Botanice` Est Scientia Naturalis Quae Vegetabilium Cognitiorem Tradit

Total Page:16

File Type:pdf, Size:1020Kb

Botanice` Est Scientia Naturalis Quae Vegetabilium Cognitiorem Tradit Number 67 April 2, 2020 A CHECKLIST AND PRELIMINARY KEY TO THE LIVERWORTS OF NEW MEXICO Karen S. Blisard 25 Oxbow Drive, Silver City NM 88061 Email: [email protected] Russell Kleinman Department of Natural Sciences Western New Mexico University, Silver City NM 88061 Email: [email protected] ABSTRACT A checklist and preliminary key are presented for the 89 species of liverworts that have been reported from New Mexico. It is hoped that this information will serve to stimulate interest in these fascinating little plants. INTRODUCTION The bryophyte lineage is comprised of mosses, liverworts, and hornworts. Liverworts, also known as hepaticae due to the superficial resemblance of some of them to the mammalian liver, would seem to be poorly adapted to life in the arid southwest. However, this is only partially true, and this report describes the surprising diversity of liverworts in New Mexico. There are three basic morphologies of liverworts: leafy, simple thalloid, and complex thalloid (Hicks 1992; Schofield 1985, Vanderpooten & Goffinet 2009). Although leafy liverworts superficially resemble mosses, they can be distinguished by visual and microscopic examination. The leaves of leafy liverworts are basically in the same plane as the stem, whereas in mosses, the leaves are arranged radially around the stem. Liverwort leaves virtually never have a mid-vein (costa); mid-veins are found in a majority of moss leaves. Liverwort leaves are often divided into multiple lobes; this characteristic is rare in mosses. Most leafy liverworts have microscopic oil bodies within their cells, which can be important in species identification; mosses never contain oil bodies. Although oil bodies can be transient and are best examined in fresh specimens, they often persist for months in specimens collected from arid environments. Thalloid liverworts are comprised of elongate thalli instead of leaves and stems. Simple thalloid liverworts have an undifferentiated thallus which is quite thin, often only one cell thick. Simple thalloid liverworts are very uncommon in New Mexico. Complex thalloid liverworts have thick fleshy thalli whose cross-sections show differentiated layers with air pores. They are generally drought tolerant (Schuster 1992a), and some are widespread in New Mexico. METHODS We reviewed the existing literature on New Mexico liverworts (Arsene 1933; Bird 1960; Evans 1922; Frye and Clark 1937-1947; Guerke 1971; Hong 1989; Hong 1992; Ireland et al. 1981; Little 1937; Little 1942; Prior 1969; Romig 2012; Shields 1954; Standley 1915; Standley 1916; Stark & Casstetter 1982, Whittemore 1995; Worthington 2001). Bryophyte databases (Southwest Environmental Information Network, Consortium of North American Bryophyte Herbaria) were searched. We standardized the nomenclature but did not confirm the identity of reported specimens. The taxonomy of hepaticae currently is in a state of flux. The taxonomy used here is basically that of Doyle and Stotler, 2006, with the exception that the Lophoziaceae are listed as their own family, instead of being included with the Scapaniaceae. The Lophoziaceae are not complex bilobed liverworts, whereas the Scapaniaceae are. Using species descriptions in the literature, as well as specimens collected by us (most deposited in the Dale (Continued on page 2) Botanice` est Scientia Naturalis quae Vegetabilium cognitiorem tradit. — Linnaeus Page 2 (Continued from page 1) A. Zimmerman Herbarium, SNM, at Western New Mexico University), we developed a dichotomous key to the liverworts reported from New Mexico. A few species which have not been reported from New Mexico, but are expected, have been included. It is noted that this key is at best preliminary, and readers are encouraged to report questions or corrections to the authors. Pictures or photographs are not presented here. Photographs of the species we have collected are in Allred et al. (2018) and at our website www.gilaflora.com. RESULTS A preliminary checklist of