Thais C. Morata, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

Thais C. Morata, Ph.D THAIS C. MORATA, PH.D. Centers for Disease Control and Prevention/National Institute for Occupational Safety and Health 4676 Columbia Parkway C27 Cincinnati, OH 45226 USA/ [email protected] EDUCATION Ph.D. Communication Sciences & Disorders, University of Cincinnati, USA Sept 1987- Dec 1990 M.S. Communication Disorders, Pontifícia Universidade Católica de São Paulo, Brazil Aug 1984- Dec 1986 B.A. Speech Pathology & Audiology Pontifícia Universidade Católica de São Paulo, Brazil Mar 1979- Dec 1982 PROFESSIONAL AFFILIATIONS 1983- Present Brazilian Federal Council of Speech Pathology and Audiology Member 1989- 2000 International Neurotoxicology Association Member 1988- Present National Hearing Conservation Association Member, 2010 Conference Program Chair 2003- Present International Commission on Occupational Health Member 2003- 2010 International Commission on the Biological Effects of Noise Member 2005- Present International Society of Audiology Member, Executive Board member EXPERIENCE CURRENT Research Audiologist at the Hearing Loss Prevention Team of the National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA; from Dec 2008-Present. Director of the Safe-in-Sound Excellence in Hearing Loss Prevention Awards, from Sept 2006-present. www.safeinsound.us Founding Member of the Editorial Board of the Cochrane Occupational Safety and Health Review Group. Mar 2010-Present. http://osh.cochrane.org/editorial-board Founding Associate Editor for the area Audiology and the Environment for the International Journal of Audiology, ISSN: 1499-2027, Jan 2002-Present. http://informahealthcare.com/page/EditorialAdvisoryBoard?journalCode=ija Co-Instructor of graduate classes using the Wiki Education Foundation platform at the Department of Environmental Health of the Harvard T.H. Chan School of Public Health, University of Cincinnati, the Audiology and Speech-Language Sciences at the University of Northern Colorado, at the College of Education and Human Services of the University of Nebraska (https://en.wikipedia.org/wiki/User:TMorata ). Member of the Editorial Boards of the journals: Noise and Health, ISSN 1463-1741, and Otorynolaryngologia, ISSN 1643- 658X. Manager @SafeInSoundUS Twitter account. PREVIOUS Manufacturing Sector Council Coordinator, National Occupational Research Agenda, National Institute for Occupational Safety and Health; from Nov 1st 2012-2019. Honorary Professor, School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, Australia. From 2013- 2015. Invited Lecturer at the Graduate Program in Communication Disorders, Universidade de São Paulo, Brazil, June 2012. Courses Taught: Audiology and Hearing Health and Introduction to Scientific Writing. Acting Associate Director of Science for the Division of Applied Research and Technology, Research Audiologist, of the National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA; July 2009. Invited Lecturer, at the Graduate Program in Communication Disorders, Universidade Tuiuti do Parana, Curitiba, Brazil, June 1999- May 2010. Courses Taught: Research and the Promotion of Hearing Health, Audiology and Hearing Health and Introduction to Scientific Writing. Ad Hoc Adviser for the Pan American Health Organization, from Aug 1994- 2000. Ad Hoc Adviser for the World Health Organization, from Oct 1997-2009. Guest Researcher, at the Ear-Nose-Throat Department at the Karolinska Hospital, Stockholm, Sweden, from June to Sept 1998. Guest Researcher, at the Department of Work and Health of the National Institute for Working Life, Solna, Sweden, from Mar 1997 to Sept 1998. Post-Doctoral Fellow, National Research Council, at the Bioacoustics and Occupational Vibration Section of the National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA; from Jan 1993 to Mar 1997. Ad Hoc Advisor for American Conference of Governmental Industrial Hygienists from 1995-2009. Assistant Professor at the Graduate Program in Communication Disorders at the Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil; from August 1991 to December 1992. Courses taught: Research and Professional Practice in Hearing Conservation, Noise as a Public Health Problem and Clinical Audiology I. Chief of the Hearing Conservation Section at the University Clinic (DERDIC) of the Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil; from Feb to Dec 1992. Physical