Bangor University DOCTOR of PHILOSOPHY

Total Page:16

File Type:pdf, Size:1020Kb

Bangor University DOCTOR of PHILOSOPHY Bangor University DOCTOR OF PHILOSOPHY Physiological capacities of Gammarid amphipods to survive environmental change Crichton, Rosemary Award date: 2014 Awarding institution: Bangor University Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 26. Sep. 2021 Physiological capacities of gammarid amphipods to survive environmental change Rosemary Crichton Summary The aim of this thesis was to investigate the abilities of confamilial gammarid amphipods with differing latitudinal distribution patterns to compensate for environmental change and to examine the consequences. Interesting variations were observed in the strategies employed by gammarid amphipods to cope with environmental change. The boreal/temperate species, Gammarus duebeni, exhibits a high upper thermal tolerance and acclimatory ability, but at the cost of reduced growth and reproductive output. The warmer-water G. locusta appears to have a narrower tolerance and reduced ability to adjust to rapid temperature change, but at stable conditions within its thermal window and at higher salinities it is able to out-perform G. duebeni. G. duebeni may therefore be more likely to survive environmental change, but G. locusta populations may be better able to recover from high mortality events. A similar upper thermal limit and temperature independence of metabolic was observed in the subarctic/boreal species G. oceanicus compared with G. duebeni, however G. oceanicus also demonstrated r-selected life history traits. G. oceanicus and G. locusta occupy overlapping geographical ranges and the same low shore niche, but G. oceanicus appears to have a broader tolerance at a lower optimal temperature than G. locusta. Intraspecific variation was observed between two populations of G. duebeni from Wales (53 °N) and Norway (70 °N). Following acclimation to common temperatures, the northern population was characterised by reduced upper thermal limits and rates of oxygen uptake, a greater thermal sensitivity of oxygen uptake, and evidence of the upregulation of protein synthesis and growth rates in the cold. The influence of the combined factors of salinity and temperature on physiological rate processes in G. duebeni was complex. G. duebeni was less able to adjust to rapid temperature change when acclimated to salinities equivalent to full strength seawater than when held in brackish conditions. i Contents Summary i Contents ii List of figures and tables vii Acknowledgments viii Abbreviations ix Chapter 1 – General introduction 1 1.1. Thermal tolerance and thermal sensitivity 3 1.2. Total energy demand 5 1.3. Protein synthesis and associated variables 8 1.4. Growth, protein synthesis retention efficiency, and body size 10 1.5. Life history strategies 15 1.6. Salinity tolerance and osmoregulation 17 1.7. Gammarid amphipods 21 1.8. Aims and objectives 22 Chapter 2 – General methodology 25 2.1. Collection sites 26 2.1.1. Anglesey, Wales, 53 °N 28 2.1.1.1. Collection site 28 2.1.1.2. Temperature profile 28 2.1.2. Isle of Skye, Scotland, 58 °N 29 2.1.3. Tromsø, Norway, 70 °N 30 2.1.3.1. Collection site 30 2.1.3.2. Temperature profile 31 2.1.4. Ny-Ålesund, Svalbard, Norway, 79 °N 32 2.1.5. Comparison of the thermal regimes of Rhoscolyn and Tromsø 33 2.2. Husbandry 35 2.2.1. Transport 35 ii 2.2.2. Husbandry conditions 36 Chapter 3 – Upper critical limits and the effect of temperature acclimation 40 3.1. Abstract 41 3.2. Introduction 41 3.3. Methodology 44 3.3.1. Thermal tolerance of field-acclimatised gammarids 44 3.3.2. Thermal tolerance of acclimated gammarids 46 3.3.3. The influence of rate of warming on upper thermal limits 47 3.3.4. Statistical analysis 47 3.4. Results 48 3.4.1. Thermal tolerance of field-acclimatised gammarids 48 3.4.2. Thermal tolerance of acclimated gammarids 49 3.4.3. The influence of rate of warming on upper thermal limits 52 3.4.4. Summary 53 3.5. Discussion 54 3.5.1. Effect of latitude 54 3.5.2. Effect of temperature acclimation 55 3.5.3. Effect of salinity acclimation on Gammarus duebeni 59 3.5.4. Effect of rate of warming 61 3.5.5. Conclusion 62 Chapter 4 – The effect of acclimation on aerobic metabolism: rates of oxygen uptake and citrate synthase activity 64 4.1. Abstract 65 4.2. Introduction 65 4.3. Methodology 67 4.3.1. Rates of oxygen uptake 67 4.3.1.1. Field-acclimatised