the liverworts of New Mexico and the Gila National Forest was presented at the 4th Symposium on the Natural History of the Gila in 2012 (Blisard and Kleinman 2015). At that time, approximately 73 species of liverworts were known from New Mexico. Since then, reference to additional species have been found in the literature, and four species new to the state have been found. A few species have been removed from the list, because they are not currently recognized as distinct taxa (ie Lophozia confertifolia Schiff.). We were able to identify a total of 89 species in 23 families for which there is relatively good evidence that these taxa were collected in New Mexico. These are listed in the checklist (Table 1), along with documentation (literature references, or specimen identity of those taxa listed in digital databases). We have not confirmed the identity of specimens which were not collected by us. Since the publication of the previous checklist (Blisard and Kleinman 2015), we have collected three species new to the state. Geocalyx graveolens (Schrad.) Nees was collected at El Malpais National Monument. Riccia atromarginata Levier was collected at Carlsbad Caverns National Park, and also within the city of Carlsbad (Kleinman et al, 2020). It is interesting to note that both of these specimens were collected after a period of seasonal flooding, in areas which had been visited on several other occasions. It is characteristic of R. atromarginata that it is inconspicuous when dry, but more obvious when wet. Fossombronia pusilla (L.) Nees was finally found in a reproductive state, so could be identified to species from the spores. In addition, a fourth species new to the state (Frullania mexicana Lindenb.) was reported by Attwood (2017). Finally, dichotomous keys to the liverwort families (Table 2) and the liverwort species (Table 3) reported from New Mexico are presented. We have included selected species which are not known to occur in New Mexico, but might be expected here; they are marked with an asterisk (*). At the end are tables of characteristics which are helpful in the identification of the genera Frullania (Table 5), Lophozia (Table 6), Scapania (Table 7), and Riccia (Table 8). DISCUSSION This checklist shows considerable diversity in the liverwort population of New Mexico. This diversity is perhaps not surprising in view of the size of our state (121,697 square miles) and the rich diversity of habitats. Habitats include Chihuahuan desert scrubland, found in arid regions at lower elevations (860-1676 m, 2840-5500 ft). At moderate elevations (1676-2133 m, 5500-7000 ft), pinon-juniper-oak forests and mixed conifer forests predominate. At higher elevations, Ponderosa pine forest (2133-2743m, 7000-9000 ft) and spruce-fir forests (above 2743 m, 9000 ft) occur. Riparian habitats are located adjacent to water courses, and bogs are found in isolated areas. Liverwort diversity in New Mexico is higher than that reported from nearby states: we found 89 species in New Mexico by literature review and our own collections. In contrast, 46 species have been reported from Nevada (Brinda et al. 2007), and 60 from Utah (Flowers 1961). The 142 species reported from California (Doyle and Stotler 2006) may represent that state’s habitat diversity as well as a greater number of bryologists studying California liverworts. It seems likely that as more people study liverworts in New Mexico (and indeed, the entire southwest), more species will be identified. REFERENCES Allred,K., R. Kleinman, and K. Blisard, 2018. Preliminary Guide to the Bryophytes of New Mexico. Lulu.com. 120 pp. Arsene, Frére G., 1933. Hépatiques du Nouveau-Mexique (U.S.A.) déterminées par Miss Caroline Coventry Haynes. Ann. Crypt. Exot. 6:150- 160. Attwood, J.J., 2017. Notes on two species of Frullania subg. Chonathelia (Frullaniaceae) from the southwestern United States. Evansia 34:104- 109. Bird, C.D., 1960. Notes on the Current List of New Mexican Hepaticae. The Bryologist 63:114-115. Blisard, K.S. and R. Kleinman, 2015. A Checklist of the Liverworts of New Mexico and a Preliminary Assessment of the Liverworts of the Gila National Forest. The New Mexico Botanist, special issue #4, 21-27. Botany is the natural science that transmits the knowledge of plants. — Linnaeus (Continued on page 3) Page 3 (Continued from page 2) Brinda, J.C., L.R. Stark, J.R. Shevock, and J.R. Spence. 