Scientist Aide, at the Bioacoustics and Occupational Vibration Section of the National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA; from June to Dec 1990. Instructor at the Department of Speech Pathology and Audiology, Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil. Course: Audiology and Worker's Health (undergraduate level); from March 1986 to Aug 1987. Courses taught: Clinical Audiology I and Audiology and Worker’s Health. Consultant in Occupational Audiology, during 1986-1987 to: - Brazilian Association to the Prevention of Laboral Accidents, (ABPA) São Paulo. - Jorge Duprat Figueiredo Foundation for the Prevention of Laboral Accidents (FUNDACENTRO), São Paulo. - São Paulo State Division of Health and Hygiene. - Union of the Chemical Industry Workers of São Paulo. - Union of the Chemical Industry Workers of Santo André. Audiologist responsible for hearing conservation at the preschool Dragãozinho, São Paulo, Brazil, from 1983 to 1985. 2 Trainee in Audiology, Hospital Regional de Sorocaba, São Paulo, Brazil, during 1982 and in Educational Audiology, Hospital da Santa Casa de Misericórdia, São Paulo, Brazil, 1983. CERTIFICATION Brazilian Council of Speech Pathology and Audiology (CFFa), 1983. GRANTS AND FELLOWSHIPS Intramural NIOSH Public Health Practice grants as project Officer for the projects: - Implementation of Best Practices in Hearing Loss Prevention (2013-2015) - Communication of Best Practices in Hearing Loss Prevention (2010-2012) - Success in Hearing Loss Prevention (2006-2009) Intramural NIOSH Research grants as Project Officer for the projects: - Intervention to prevent hearing loss from noise at work (2019-2022) - Hearing Loss in Boat Manufacturing (2005-2008) - Preventing Hearing Loss from Chemical and Noise Exposures (2003-2006) - Accommodation of Noise-Exposed, Hearing-Impaired Workers (2000-2004) - Hearing Loss Prevention: Putting Theory into Action (1999-2001) Extramural funding Brazilian Council for Research and Development grants as consultant for the Universidade Federal da Bahia e Universidade de São Paulo, Brazil (March 2016-present). European Commission 5th Framework Programme Research Project NoiseChem, Contract number QLK4-CT-2000-00293. Australia, National Health and Medical Research Council Grant. Occupational hearing loss induced by solvents and noise: development of new strategies for hearing loss prevention programs in the workplace, 2012-2015. Grant # APP1027549. Postdoctoral Fellowship, from the National Research Council, National Academy of Sciences, Washington D.C., from Feb 1994-1997. Research Grant, from the Brazilian National Research Council (Conselho National de Desenvolvimento Científico e Tecnológico-CNPq), from Mar 1992 to Dec 1993. Young Scientist Fellowship, from the International Neurotoxicology Association (INA), for the participation on its Third Meeting, Salsomaggiore Terme, Italy, July 1991. Young Scientist Fellowship, from the International Neurotoxicology Association (INA), for the participation on its Second Meeting, Sitges, Spain, May, 1989. Field Study Research Grant, from the University of Cincinnati, OH, USA, March 1990. Masters and Doctoral Degree Fellowships, from the Brazilian National Research Council (Conselho National de Desenvolvimento Científico e Tecnológico), Brazil, from Aug 1985 to Dec 1986 (M.S.) and from Sept 1987 to Dec 1990 (Ph.D.). AWARDS 2020 Honorable mention Alice Hamilton Award, Communication and Guidance category, for the publication NIOSH [2019]. Using Total Worker Health® concepts to address hearing health. By Themann CL, Morata T, Afanuh S. Cincinnati, OH: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2019-155. 2019 National Center for Environmental Health (NCEH) and Agency for Toxic Substances and Disease Registry (ATSDR) Director’s Award, Excellence in Cross Agency Collaboration on Non-Occupational Hearing Loss Protection: Lauren 3 Benet, Yulia Carroll, John Eichwald, Chuck Kardous, Thais Morata, Monica Mendez Morello, Bill Murphy, Padma Vempaty. 2019 Bullard-Sherwood Research-to-Practice Award in the category of Knowledge for the nomination “Reaching Our Audience Where They Are: NIOSH with Wikipedia” with partners from NIOSH, Wikimedia Foundation, Wiki Education Foundation, Harvard T.H. Chan School of Public Health, University of Cincinnati, and the University of São Paulo. 2017 Alice Hamilton Award for Excellence in Occupational Safety and Health in the Epidemiology and Surveillance Category, for the manuscript Masterson EA, Bushnell PT, Themann CL, Morata TC. Hearing Impairment among Noise- Exposed Workers — United States, 2003–2012. MMWR Morb Mortal Wkly Rep 2016;65:389–394. http://dx.doi.org/10.15585/mmwr.mm6515a2. April 28, 2017. 2015 College of Allied Health Sciences Distinguished Alumni Award, University of Cincinnati, Cincinnati, OH, USA, April 24, 2015. https://cahs.uc.edu/alumni-friends/distinguished-alumni.html 2015 Brazil’s Ambassador for Audiology, by the Brazilian Academy of Audiology