juveniles 68 4.3.1.2. Acclimated amphipods 65 4.3.1.3. Calculation of MO2 and Q10 values 70 4.3.2. Citrate synthase activity in acclimated gammarid amphipods 70 iii 4.3.3. Statistical analysis 71 4.4. Results 72 4.4.1. Rates of oxygen uptake in gammarid amphipods 72 4.4.1.1. Field-acclimatised juveniles and long term acclimation of adults 72 4.4.1.2. Six week acclimation of adults 73 4.4.2. Thermal sensitivity of oxygen uptake in acclimated gammarid amphipods 75 4.4.3. Aerobic capacity in acclimated gammarid amphipods 78 4.5. Discussion 80 4.5.1. Resting metabolic rates and thermal sensitivity 80 4.5.2. Aerobic capacity 87 4.5.3. Conclusions 90 Chapter 5 – Thermal responses of protein synthesis and growth 91 5.1. Abstract 92 5.2. Introduction 92 5.3. Methodology 96 5.3.1. Determination of protein synthesis rates 96 5.3.1.1. Injection regime 96 5.3.1.2. Validation of the flooding dose methodology 97 5.3.1.3. Analysing protein synthesis rates 97 5.3.1.4. Calculations 99 5.3.1.5. Statistical analysis 100 5.3.2. Adult growth rates 100 5.3.2.1. Measurements of adult growth rates 100 5.3.2.2. Statistical analysis 101 5.4. Results 101 5.4.1. Protein synthesis rates 101 5.4.1.1. Validation of the flooding dose methodology 101 5.4.1.2. Whole-animal fractional and absolute rates of protein synthesis 103 5.4.1.3. RNA concentrations and activities 105 5.4.2. Adult growth rates 110 5.5. Discussion 111 5.5.1. Whole-animal fractional and absolute rates of protein synthesis 111 iv 5.5.2. RNA concentrations and activities 114 5.5.3. Adult growth rates 116 5.5.4. Conclusions 120 Chapter 6 – Life history of gammarid amphipods: brood size and juvenile growth rates 121 6.1. Abstract 122 6.2. Introduction 122 6.3. Methodology 125 6.3.1. Brood size 125 6.3.2. Juvenile growth rates 126 6.3.3. Statistical analysis 127 6.4. Results 128 6.4.1. Brood size 128 6.4.2. Juvenile growth rates 129 6.5. Discussion 132 6.5.1. Brood size 132 6.5.2. Juvenile growth rates 137 6.5.3. Conclusions 141 Chapter 7 – General discussion 143 7.1. Gammarus duebeni 144 7.1.1. Effects of temperature on thermal tolerances & biological rate processes 144 7.1.2.Effects of temperature on growth 145 7.1.3. Effects of temperature on life history traits 146 7.1.4. Effects of temperature plus salinity 147 7.1.5. Effects of latitude 148 7.1.6. Effects of season 149 7.1.7. Summary 150 7.2. Gammarus locusta 150 7.3. Gammarus oceanicus 153 7.4. Summary 154 v 7.5. Future directions 155 References 157 vi List of figures and tables Chapter 1 – General introduction Table 1.1. Body size and growth rates of Gammarus species……………………………………………….. 14 Table 1.2 Reproductive outputs of Gammarus species……………………………………………………….. 16 Chapter 2 – General methodology Figure 2.1. Map of sites and species distributions…………………………………………………………………. 26 Table 2.1 Location of the collection sites and Gammarus species sampled…………………………. 27 Figure 2.2 Rhosneigr and Rhoscolyn, Anglesey, Wales…………………………………………………………. 29 Figure 2.3. In situ temperatures, Isle of Skye, Scotland…………………………………………………………. 30 Figure 2.4. Tromsø, Norway………………………………………………………………………………………………….. 31 Figure 2.5. In situ habitat temperatures, Norway………………………………………………………………….. 33 Figure 2.6. In situ temperature comparison, Wales and Norway…………………………………………… 34 Table 2.2. In situ temperatures during collection months, Wales and Norway…………………….. 35 Table 2.3 Acclimation temperatures and salinities……………………………………………………………… 38 Chapter 3 – Upper critical limits and the effect of temperature acclimation Table 3.1. Acclimation conditions………………………………………………………………………………………… 46 Figure 3.1. Upper thermal limits in acclimatised gammarid amphipods………………………………… 49 Figure 3.2. Upper thermal limits in G. duebeni (53 and 70 °N)………………………………………………. 50 Figure 3.3. Percentage mortality of G. duebeni according to temperature (53 °N)………………... 51 Figure 3.4. Upper thermal limits in G. duebeni and G. locusta (53 °N)…………………………………… 52 Figure 3.5. Effect of rate of warming on thermal limits in G. duebeni……………………………………. 53 Chapter 4 – The effect of acclimation on metabolism: rates of oxygen uptake and citrate synthase activity Table 4.1. Acclimation conditions………………………………………………………………………………………… 69 Figure 4.1. Rates of oxygen uptake in acclimatised juveniles………………………………………………… 72 Figure 4.2. Rates of oxygen uptake in acclimated adults……………………………………………………….. 73 Figure 4.3. Rates of oxygen uptake in G.