2007. Annotated Checklist of the Bryophytes of Nevada, with Notes on Collecting History in the State. The Bryologist 110:673-705. Consortium of North American Bryophyte Herbaria (NABH) website: http://www.bryophyteportal.org/portal/index.php Doyle, W.T. and R.E. Stotler, 2006. Contributions toward a Bryoflora of California III. Keys and Annotated Species Catalogue for Liverworts and Hornworts. Madrono, 53:89-197. Evans, A.W., 1922. Notes on North American Hepaticae – IX. The Bryologist 25:25-33. Flowers, S. 1961. The Hepaticae of Utah. University of Utah Biological Series, 12:1-108. Frye, T.C. and L. Clark, 1937-1947. Hepaticae of North America. 5 parts. Univ. Washington Press Flora of the Gila National Forest website: http://www.gilaflora.com Guerke, W.R. 1971. Notes on Hepaticae from Louisiana and New Mexico. The Bryologist 74:202-204. Heinrichs, J., H-P. Kreier, K. Feldberg, A.R. Schmidt, R-L. Zhu, B. Shaw, A.J. Shaw, and V. Wissemann, 2011. Formalizing Morphologically Cryptic Biological Entities: New Insights from DNA Taxonomy, Hybridization, and Biogeography in the Leafy Liverwort Porella platyphylla (Jungermanniopsida, Porellales) American Journal of Botany 98:1252-1262. Hentschel, J., M.J. von Konrat, T. Pocs, A. Schaefer-Verwimp, A.J. Shaw, H. Schneider, and J. Heinrichs. 2009. Molecular Insights into the Phylogeny and Subgeneric Classification of Frullania Raddi (Frullaniaceae, Porellales). Molecular Phylogenetics and Evolution 52:142 -156. Hicks, M.L. 1992. Guide to the Liverworts of North Carolina. Duke University Press. Hong, W.S. 1989. The Genus Frullania in North America West of the Hundredth Meridian. The Bryologist 92: 363-367. Hong, W.S. 1992. Plagiochila in Western North America.
Recommended publications
  • Identifikasi Keanekaragaman Marchantiophyta Di Kawasan Air Terjun Parangkikis Pagerwojo Tulungagung
    Jurnal Biologi dan Pembelajarannya, Vol 6 No 2, Oktober 2019. Pp: 17-21 e-ISSN: 2406 – 8659 IDENTIFIKASI KEANEKARAGAMAN MARCHANTIOPHYTA DI KAWASAN AIR TERJUN PARANGKIKIS PAGERWOJO TULUNGAGUNG Repik Febriansah, Eni Setyowati*), Arbaul Fauziah Jurusan Tadris Biologi, Fakultas Tarbiyah dan Ilmu Keguruan, IAIN Tulungagung Jalan Mayor Sujadi No. 46 Tulungagung *)Email: [email protected] Abstrak Penelitian ini bertujuan untuk mengkaji keanekaragaman jenis dari Divisi Marchantiophyta di Kawasan Air Terjun Parangkikis. Pengambilan sampel dilakukan pada bulan Desember 2018 hingga Maret 2019 dengan metode jelajah di sekitar Air Terjun Parangkikis Pagerwojo, Tulungagung. Identifikasi Marchantiophyta dilakukan di Laboratorium IPA Fakultas Tarbiyah dan Ilmu Keguruan IAIN Tulungagung. Hasil penelitian menunjukkan bahwa di kawasan Air Terjun Parangkikis terdapat dua kelas, yaitu Marchantiopsida dan Jungermanniopsida. Pada kelas Marchantiopsida hanya terdapat satu ordo, yaitu Marchantiales. Sedangkan pada kelas Jungermanniopsida meliputi tiga ordo yaitu Jungermanniales, Porellales, dan Pallviciniales. Kata kunci- Air Terjun Parangkikis, Keanekaragaman, Marchantiophyta PENDAHULUAN Tumbuhan lumut merupakan salah satu tumbuhan yang memiliki keanekaragaman cukup tinggi. Lumut merupakan kelompok tumbuhan yang berukuran kecil yang tempat tumbuhnya menempel pada berbagai substrat seperti pohon, serasah, kayu mati, kayu lapuk, tanah, maupun bebatuan. Lumut dapat tumbuh pada lingkungan lembab dengan penyinaran yang cukup [1]. Secara ekologis lumut berperan penting di dalam fungsi ekosistem. Tumbuhan lumut dapat digunakan sebagai bioindikator lingkungan yang menentukan lingkungan tersebut masih terjaga dengan baik atau sudah tereksploitasi [2]. Lumut hati dapat berfungsi sebagai bioakumulator logam berat [3] dan inhibitor pertumbuhan protozoa [4]. Air Terjun Parangkikis merupakan salah satu daerah pegunungan di Desa Gambiran Kecamatan Pagerwojo Kabupaten Tulungagung yang kaya dengan berbagai jenis lumut. Namun, penelitian tumbuhan lumut di kawasan tersebut belum banyak dilakukan.