Recommended publications
  • Inter.Nobe 99 Lggg December 06-08
    j' This is a preprint or reprint of a paper intended for presentation at a conference. Because changes may be made before formal publication, this is made available with the understanding that it will not be cited or reproduced without the permission of the author. Fort Lauderda|e, Florida, USA inter.nobe 99 lggg December 06-08 ENGINEERED SOLUTIONS TO REDUCE OCCUPATIONAL NOISE EXPOSURE AT THE NASA GLENN RESEARCH CENTER: A FIVE-YEAR PROGRESS SUMMARY (1994-1999) Beth A. Cooper NASA John H. Glenn Research Center at Lewis Field Cleveland, OH 44135 U.S.A. Donald W. Hange Robert P. Madison International, Inc. NASA John H. Glenn Research Center at Lewis Field Cleveland, OH 44135 U.S.A. John J. Mikulic NASA John H. Glenn Research Center at Lewis Field Cleveland, OH 44135 U.S.A. INTRODUCTION At the NASA John H. Glenn Research Center at Lewis Field (formerly the Lewis Research Center), experimental research in aircraft and space propulsion systems is conducted in more than 100 test cells and laboratories. These facilities are supported by a central process air system that supplies high-volume, high-pressure compressed air and vacuum at various conditions that simulate altitude flight. Nearly 100,000 ft 2 of metalworking and specialized fabrication shops located on-site produce prototypes, models, and test hardware in support of experimental research operations. These activities, comprising numerous individual noise sources and operational scenarios, result in a varied and complex noise exposure environment, which is the responsibility of the Glenn Research Center Noise Exposure Management Program. Hearing conservation, community noise complaint response and noise control engineering services are included under the umbrella of this Program, which encompasses the Occupational Safety and Health Administration (OSHA) standard on occupational noise exposure, §29CFR 1910.95[ 1], as well as the more stringent NASA Health Standard on Hearing Conservation[2].
    [Show full text]
  • Preventing Hazardous Noise and Hearing Loss
    Preventing Hazardous Noise and Hearing Loss during Project Design and Operation Prevention through Design (PtD) Prevention through Design (PtD) Why is PtD Needed? Description of can be defined as designing out Integrating PtD concepts into busi- Exposure or eliminating safety and health ness processes helps reduce injury and hazards associated with processes, Prolonged exposure to high noise levels structures, equipment, tools, or illness in the workplace, as well as costs can cause hearing loss and tinnitus. work organization. The National associated with injuries. PtD lays the Other health effects include headaches, Institute for Occupational Safety foundation for a sustainable culture of fatigue, stress, and cardiovascular and Health (NIOSH) launched a safety with lower workers’ compensation problems [Yueh et al. 2003]. High noise PtD initiative in 2007. The mission expenses, fewer retrofits, and improved levels can also cause workers to be dis- tracted and interfere with communica- is to reduce or prevent occupational productivity. When PtD concepts are in- injuries, illnesses, and fatalities by tion and warning signals. If workers do troduced early in the design process, re- considering hazard prevention in not hear warning signals, they may not the design, re-design, and retrofit of sources can be allocated more efficiently. take precautions to prevent hazards or new and existing workplaces, tools, injuries [NIOSH 1996, 1998; Yoon et al. equipment, and work processes Summary 2015; Cantley et al. 2015]. [NIOSH 2008a,b]. Exposure to high noise levels in the workplace can cause hearing loss and Workers at Risk Contents affect worker productivity and compen- An estimated twenty-two million work- ▶ Why is PtD Needed sation costs.