Recommended publications
  • Characteristics and Potential Causes of Declining Diporeia Spp
    Characteristics and Potential Causes of Declining Diporeia spp. Populations in Southern Lake Michigan and Saginaw Bay, Lake Huron Thomas F. Nalepa1 Great Lakes Environmental Research Laboratory, NOAA 2205 Commonwealth Blvd. Ann Arbor, Michigan, U.S.A. 48105 David L. Fanslow Great Lakes Environmental Research Laboratory, NOAA 2205 Commonwealth Blvd. Ann Arbor, Michigan, U.S.A. 48105 Gretchen Messick Cooperative Oxford Laboratory, NOAA 904 S. Morris Street Oxford, Maryland, U.S.A. 21654 Abstract Populations of the amphipods Diporeia spp. are declining in all of the Great Lakes except Lake Superior. We examine characteristics and potential causes of declines in southern Lake Michigan and outer Saginaw Bay, Lake Huron. Amphipod populations began to decline within 3-4 years after zebra mussels (Dreissena polymorpha) colonized both areas. In Lake Michigan, which was better studied, the decline occurred first in shallow waters (<30 m) and then progressed deeper (51-90 m). Between 1980- 1981 (pre-Dreissena) and 1998-1999 (post-Dreissena), densities at sites in these two depth intervals declined 92% 1 Corresponding author: [email protected] 157 and 58%, respectively. At a 45-m site in southeastern Lake Michigan, densities of Diporeia spp. declined to near zero within six months even though mussels were never collected at the site itself. At a nearby 45-m site, densities declined gradually to zero over a six-year period and correlated with increased mussel densities. Although mussels are likely outcompeting Diporeia spp. populations for food, and food limitation is probably a contributing factor to population declines, populations show no physiological signs of starvation; lipid content is at a maximum as densities approach zero.
    [Show full text]
  • Open Mcmullin-Phd-Thesis2.Pdf
    The Pennsylvania State University The Graduate School Department of Biology PHYLOGEOGRAPHY OF DEEP-SEA VESTIMENTIFERANS AND A POPULATION GENETICS STUDY OF TWO SPECIES, LAMELLIBRACHIA LUYMESI AND SEEPIOPHILA JONESI, FROM THE GULF OF MEXICO A Thesis in Biology by Erin R. McMullin © 2003 Erin R. McMullin Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2003 The thesis of Erin McMullin has been reviewed and approved* by the following: Charles R. Fisher Professor of Biology Thesis Co-Adviser Co-Chair of Committee Stephen W. Schaeffer Associate Professor of Biology Thesis Co-Adviser Co-Chair of Committee Andrew Clark Professor of Biology Lee Kump Professor of Geosciences Kimberlyn Nelson Forensic Examiner Mitotyping Technologies Special Signatory Douglas Cavener Professor of Biology Head of the Biology Department * Signatures are on file at the Graduate School iii ABSTRACT First discovered in 1977 on the Galapagos Rift, vestimentiferans are a group of deep-sea annelids found in a variety of environments worldwide. Vestimentiferan communities are isolated pockets of high biomass in the otherwise nutrient-poor deep-sea. Chemosynthesis, not photosynthesis, is the underlying energy source for vestimentiferans, which entirely lack a digestive tract and rely on internal sulfide-oxidizing symbionts for fixed carbon. Symbionts appear to be acquired by the motile vestimentiferan larvae before they settle and become sessile adults. The ability of both these organisms and their symbionts to disperse across the sometimes considerable distances between sulfidic environments has been a topic of study for over a decade. This study addresses the question of dispersal by two different methods, with a biogeographical approach of all vestimentiferan species, and through the population genetic analysis of two species within the Gulf of Mexico.