    [Show full text]
  • The Free Radical Scavenging Activities of Biochemical Compounds of Dicranum Scoparium and Porella Platyphylla
    Aydın S. 2020. Anatolian Bryol……………………………………………………………..……………19 Anatolian Bryology http://dergipark.org.tr/tr/pub/anatolianbryology Anadolu Briyoloji Dergisi Research Article DOI: 10.26672/anatolianbryology.701466 e-ISSN:2458-8474 Online The free radical scavenging activities of biochemical compounds of Dicranum scoparium and Porella platyphylla Sevinç AYDIN1* 1Çemişgezek Vocational School, Munzur University, Tunceli, TURKEY Received: 10.03.2020 Revised: 28.03.2020 Accepted: 17.04.2020 Abstract The bryophytes studies carried out in our country are mainly for bryofloristic purposes and the studies on biochemical contents are very limited. Dicranum scoparium and Porella platyphylla taxa of bryophytes were used in the present study carried out to determine the free radical scavenging activities, fatty acid, and vitamin contents. In this study, it was aimed to underline the importance of bryophytes for scientific literature and to provide a basis for further studies on this subject. The data obtained in this study indicate that the DPPH radical scavenging effect of D. scoparium taxon is significantly higher than that of P. platyphylla taxon. It is known that there is a strong relationship between the phenolic compound content of methanol extracts of the plants and the DPPH radical scavenging efficiency. When the fatty acid contents were examined, it was observed that levels of all unsaturated fatty acids were higher in the P. platyphylla taxon than the D. scoparium taxon, except for α-Linolenic acid. When the vitamin contents of species were compared, it was determined that D-3, α -tocopherol, stigmasterol, betasterol amount was higher in Dicranum taxon. Keywords: DPPH, Fatty Acid, Vitamin, Dicranaceae, Porellaceae Dicranum scoparium ve Porella platyphylla taxonlarının biyokimyasal bileşiklerinin serbest radikal temizleme faaliyetleri Öz Ülkemizde briyofitler ile ilgili olan çalışmalar genellikle briyofloristik amaçlı olup serbest radikal temizleme aktiviteleri ve yağ asidi içerikleri gibi diğer amaçlı çalışmalar yok denecek kadar azdır.
    [Show full text]
  • An Annotated Checklist of Bryophytes of Europe, Macaronesia and Cyprus
    Journal of Bryology ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/yjbr20 An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus N. G. Hodgetts , L. Söderström , T. L. Blockeel , S. Caspari , M. S. Ignatov , N. A. Konstantinova , N. Lockhart , B. Papp , C. Schröck , M. Sim-Sim , D. Bell , N. E. Bell , H. H. Blom , M. A. Bruggeman-Nannenga , M. Brugués , J. Enroth , K. I. Flatberg , R. Garilleti , L. Hedenäs , D. T. Holyoak , V. Hugonnot , I. Kariyawasam , H. Köckinger , J. Kučera , F. Lara & R. D. Porley To cite this article: N. G. Hodgetts , L. Söderström , T. L. Blockeel , S. Caspari , M. S. Ignatov , N. A. Konstantinova , N. Lockhart , B. Papp , C. Schröck , M. Sim-Sim , D. Bell , N. E. Bell , H. H. Blom , M. A. Bruggeman-Nannenga , M. Brugués , J. Enroth , K. I. Flatberg , R. Garilleti , L. Hedenäs , D. T. Holyoak , V. Hugonnot , I. Kariyawasam , H. Köckinger , J. Kučera , F. Lara & R. D. Porley (2020) An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus, Journal of Bryology, 42:1, 1-116, DOI: 10.1080/03736687.2019.1694329 To link to this article: https://doi.org/10.1080/03736687.2019.1694329 © 2020 The Author(s). Published by Informa Published online: 28 May 2020. UK Limited, trading as Taylor & Francis Group Submit your article to this journal Article views: 2747 View related articles View Crossmark data Citing articles: 28 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=yjbr20 JOURNAL OF BRYOLOGY 2020, VOL. 42, NO. 1, 1–116 https://doi.org/10.1080/03736687.2019.1694329 BRYOLOGICAL MONOGRAPH An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus N.