    [Show full text]
  • Buy Quiet Procedure Esperance
    BUY QUIET PROCEDURE ESPERANCE BUY QUIET PROCEDURE - ESPERANCE DOCUMENT CONTROL Version Description Reviewed by Approved by Revision Issue Date Number Date 0 First Draft to include D Lindkvist A Byers Feb 2016 Feb 2016 reference to Environmental Noise 1 Comments section 1 used A Byers A Byers Feb 2016 Feb 2016 equipment 2 Environmental noise A Leonard A Byers Feb 2016 Feb 2016 3 Insertion of: Responsible A Leonard J Oldfield Jan 2017 Jan 2017 Person, role of Environmental Department and using broadband “croaker” reversing alarms. 4 Minor amendments. A Leonard A Leonard Nov 2017 Nov 2017 Document Facilitator: Environment Manager Version No: 04 Issue Date: 17/11/2017 Authorised by: Environment Manager Record No: D17/595 UNCONTROLLED WHEN PRINTED Page 2 of 7 BUY QUIET PROCEDURE - ESPERANCE TABLE OF CONTENTS DOCUMENT CONTROL .............................................................................................. 2 1. INTRODUCTION ............................................................................................ 4 2. SP NOISE LEVEL GOAL ................................................................................ 4 3. TEAM RESPONSIBILITIES ............................................................................ 4 3.1. Requestor ....................................................................................................... 4 3.2. Appointed Noise Officer .................................................................................. 4 3.3. Environmental Department ............................................................................
    [Show full text]
  • Noise Control Methods for Shipbuilding
    Noise Control Methods for Shipbuilding Final Report NSRP Subcontract Agreement No. 2012-424 Presented To: National Shipbuilding Research Program Operated by Advanced Technology Incorporated Prepared By: Daniel O. Chute, CIH, CSP Atrium Environmental Health and Safety Services, LLC Atrium Environmental Health and Safety Services, LLC 11495 Sunset Hills Road, Suite 210 Reston, VA 20190 November 1, 2012 Approved for public release; distribution is unlimited. Final Report Noise Control Methods for Shipbuilding; NSRP Agreement No. 2012‐424 November 1, 2012 Page 2 of 14 Abstract Noise control has always been a big issue in shipyards. OSHA regulations for Occupational Exposure to Noise in 29CFR 1910.95 define specific requirements for shipyard employment, including surveillance, audiometric testing, training and use of approved PPE for exposures exceeding 85 dBA over a full shift. Experience has demonstrated that uncontrolled exposure represents a major loss-control issue by contributing to Noise-Induced Hearing Loss (NIHL), citations, lower productivity and costly compensation claims. A wide variety of equipment and operations commonly found in shipbuilding have the potential to produce excessive noise levels requiring OSHA compliance action and the use hearing protection unless employers have sampling data to document their equipment operates below the action thresholds. The goal of this project was to accurately measure and characterize representative noise levels generated by common shipyard manufacturing and maintenance processes, to define both representative exposure levels and to evaluate and describe the most effective control methods which are currently in place. This work is designed to promote effective and beneficial technology transfer, so that techniques and processes that may have been proven in one or two locations may be passed along to other sites to promote noise exposure reduction, where possible, with reduced trial-and-error, better innovation and ultimately, reduced exposure time before implementation.
    [Show full text]
  • Managing Noise and Preventing Hearing Loss at Work Code of Practice 2021 Page 2 of 54
    Managing noise and preventing hearing loss at work Code of Practice 2021 PN12640 ISBN Creative Commons This copyright work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International licence. To view a copy of this licence, visit creativecommons.org/licenses. In essence, you are free to copy, communicate and adapt the work for non-commercial purposes, as long as you attribute the work to Safe Work Australia and abide by the other licence terms. Managing noise and preventing hearing loss at work Code of Practice 2021 Page 2 of 54 Contents Foreword ................................................................................................................................... 4 1. Introduction ........................................................................................................................ 5 1.1 Who has health and safety duties in relation to noise? .......................................... 5 1.2 What is involved in managing noise and preventing hearing loss?........................ 7 1.3 Information, training, instruction and supervision ................................................... 8 2. Noise and its effects on health and safety ..................................................................... 9 2.1 How does hearing loss occur? ................................................................................ 9 2.2 How much noise is too much? ................................................................................ 9 2.3 Other effects of noise............................................................................................
