61 ROAD HILL CLARK 7 Picea pungens 'Hockersmith', Linda (Colorado Spruce), page 64 RY ROAD 8 Pinus nigra 'Green Tower' (Austrian Pine), page 65 SCHOLLS FER 9 Thuja occidentalis 'Janed Gold', Highlights™ PP21967 (Arborvitae), page 70 10 Thuja occidentalis 'Anniek', Sienna Sunset™ (Arborvitae), page 69 Table of contents Tags Make a Difference .
    [Show full text]
  • Ladys' Slipper Orchids of India
    Ladys’ SlipperH.J. Chowdhery Orchids of India ABOUT THE BOOK The Lady's Slipper or Slipper Orchids are an extremely well known group of orchids. The are popularly called Lady's slippers because of the presence of a highly modified pouch-like lip or labellum, which looks similar to a lady's slipper. They are highly priced and much sought after in the floriculture industry as potted plants as well as cut flowers due to their enchantingly attractive, colourfull blooms and ability to remain fresh for several weeks. The presently known five lady's slipper orchid genera , which belong to the orchid subfamily Cypripedioideae are widely distributed in the temperate regions of Eurasia and North America, Central America south to Brazil and Bolivia, tropical Asia from India across to Taiwan, south-east Asia from Indo-China acrossP. druryi to the, which Philippines, is endemic New to Guinea, Western and Ghats. the Solomon Islands. In India, only two genera namely Cypripedium and Paphiopedilum are found, which are confined to the Himalayan and North-East Indian region except one species of Paphiopedilum The book is the first ever comprehensive taxonomic treatment of Indian Slipper orchids. In the introductory part of the book, a brief history of lady’s slipper orchids, their taxonomy and a glimpse of all the five known genera of this group has been provided. The main part of the text comprises of the detailed taxonomic information on the 14 species of lady’s slippers (Cypripedium-5 and Paphiopedilum-9) reported from India. The descriptions for all the species have been drawn from the live plants along with colour plates made from fresh flowers for the first time for these orchids.
    [Show full text]
  • Conifer Quarterly
    cover 10/11/04 3:58 PM Page cov1 Conifer Quarterly Vol. 21 No. 4 Fall 2004 cover 10/11/04 3:58 PM Page cov2 An exhibit at the New York Botanical Gardens, coinciding with the re-opening of their refurbished conifer collection, runs from October 30, 2004, through January 30, 2005. Read more on page 27. NYBG of Tom Cox Courtesy Right: Thuja occidentalis ‘Emerald’ at the Cox Arboretum in Georgia. Below: Thuja occidentalis ‘Golden Tuffet,’ also at the Cox Arboretum. Turn to page 6 to read about more arborvitae cultivars. Cox Tom Inside-5.qxp 10/6/04 3:53 PM Page 1 The Conifer Quarterly is the publication of The Conifer Society Contents Featured conifer genus: Thuja (arborvitae) 6 Arborvitae in Your Ornamental Conifer Garden Tom Cox 12 Improving the Tree of Life: Thuja occidentalis From Seed Clark West 17 Thuya Garden: An Oasis Along Maine’s Rocky Coast Anne Brennan 20 Reader Recommendations More features 26 Grand Re-Opening of Benenson Ornamental Conifers from the New York Botanical Garden 32 Marvin Snyder Recognized for Dedicated Support 33 Award for Development in the Field of Conifers Presented to J.R.P. van Hoey Smith 38 All Eyes on Ohio Bill Barger 42 Dutch Conifer Society Tours West Coast Don Howse Conifer Society voices 2 President’s Message 4 Editor’s Memo 30 Conifer Puzzle Page 36 Iseli Grant Recipient Announced 37 Conifers in the News 46 News from our Regions Cover photo: Thuja occidentalis ‘Gold Drop’ in the garden of Charlene and Wade Harris. See the article beginning on page 12 to read more about this cultivar.