    [Show full text]
  • Xarxes De Control Biològic
    PARC RECERCA BIOMÈDICA BARCELONA CONNECTEM CIÈNCIA I DIVERSITAT EN UN ESPAI CREATIU ÚNIC Novembre de 2013 NÚM. 69 www.prbb.org GRATUÏT Editorial 12è SIMPOSI ANUAL DEL CRG / 12th CRG ANNUAL SYMPOSIUM Campus Mar: new facilities n recent months almost all the work on our teaching Ibuilding has been finished. The new facilities include a well-equipped modern clas- sroom, which should cover the wide-ranging needs of the many degrees that are taught here. At the moment, it hosts all the courses of the joint Bachelor of Medicine (UPF-UAB), the UPF Human Biology degree, Physio- therapy at the UAB and Nursing School, and the first three cour- ses of the Bachelor’s degree in Biomedical Engineering from the UPF. To the traditional classrooms and labs, we have added semi- nar rooms, as well as others for practicing clinical skills and simulations. It is also expected that in the future a dissection room will be added. Of course, a small organisa- tional effort will have to be made in order to accommodate and develop all these activities in the renovated building, which is big... but not infinite. Nutritional and social needs have not been forgotten, and a cafe is to open shortly. Xarxes de control biològic Joaquim Gea, UPF James Sharpe, organitzador de gy”, explains James Sharpe, or- Maruxa Martínez-Campos Biological Control Networks Campus Mar: l’acte. «Hi ha molts tipus dife- ganiser of the meeting. “There noves instal·lacions l 12è Simposi del CRG va rents de xarxes en biologia, però he 12th CRG Symposium are many different types of net- en última instància tots ells han took place on October work in biology, but ultimately n els últims mesos s’han tenir lloc el 30 i 31 d’octu- evolucionat per controlar alguna 30-31.
    [Show full text]
  • The Aquatic Glacial Relict Fauna of Norway – an Update of Distribution and Conservation Status
    Fauna norvegica 2016 Vol. 36: 51-65. The aquatic glacial relict fauna of Norway – an update of distribution and conservation status Ingvar Spikkeland1, Björn Kinsten2, Gösta Kjellberg3, Jens Petter Nilssen4 and Risto Väinölä5 Spikkeland I, Kinsten B, Kjellberg G, Nilssen JP, Väinölä R. 2016. The aquatic glacial relict fauna of Norway – an update of distribution and conservation status. Fauna norvegica 36: 51-65. The aquatic “glacial relict” fauna in Norway comprises a group of predominantly cold-water animals, mainly crustaceans, which immigrated during or immediately after the deglaciation when some of the territory was still inundated by water. Their distribution is mainly confined to lakes in the SE corner of the country, east of the Glomma River in the counties of Akershus, Østfold and Hedmark. We review the history and current status of the knowledge on this assemblage and of two further similarly distributed copepod species, adding new observations from the last decades, and notes on taxonomical changes and conservation status. By now records of original populations of these taxa have been made in 42 Norwegian lakes. Seven different species are known from Lake Store Le/Foxen on the Swedish border, whereas six species inhabit lakes Femsjøen, Øymarksjøen and Rødenessjøen, and five are found in Aspern, Aremarksjøen and in the largest Norwegian lake, Mjøsa. From half of the localities only one of the species is known. The most common species are Mysis relicta (s.str.), Pallaseopsis quadrispinosa and Limnocalanus macrurus. Some populations may have become extirpated recently due to eutrophi- cation, acidification or increased fish predation. Apart from the main SE Norwegian distribution, some lakes of Jæren, SW Norway, also harbour relict crustaceans, which is puzzling.