    [Show full text]
  • Practice Designing out Hazards in the Real World
    Prevention Through Design Peer-Reviewed Practice Designing Out Hazards in the Real World By Anjali Lamba IOSH is leading a national initiative, development, implementation, employee training launched in July 2007, called Prevention and surveillance (Schulte & Heidel, 2009). NThrough Design (PTD). This initiative has As awareness of the PTD concept grows, more engaged the government, academia and industry SH&E professionals are calling for a concerted em- in promoting the concept of designing out and phasis on the engineering and technical aspects minimizing occupational risks. Following is a com- of a safe design during the planning phase, which prehensive definition of PTD: reduces risks and minimizes hazards throughout The optimal method of preventing oc- a facility’s life. This requirement is illustrated by a cupational illnesses, injuries and fatal- recent request for proposal for work at the Ports- ities is to “design out” the hazards and mouth Naval Shipyard that specified, “If it is not risks; thereby, eliminating the need to feasible to eliminate or prevent the need to work control them during work operations. at heights with its subsequent exposure to fall haz- This approach involves the design of ards, control measures shall be included in the de- tools, equipment, systems, work pro- sign to protect personnel conducting maintenance cesses and facilities in order to reduce work after completion of the project.” or eliminate, hazards associated with Research conducted in the U.S., European Union and some countries in the British Commonwealth IN BRIEF work. (Young-Corbett, 2011) has linked a good percentage of construction inju- •This article provides real- The purpose of PTD is to eliminate haz- ries and fatalities to decisions made before any con- world examples of preven- ards and reduce risk at the source by con- struction work started.
    [Show full text]
  • Hearing Loss Prevention, Chapter 296-817
    Chapter 296-817 WAC Introduction Hearing Loss Prevention (Noise) _________________________________________________________________________________________________________ Chapter 296-817 WAC Hearing Loss Prevention (Noise) (Form Number 414-117-000) This book contains rules for Safety Standards for hearing loss prevention (Noise), as adopted under the Washington Industrial Safety and Health Act of 1973 (Chapter 49.17 RCW). The rules in this book are effective December 2015. A brief promulgation history, set within brackets at the end of this chapter, gives statutory authority, administrative order of promulgation, and date of adoption of filing. TO RECEIVE E-MAIL UPDATES: Sign up at https://public.govdelivery.com/accounts/WADLI/subscriber/new?topic_id=WADLI_19 TO PRINT YOUR OWN PAPER COPY OR TO VIEW THE RULE ONLINE: Go to https://www.lni.wa.gov/safety-health/safety-rules/rules-by-chapter/?chapter=817/ DOSH CONTACT INFORMATION: Physical address: 7273 Linderson Way Tumwater, WA 98501-5414 (Located off I-5 Exit 101 south of Tumwater.) Mailing address: DOSH Standards and Information PO Box 44810 Olympia, WA 98504-4810 Telephone: 1-800-423-7233 For all L&I Contact information, visit https://www.lni.wa.gov/agency/contact/ Also available on the L&I Safety & Health website: DOSH Core Rules Other General Workplace Safety & Health Rules Industry and Task-Specific Rules Proposed Rules and Hearings Newly Adopted Rules and New Rule Information DOSH Directives (DD’s) See http://www.lni.wa.gov/Safety-Health/ Chapter 296-817 WAC Table of Contents Hearing Loss Prevention (Noise) _________________________________________________________________________________________________________ Chapter 296-817 WAC Safety Standards for Hearing Loss Prevention (Noise) WAC Page WAC 296-817-099 Noise definitions.