    [Show full text]
  • Northern White-Cedar, the Lightest of Any Commercial Wood in the United States, Grows Primarily in the Lake States and Maine
    Forest Service Northern An American Wood United States Department of Agriculture White-Cedar FS-227 Northern white-cedar, the lightest of any commercial wood in the United States, grows primarily in the Lake States and Maine. It grows in both pure and mixed stands, mostly in swamps but also on uplands. The heartwood is resistant to decay and subterranean termites, is easy to work, glues well, holds paint well, and has little dimensional change. However, the wood is soft and has low mechanical properties such as bending strength and nail-holding ability. Recent uses have been prin- cipally for rustic fencing and posts. Other uses include cabin logs, lumber, poles, shingles, and several specialty products. NOTE: This publication supersedes “North- ern White-Cedar,” unnumbered American Woods leaflet, 1945. An American Wood Northern White-Cedar (Thuja occidentalis L.) William F. Johnston and Matti J. Hyvarinen 1 Distribution The range of the northern white-cedar (Thuja occidentalis L.) extends mainly through the southern part of the eastern half of Canada and the adjacent northern part of the United States. Specifically, it extends westward from Nova Scotia to the southern part of James Bay and through central Ontario to south- eastern Manitoba, and then south through central Minnesota and Wisconsin, along a narrow fringe around the southern tip of Lake Michigan and through southern Michigan, southern New York, and central Vermont and New Hampshire (fig. 1). The species also grows lo- cally, north of the main range in northwestern Ontario and west- central Manitoba, and south of the main range in Minnesota, Wisconsin, Illinois, Ohio, southern New England, and in the Appalachian Mountains from western Penn- sylvania south to western North Carolina and eastern Tennessee.
    [Show full text]
  • Northern White- Cedar
    NORTHERN WHITE- The essential oil of northern white cedar is used in cleansers, disinfectants, hair preparations, CEDAR insecticides, liniment, room sprays, and soft soaps. The Ojibwa are said to have made soup from the Thuja occidentalis L. inner bark of the young twigs. The twigs are used by plant symbol = THOC2 some to make teas for relief of constipation and headache. Contributed By: USDA, NRCS, National Plant Data Center & the Biota of North America Program Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status, such as, state noxious status and wetland indicator values. Description General: Cypress family (Cupressaceae). Native shrub or tree growing to 15 (-38) meters tall, the crown narrowly conic to broadly pyramidal, with spreading, densely crowded branches; branchlets flattened, in fan-shaped sprays. Bark is gray to R.A. Seelig reddish-brown, 6-9 mm thick, fibrous, separated into Botany Dept., NMNH, Smithsonian Institution flat, connected ridges. Leaves are evergreen, scale- @ PLANTS like and abruptly pointed, 2 mm long, opposite in Alternate common names alternating pairs (in 4 rows), bright green above and Eastern arborvitae, American arborvitae, eastern pale green below, sometimes becoming yellow- white-cedar, swamp-cedar, Atlantic red cedar, swamp brown in winter, with a spicy fragrance when cedar crushed. Seed cones are ellipsoid, (6-)9-14 mm long, brown; seeds ca. 8 per cone, 4-7 mm long, with Uses lateral wings about as wide as the body. The More than 120 named cultivars of northern white common name pertains to its northern distribution, cedar have been named and used as ornamental trees cedar-like appearance, and white wood.
    [Show full text]
  • Slippers of the Spirit
    SLIPPERS OF THE SPIRIT The Genus Cypripedium in Manitoba ( Part 1 of 2 ) by Lorne Heshka he orchids of the genus Cypripedium, commonly known as Lady’s-slippers, are represented by some Tforty-five species in the north temperate regions of the world. Six of these occur in Manitoba. The name of our province is aboriginal in origin, borrowed Cypripedium from the Cree words Manitou (Great Spirit) and wapow acaule – Pink (narrows) or, in Ojibwe, Manitou-bau or baw. The narrows Lady’s-slipper, or referred to are the narrows of Lake Manitoba where strong Moccasin-flower, winds cause waves to crash onto the limestone shingles of in Nopiming Manitou Island. The First Nations people believed that this Provincial Park. sound was the voice or drumbeat of the Manitou. A look at the geological map of Manitoba reveals that the limestone bedrock exposures of Manitou Island have been laid down by ancient seas and underlies all of southwest Manitoba. As a result, the substrates throughout this region Lorne Heshka are primarily calcareous in nature. The Precambrian or Canadian Shield occupies the portion of Manitoba east of N HIS SSUE Lake Winnipeg and north of the two major lakes, to I T I ... Nunavut. Granitic or gneissic in nature, these ancient rocks create acidic substrates. In the north, the Canadian Shield Slippers of the Spirit .............................p. 1 & 10-11 adjacent to Hudson Bay forms a depression that is filled Loving Parks in Tough Economic Times ................p. 2 with dolomite and limestone strata of ancient marine Member Profile: June Thomson ..........................p. 3 origins.