    [Show full text]
  • Amphipoda Key to Amphipoda Gammaridea
    GRBQ188-2777G-CH27[411-693].qxd 5/3/07 05:38 PM Page 545 Techbooks (PPG Quark) Dojiri, M., and J. Sieg, 1997. The Tanaidacea, pp. 181–278. In: J. A. Blake stranded medusae or salps. The Gammaridea (scuds, land- and P. H. Scott, Taxonomic atlas of the benthic fauna of the Santa hoppers, and beachhoppers) (plate 254E) are the most abun- Maria Basin and western Santa Barbara Channel. 11. The Crustacea. dant and familiar amphipods. They occur in pelagic and Part 2 The Isopoda, Cumacea and Tanaidacea. Santa Barbara Museum of Natural History, Santa Barbara, California. benthic habitats of fresh, brackish, and marine waters, the Hatch, M. H. 1947. The Chelifera and Isopoda of Washington and supralittoral fringe of the seashore, and in a few damp terres- adjacent regions. Univ. Wash. Publ. Biol. 10: 155–274. trial habitats and are difficult to overlook. The wormlike, 2- Holdich, D. M., and J. A. Jones. 1983. Tanaids: keys and notes for the mm-long interstitial Ingofiellidea (plate 254D) has not been identification of the species. New York: Cambridge University Press. reported from the eastern Pacific, but they may slip through Howard, A. D. 1952. Molluscan shells occupied by tanaids. Nautilus 65: 74–75. standard sieves and their interstitial habitats are poorly sam- Lang, K. 1950. The genus Pancolus Richardson and some remarks on pled. Paratanais euelpis Barnard (Tanaidacea). Arkiv. for Zool. 1: 357–360. Lang, K. 1956. Neotanaidae nov. fam., with some remarks on the phy- logeny of the Tanaidacea. Arkiv. for Zool. 9: 469–475. Key to Amphipoda Lang, K.
    [Show full text]
  • Ulkokrunni and Merikalla
    2013 2 ECT J RO P EA S C I T L A B Oceana proposal for a Marine Protected Area Ulkokrunni and Merikalla INTRODUCTION OF THE AREA The two areas, Ulkokrunni and Merikalla, are situated in the Finnish EEZ, in the northern part of the Baltic Sea, the Bothian Bay. The Bothnian Bay is characterized by having a low salinity of 3.5 psu, which limits the number of marine species living there (Bergström and Bergström 1999) and freshwater species are more common. During winter the bay has at least four months of ice, which also affects which species can live there. The Ulkokrunni area consists of small scattered islands and primarily shallow waters. However, deeper areas down to almost 100 meter also exist. Merikalla is a shallow area situated almost 20 km west of the island Hailuoto, and south of Ulkokrunni. In the spring of 2011, Oceana conducted research in the area of Ulkokrunni, and in the spring of 2012, a more comprehensive research was carried out in the area of Ulkokrunni. Additionally Merikalla was also carefully studied by an ROV (Remotely Operated Vehicle). 1 2 Ulkokrunni and Merikalla DESCRipTION OF THE AREA There are important offshore sandbanks in the northern Baltic Sea. The deeper parts of the Bothnian Bay have relatively good oxygen concentration as this part of the Baltic Sea is not suffering severely from eutrophication, compared to the other areas of the Baltic Sea where the deeps are oxygen depleted or anoxic most of the time. Therefore the deeper areas in the bay are characterized by having oxygen and animal life.
    [Show full text]
  • 1 Amphipoda of the Northeast Pacific
    Amphipoda of the Northeast Pacific (Equator to Aleutians, intertidal to abyss): XIV. Gammaroidea – an updated and expanded review Donald B. Cadien, LACSD 22Jul2004 (revised 1Mar2015) Preface The purpose of this review is to bring together information on all of the species reported to occur in the NEP fauna. It is not a straight path to the identification of your unknown animal. It is a resource guide to assist you in making the required identification in full knowledge of what the possibilities are. Never forget that there are other, as yet unreported species from the coverage area; some described, some new to science. The natural world is wonderfully diverse, and we have just scratched its surface. Introduction to the Gammaroidea The superfamily, while having both marine and freshwater members, is most prominent in epigean fresh-waters. Marine occurrences are coastal, with no superfamily members belonging to pelagic or deep-sea communities. There is a vast literature on the fresh-water members of the superfamily, particularly in European waters, where they have been studied for centuries. According to Bousfield (1982) they are a fairly recently derived group which appeared in the Tertiary. The superfamily contains a number of families not represented in the NEP, including the Acanthogammaridae, Caspicolidae, Macrohectopidae, Micruropidae, Pachyschesidae, and the Typhlogammaridae. These families are most prominent in Indo- European fresh-water habitats. The Gammaridae is poorly represented in the NEP, with only one widely distributed arctic-boreal form, and two species introduced from the Atlantic. One additional member of the family has been introduced to the waters of the saline relict Salton Sea, now landlocked in southern California (J.