    [Show full text]
  • Section 31 – Hearing Loss Prevention Program
    Reclamation Safety and Health Standards May 2020 Section 31: Hearing Loss Prevention Program Section 31 Hearing Loss Prevention Program 31.1 Scope This section establishes minimum requirements for a Reclamation Hearing Loss Prevention Program (HLPP) to ensure safety and occupational health hazards related to hearing are appropriately addressed. The HLPP applies to all employees working at or visiting facilities who are exposed to noise at or above 85 decibels, A scale (dBA), for an 8-hour time-weighted average (TWA) using a 3-dBA exchange rate. 31.2 General Requirements 31.2.1 3 dB Exchange Rate Reclamation shall use the more protective American Conference of Governmental Industrial Hygienist (ACGIH) Threshold Limit Value (TLV) exchange rate of 3 dB to be proactive in reducing noise-induced hearing loss (NIHL) as shown in Table 31-1. TABLE 31-1. ACGIH 3 dB Exchange Rate Time to ACGIH 3 dB Reach 100% Exchange Rate Noise Dose Exposure Level 10 hours 84 8 hours 85 4 hours 88 2 hours 91 1 hour 94 30 min 97 15 min 100 31.2.2 Controls As feasible, engineering and administrative controls shall be implemented as the first line of defense when employees are exposed to sound levels greater than an 8-hour TWA of 85 dBA. Hearing protection devices (HPDs) shall be used when engineering and/or administrative controls fail to reduce the sound levels below the 8-hour TWA of 85 dBA. 31.2.3 Exposure Limit An exposure of 85 dBA, based on an 8-hour TWA, shall be used when determining if personal dosimetry results have been exceeded.
    [Show full text]
  • NIOSH Efforts to Address Hazards in Construction
    NIOSH Efforts to Address Hazards in Construction G. Scott Earnest, Ph.D., P.E., C.S.P. Deputy Director, Office of Construction Safety and Health NORA Construction Coordinator National Institute for Occupational Safety and Health NIOSH National Institute for Occupational Safety and Health Part of CDC Conduct research and make recommendations for the prevention of work-related injury and illness. Construction Program since 1990 In-house researchers External “National Construction Center” Academic research support congress.nsc.org Occupational Safety & Health Framework Research and Regulation/Enforcement Prevention Recommendations Department of Labor Department of (DOL) Health and Human Services (HHS) Centers for Disease Control and Prevention Mine Safety Occupational (CDC) and Health Safety and Health Administration Administration (MSHA) (OSHA) National Institute for Occupational Safety and Health (NIOSH) congress.nsc.org NIOSH Facilities congress.nsc.org Education and Research Centers congress.nsc.org NIOSH Construction Program Mission To eliminate construction fatalities, injuries, and illnesses through a focused program of research and prevention Program Addresses All Types of Construction Buildings-Skyscrapers Specialty Trades Buildings-Homes Heavy and Civil Construction Program Structure and Focus NIOSH Construction Safety and Health Program Intramural National Extramural Research Construction Investigator- Center Basic Research initiated Grants Surveillance Innovative Ideas Methods Research Industry Characterization Opportunities
    [Show full text]
  • Are Quiet Products an Advantage for Manufacturers? Industry Experience in the United States
    BUY QUIET 2016 Are quiet products an advantage for manufacturers? Industry Experience in the United States Robert D. Hellweg, Jr., Hellweg Acoustics George C. Maling, Jr., INCE/USA Hamburg, Germany August 25, 2016 Outline – American Experience • Introduction • Two Technology for a Quieter America (TQA) NAE sponsored workshops • Why do manufacturers design quieter products ? • Laws and regulations • Lawsuits • Corporate Buy Quiet programs • Market demand • Opportunity • Specific product types • Government Buy Quiet Programs • Sources of product noise information • Summary 8/25/2016 2 2015 TQA NAE Workshop • “Engineering a Quieter America: Progress on Consumer and Industrial Product Noise Reduction” • A TQA Workshop and I-INCE Symposium sponsored by • INCE Foundation and Noise Control Foundation and • Hosted by US National Academy of Engineering • Washington, D.C., October 6-7, 2015 • 30 presentations on progress in noise control • Some of the material for this presentation is from the 2015 TQA report • Report is available at no cost at INCE/USA web page • inceusa.org/Reports/TQA_EngrQuieterAmerica_2016.pdf 8/25/2016 3 2014 TQA NAE Workshop • “Reducing Employee Noise Exposure in Manufacturing, Best Practices, Innovative Techniques, and the Workplace of the Future ” • A workshop sponsored by • INCE Foundation, Noise Control Foundation, and the National Institute of Occupational Safety and • Hosted by US National Academy of Engineering • Washington, D.C., February 19 – 20, 2014 • 27 presentations • Some of the material for this presentation is from the 2014 TQA report • Report is available at no cost at INCE/USA web page • http://inceusa.org/Reports/TQA_EmployeeExposureMfg_2016.pdf 8/25/2016 4 Why do Manufacturers design quiet products? (based on Olvera et.al.