    [Show full text]
  • Download Download
    Plant Science Today (2016) 3(2): 226-236 226 http://dx.doi.org/10.14719/pst.2016.3.2.215 ISSN: 2348-1900 Plant Science Today http://horizonepublishing.com/journals/index.php/PST Research Communication Check list of Anthocerophyta and Marchantiophyta of Pakistan and Kashmir Jan Alam,1* Ibad Ali,1 Suhail Karim,1 Mazhar-ul-Islam1 and Habib Ahmad2 1Department of Botany, Hazara University, Mansehra-21300, Pakistan 2Department of Genetics, Hazara University, Mansehra-21300, Pakistan Article history Abstract Received: 16 March 2016 In the present study, a review of previously published literature regarding Accepted: 13 April 2016 Published: 22 June 2016 Anthocerophyta and Marchantiophyta of Pakistan and Kashmir has been done in order to know the diversity of these groups. Previous contributions collectively reveal 122 taxa distributed in 36 genera and 24 families. Of these © Alam et al. (2016) 118 taxa (97.52%) are belonging to the Marchantiophyta, while the rest of 4 species (3.30%) members to Anthocerophyta. Aytoniaceae is the largest family Special Section: New Frontiers in with 16 species. Genera-wise, Riccia is the largest genus with 12 species. An Cryptogamic Botany average number of species/genera is c. 3.36. A major portion of Pakistan is still un-explored especially Sindh and Balochistan province of Pakistan, and on the Section Editor basis of this study it can be said that many more taxa will be added to the list. Afroz Alam Keywords Anthocerophyta; Bryoflora; Marchantiophyta; Pakistan Publisher Horizon e-Publishing Group Alam, J., I. Ali, S. Karim, M. Islam and H. Ahmad. 2016. Check list of Corresponding Author Anthocerophyta and Marchantiophyta of Pakistan and Kashmir.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • University of Cape Town
    The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non-commercial research purposes only. University of Cape Town Addendum (1) Soon after submitting this thesis a more recent comprehensive classification by Crandall-Stotler et al. (2009)1 was published. This recent publication does not undermine the information presented in this thesis. The purpose of including the comprehensive classification of Crandall-Stotler and Stotler (2000) was specifically to introduce some of the issues regarding the troublesome classification of this group of plants. Crandall-Stotler and Stotler (2000), Grolle and Long (2000) for Europe and Macaronesia and Schuster (2002) for Austral Hepaticae represent three previously widely used yet differing opinions regarding Lophoziaceae classification. They thus reflect a useful account of some of the motivation for initiating this project in the first place. (2) Concurrently or soon after chapter 2 was published by de Roo et al. (2007)2 more recent relevant papers were published. These include Heinrichs et al. (2007) already referred to in chapter 4, and notably Vilnet et al. (2008)3 examining the phylogeny and systematics of the genus Lophozia s. str. The plethora of new information regarding taxa included in this thesis is encouraging and with each new publication we gain insight and a clearer understanding these fascinating little plants. University of Cape Town 1 Crandall-Stotler, B., Stotler, R.E., Long, D.G. 2009. Phylogeny and classification of the Marchantiophyta.
    [Show full text]
  • Serpentine Geoecology of Eastern North America: a Review
    RHODORA, Vol. 111, No. 945, pp. 21–108, 2009 E Copyright 2009 by the New England Botanical Club SERPENTINE GEOECOLOGY OF EASTERN NORTH AMERICA: A REVIEW NISHANTA RAJAKARUNA College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609 Current Address: Department of Biological Sciences, One Washington Square, San Jose´ State University, San Jose´, CA 95192-0100 e-mail: [email protected] TANNER B. HARRIS University of Massachusetts, Fernald Hall, 270 Stockbridge Road, Amherst, MA 01003 EARL B. ALEXANDER 1714 Kasba Street, Concord, CA 94518 ABSTRACT. Serpentine outcrops are model habitats for geoecological studies. While much attention has been paid to serpentine outcrops worldwide, the literature on eastern North American serpentine and associated biota is scant. This review examines the available literature, published and unpublished, on geoecological studies conducted on serpentine in eastern North America, from Newfoundland through Que´bec and New England south to Alabama. Most serpentine outcrops in the region have been mapped, but there have been few intensive mineralogical and pedological investigations. The limited soil analyses available suggest elevated levels of heavy metals such as Ni, near-neutralpH values, and Ca:Mg ratios , 1, characteristic of serpentine soils worldwide. Botanical studies to date have largely focused on floristic surveys and the influence of fire exclusion and grazing on indigenous vegetation. To date, 751 taxa of vascular plants belonging to 92 families have been reported from serpentine outcrops in the region. Two taxa, Agalinis acuta and Schwalbea americana, are federally endangered in the United States while many others are listed as rare, endangered, or imperiled in one or more states or provinces.