    [Show full text]
  • Interpretation Manual of European Union Habitats - EUR27 Is a Scientific Reference Document
    INTERPRETATION MANUAL OF EUROPEAN UNION HABITATS EUR 27 July 2007 EUROPEAN COMMISSION DG ENVIRONMENT Nature and biodiversity The Interpretation Manual of European Union Habitats - EUR27 is a scientific reference document. It is based on the version for EUR15, which was adopted by the Habitats Committee on 4. October 1999 and consolidated with the new and amended habitat types for the 10 accession countries as adopted by the Habitats Committee on 14 March 2002 with additional changes for the accession of Bulgaria and Romania as adopted by the Habitats Committee on 13 April 2007 and for marine habitats to follow the descriptions given in “Guidelines for the establishment of the Natura 2000 network in the marine environment. Application of the Habitats and Birds Directives” published in May 2007 by the Commission services. A small amendment to Habitat type 91D0 was adopted by the Habitats Committee in its meeting on 14th October 2003. TABLE OF CONTENTS WHY THIS MANUAL? 3 HISTORICAL REVIEW 3 THE MANUAL 4 THE EUR15 VERSION 5 THE EUR25 VERSION 5 THE EUR27 VERSION 6 EXPLANATORY NOTES 7 COASTAL AND HALOPHYTIC HABITATS 8 OPEN SEA AND TIDAL AREAS 8 SEA CLIFFS AND SHINGLE OR STONY BEACHES 17 ATLANTIC AND CONTINENTAL SALT MARSHES AND SALT MEADOWS 20 MEDITERRANEAN AND THERMO-ATLANTIC SALTMARSHES AND SALT MEADOWS 22 SALT AND GYPSUM INLAND STEPPES 24 BOREAL BALTIC ARCHIPELAGO, COASTAL AND LANDUPHEAVAL AREAS 26 COASTAL SAND DUNES AND INLAND DUNES 29 SEA DUNES OF THE ATLANTIC, NORTH SEA AND BALTIC COASTS 29 SEA DUNES OF THE MEDITERRANEAN COAST 35 INLAND
    [Show full text]
  • Gut Contents As Direct Indicators for Trophic Relationships in the Cambrian Marine Ecosystem Jean Vannier
    Gut Contents as Direct Indicators for Trophic Relationships in the Cambrian Marine Ecosystem Jean Vannier To cite this version: Jean Vannier. Gut Contents as Direct Indicators for Trophic Relationships in the Cam- brian Marine Ecosystem. PLoS ONE, Public Library of Science, 2012, 7 (12), pp.160. 10.1371/journal.pone.0052200,Article-Number=e52200. hal-00832665 HAL Id: hal-00832665 https://hal.archives-ouvertes.fr/hal-00832665 Submitted on 11 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Gut Contents as Direct Indicators for Trophic Relationships in the Cambrian Marine Ecosystem Jean Vannier* Laboratoire de ge´ologie de Lyon: Terre, Plane`tes, Environnement, Universite´ de Lyon, Universite´ Lyon 1, Villeurbanne, France Abstract Present-day ecosystems host a huge variety of organisms that interact and transfer mass and energy via a cascade of trophic levels. When and how this complex machinery was established remains largely unknown. Although exceptionally preserved biotas clearly show that Early Cambrian animals had already acquired functionalities that enabled them to exploit a wide range of food resources, there is scant direct evidence concerning their diet and exact trophic relationships. Here I describe the gut contents of Ottoia prolifica, an abundant priapulid worm from the middle Cambrian (Stage 5) Burgess Shale biota.