    [Show full text]
  • [All Items in Brackets Are Meant to Be Instructional
    JPRJPR No.No. XXXX.X JSC Safety and Health Requirements 1700.1L Effective Date: 12/20/2018 Expiration Date: 12/20/2023 Expiration Date: [Leave Blank] Page Number Page 7.1-1 of 6 Chapter 7.1 Hearing Conservation This could be you . A worker didn’t think it was important to use hearing protection while working with equipment that produced high levels of noise and usually “forgot” to wear any hearing protective devices. He eventually noticed conversations seemed quite muffled and unclear, and that he had an annoying ringing in his ears. He then learned his hearing problem was permanent and could not be improved with surgery or medication. 7.1.1 Applicability of this chapter You are required to follow this chapter if you work in a designated hazardous noise area or an area having a hazardous noise source, such as the flight line at Ellington Field or machines in a sheet metal shop. 7.1.2 What this chapter covers This chapter covers the minimum requirements for JSC’s Hearing Conservation Program (HCP). It discusses JSC’s efforts to prevent noise-induced hearing loss among employees who are exposed to hazardous noise while working at this Center. JSC managers, supervisors, and employees share responsibilities for meeting these requirements. 7.1.3 Policy 7.1.3.1 These documents govern JSC’s hearing conservation program: a. NPR 1800.1, Chapter 4 describes the general requirements and provisions of NASA’s HCP. b. 29 CFR 1910.95, “Occupational Noise Exposure,” and its appendices describe the Occupational Safety and Health Association’s (OSHA) hearing conservation standards.
    [Show full text]
  • GPR 1820.1B APPROVED by Signature: Original Signed by EFFECTIVE DATE: May 16, 2014 NAME: Judith N
    Goddard Procedural Requirements (GPR) DIRECTIVE NO. GPR 1820.1B APPROVED BY Signature: Original Signed By EFFECTIVE DATE: May 16, 2014 NAME: Judith N. Bruner EXPIRATION DATE: May 16, 2020 TITLE: Director, Safety and Mission Assurance COMPLIANCE IS MANDATORY Responsible Office: 350 / Occupational Safety & Health (OS&H) Division Title: Hearing Conservation Program PREFACE P.1 PURPOSE This directive defines the requirements that constitute the Hearing Conservation Program at the Goddard Space Flight Center (GSFC) to prevent noise-induced hearing loss. P.2 APPLICABILITY This directive applies to all GSFC civil service employees. GSFC contractors, tenant organizations, grantees, clubs, and other organizations operating under the auspices of GSFC, or on GSFC property, shall administer their own hearing conservation programs that meet the requirements of NPR 1800.1 and Sections 2 and 3 of this GPR. P.3 AUTHORITY a. NPD 1800.2, NASA Occupational Health Program; and b. NPR 1800.1, NASA Occupational Health Program Procedures. P.4 APPLICABLE DOCUMENTS a. 29 Code of Federal Regulations (CFR) 1910.95, Occupational Safety and Health Administration (OSHA) Occupational Noise Exposure; b. 29 CFR 1904.10, OSHA Recording and Reporting Occupational Injuries and Illness; c. GPR 1840.2, Industrial Hygiene Program; d. GPR 8621.4, GSFC Mishap Preparedness and Contingency Plan; e. American National Standards Institute (ANSI) Standard S1.4 Specification for Sound Level Meters; f. ANSI Standard S1.25 Specification for Personal Noise Dosimeters; g. ANSI Standard S3.1-1999 Maximum Permissible Ambient Noise Levels for Audiometric Test Rooms; h. ANSI Standard S3.6-1969 Specification for Audiometers; i. NASA Form 1707, Special Approvals and Affirmations of Requisitions; j.
    [Show full text]