    [Show full text]
  • Finding List and Guide to Tllc Secrest Arboretum
    SPECIAL CIRCULAR 91 MAY 1960 REV ISED Finding List and Guide to tllc Secrest Arboretum Wood Utilization Research Laboratory and Secrest Arboretum Headquarters Effective July 1, 1965, the name of the Ohio Agricultural Experiment Station was changed to: 0 Ohio Agricu ltura I Research and Development Center, ')ll Wooster, Ohio • This page intentionally blank. • GUIBE TO THE SECREST ARBORETUM OHIO AGRICULTURAL EXPERJMENT STATION WOOSTER, OHIO '/ By John E. Aughanbaugh, Harry R. Muckley, and Oliver D. Diller* In May 1950 the forest and ornamental plantings at the Ohio Agricultural Experiment Station were dedicated as the Secrest Arboretum in memory of Edmund Secrest, the father of forestry in Ohio. Since 19o8 these plantings have been expanded to include well over 600 species and varieties of trees and shrubs from many parts of the world. It is the purpose of this publication to serve as a finding list and guide to the Arboretum. The Purpose of the Arboretum One purpose of the Arboretum is to _determine the species and varieties of trees adapted for ornamental, windbreak, and shelterbelt uses in 6hio. There are many varieties of spruces, firs, yews, arborvitae, and other coniferous trees and shrubs growing here for observation by people interested in landscaping and the planting of shelterbelts. Among the more recent additions to the Arboretum is a collection of over 60 varieties of flowering crabapples, 57 selections of hollies and a plot of Chinese dawnredwood. The second purpose of the Arboretum is to determine the spe?ies of trees best adapted for reforestation in Ohio and to determine the silvicultural requirements that will obtain best results in growth and maturity.
    [Show full text]
  • Response of Cypripedium and Goodyera to Disturbance in the Thunder Bay Area
    Lakehead University Knowledge Commons,http://knowledgecommons.lakeheadu.ca Electronic Theses and Dissertations Undergraduate theses 2018 Response of Cypripedium and Goodyera to disturbance in the Thunder Bay area Davis, Danielle http://knowledgecommons.lakeheadu.ca/handle/2453/4426 Downloaded from Lakehead University, KnowledgeCommons 5(63216(2)&<35,3(',80$1'*22'<(5$72',6785%$1&(,1 7+(7+81'(5%$<$5($ E\ 'DQLHOOH'DYLV )$&8/7<2)1$785$/5(6285&(60$1$*(0(17 /$.(+($'81,9(56,7< 7+81'(5%$<217$5,2 0D\ RESPONSE OF CYPRIPEDIUM AND GOODYERA TO DISTURBANCE IN THE THUNDER BAY AREA by Danielle Davis An Undergraduate Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Honours Bachelor of Environmental Management Faculty of Natural Resources Management Lakehead University May 2018 Major Advisor Second Reader ii LIBRARY RIGHTS STATEMENT In presenting this thesis in partial fulfillment of the requirements for the HBEM degree at Lakehead University in Thunder Bay, I agree that the University will make it freely available for inspection. This thesis is made available by my authority solely for the purpose of private study and research and may not be copied or reproduced in whole or in part (except as permitted by the Copyright Laws) without my written authority. Signature: Date: iii A CAUTION TO THE READER This HBEM thesis has been through a semi-formal process of review and comment by at least two faculty members. It is made available for loan by the Faculty of Natural Resources Management for the purpose of advancing the practice of professional and scientific forestry.
    [Show full text]