    [Show full text]
  • J/V/~ V Wim Vader - 2
    '" t. AMPHIPOD : 1 I ,~j NE WSLETTER 3 V october 1973 This third issue of the Amphipod Newsletter is the first to appear lD off-set. This has become possible through the most welcome help of Zoo- Tax, a "Service CeYit er of Taxonorr.ic Zoology" in Lund, Sweden, and Zoo- Tax is also responsible for the distribution of this issue. Technical Pl'l)blems in connection wi th these changes have caused some delay in the 2oIT,Fleter: ,el"_t of this issue, but I hope this will be counteracted by increased quality and lowered cost: Zoo- Tax is incredibly cheap. I prem.ised to suggest a subscription fee in this lssue. I now propose a fee of 4. German Mark (BRD) annually (or rat'her; for 2 issues) , preferably to be paid by International Money Order to my address in TromS0. As far as I can see, ttis will be sufficient and it will even enable us to send the Newsletter cheaper ( or even free ) to a few COlleagues with very limited budgets. The first subscription will cover Newsletter 2 and 3, and it would be an advantage if many of you could at the same time pay the next subscription, so that I 'll have some credit. I all1 most grateful to those COlleagues who have sent me money earlier, and they 211'e of course not expected to pay now. In the next issue I shall give further details of the financia l situation; meanwhile I shall be glad to have your comments. Apart froni the ~sual i tems I have sol icited three other types of contri­ bution for this issue.
    [Show full text]
  • Organic Matter Sources on the Chukchi Sea Shelf in a Changing Arctic
    Organic matter sources on the Chukchi Sea shelf in a changing Arctic Item Type Thesis Authors Zinkann, Ann-Christine Download date 23/09/2021 20:42:24 Link to Item http://hdl.handle.net/11122/11304 ORGANIC MATTER SOURCES ON THE CHUKCHI SEA SHELF IN A CHANGING ARCTIC By Ann-Christine Zinkann, M.S. A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Marine Biology University of Alaska Fairbanks May 2020 APPROVED: Katrin Iken, Committee Chair Matthew Wooller, Committee Member Seth Danielson, Committee Member Mary Beth Leigh, Committee Member Georgina Gibson, Committee Member Lara Horstmann, Department Chair Department of Marine Biology Bradley Moran, Dean College of Fisheries and Ocean Sciences Michael Castellini, Dean of the Graduate School Abstract Climate-change induced alterations of the organic matter flow from various primary production sources to the benthic system in the Arctic Chukchi Sea could have major implications on carbon cycling, sequestration, and benthic food web structure sustaining upper trophic levels. In particular, the role and contribution of terrestrial matter and bacterial matter could become more prominent, with increasing erosion and permafrost melt being discharged from land, and warming water temperatures raising bacterial metabolism. In this study, I used essential amino acid (EAA) specific stable isotope analysis to trace the proportional contributions of bacterial, phytoplankton, and terrestrial organic matter in sediments, as well as benthic invertebrates on the Chukchi Sea shelf. Across the upper 5 cm of sediments, most organic matter sources were equally distributed, except for a slight decrease with depth in phytoplankton EAA.
    [Show full text]
  • Diurnal Bioturbating Activities of Monoporeia Affinis: Effects on Benthic Oxygen and Nutrient Fluxes
    MARINE ECOLOGY PROGRESS SERIES Vol. 331: 195–205, 2007 Published February 16 Mar Ecol Prog Ser Diurnal bioturbating activities of Monoporeia affinis: effects on benthic oxygen and nutrient fluxes Karin Karlson* Göteborg University, Department of Marine Ecology, Box 461, 405 30 Göteborg, Sweden ABSTRACT: A laboratory experiment was carried out to investigate the overall effects from the diurnal bioturbating activities of Monoporeia affinis on benthic solute fluxes. Investigations were performed on Baltic Sea sediments during a 12:12 h light:dark cycle, where light conditions (1 µmol photons m–2 s–1) corresponded to those at a simulated water depth of 25 m in July. Oxygen consump- – – + 2– tion, nutrient [NO2 + NO3 , NH4 , Si(OH)4 and HPO4 ] fluxes and denitrification rates were analysed after organic material enrichment (5 g C m–2) of the sediment. Significant effects from the diurnal – – + activity of M. affinis could be observed, as enhanced solute fluxes of O2, NO2 + NO3 , NH4 and 2– HPO4 were found during day (light) compared to night (dark) treatments. The diurnal activity of M. affinis showed no effect on denitrification rates. Irrigation of M. affinis, however, stimulated denitri- fication of the nitrate supplied from the overlying water (Dw) by about 50% compared to the control (no macrofauna). No effect on coupled nitrification/denitrification (Dn) was found. Diurnal activity of meiofauna seemed to have effects on solute fluxes as control cores (no macrofauna) also showed enhanced fluxes during the day compared to at night. In addition, effects from the endogenous diurnal activity of M. affinis were observed in cores kept in total darkness.
    [Show full text]