    [Show full text]
  • North American H&A Names
    A very tentative and preliminary list of North American liverworts and hornworts, doubtless containing errors and omissions, but forming a basis for updating the spreadsheet of recognized genera and numbers of species, November 2010. Liverworts Blasiales Blasiaceae Blasia L. Blasia pusilla L. Fossombroniales Calyculariaceae Calycularia Mitt. Calycularia crispula Mitt. Calycularia laxa Lindb. & Arnell Fossombroniaceae Fossombronia Raddi Fossombronia alaskana Steere & Inoue Fossombronia brasiliensis Steph. Fossombronia cristula Austin Fossombronia foveolata Lindb. Fossombronia hispidissima Steph. Fossombronia lamellata Steph. Fossombronia macounii Austin Fossombronia marshii J. R. Bray & Stotler Fossombronia pusilla (L.) Dumort. Fossombronia longiseta (Austin) Austin Note: Fossombronia longiseta was based on a mixture of material belonging to three different species of Fossombronia; Schuster (1992a p. 395) lectotypified F. longiseta with the specimen of Austin, Hepaticae Boreali-Americani 118 at H. An SEM of one spore from this specimen was previously published by Scott and Pike (1988 fig. 19) and it is clearly F. pusilla. It is not at all clear why Doyle and Stotler (2006) apply the name to F. hispidissima. Fossombronia texana Lindb. Fossombronia wondraczekii (Corda) Dumort. Fossombronia zygospora R.M. Schust. Petalophyllum Nees & Gottsche ex Lehm. Petalophyllum ralfsii (Wilson) Nees & Gottsche ex Lehm. Moerckiaceae Moerckia Gottsche Moerckia blyttii (Moerch) Brockm. Moerckia hibernica (Hook.) Gottsche Pallaviciniaceae Pallavicinia A. Gray, nom. cons. Pallavicinia lyellii (Hook.) Carruth. Pelliaceae Pellia Raddi, nom. cons. Pellia appalachiana R.M. Schust. (pro hybr.) Pellia endiviifolia (Dicks.) Dumort. Pellia endiviifolia (Dicks.) Dumort. ssp. alpicola R.M. Schust. Pellia endiviifolia (Dicks.) Dumort. ssp. endiviifolia Pellia epiphylla (L.) Corda Pellia megaspora R.M. Schust. Pellia neesiana (Gottsche) Limpr. Pellia neesiana (Gottsche) Limpr.
    [Show full text]
  • Biodiversity Profile of Afghanistan
    NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores
    [Show full text]
  • Revision of the Russian Marchantiales. Ii. a Review of the Genus Asterella P
    Arctoa (2015) 24: 294-313 doi: 10.15298/arctoa.24.26 REVISION OF THE RUSSIAN MARCHANTIALES. II. A REVIEW OF THE GENUS ASTERELLA P. BEAUV. (AYTONIACEAE, HEPATICAE) РЕВИЗИЯ ПОРЯДКА MARCHANTIALES В РОССИИ. II. OБЗОР РОДА ASTERELLA P. BEAUV. (AYTONIACEAE, HEPATICAE) EUGENY A. BOROVICHEV1,2, VADIM A. BAKALIN3,4 & ANNA A. VILNET2 ЕВГЕНИЙ А. БОРОВИЧЕВ1,2, ВАДИМ А. БАКАЛИН3,4, АННА А. ВИЛЬНЕТ2 Abstract The genus Asterella P. Beauv. includes four species in Russia: A. leptophylla and A. cruciata are restricted to the southern flank of the Russian Far East and two others, A. saccata and A. lindenbergiana occur mostly in the subartcic zone of Asia and the northern part of European Russia. Asterella cruciata is recorded for the first time in Russia. The study of the ribosomal LSU (or 26S) gene and trnL-F cpDNA intron confirmed the placement of Asterella gracilis in the genus Mannia and revealed the close relationship of A. leptophylla and A. cruciata, and the rather unrelated position of A. saccata and A. lindenbergiana. The phylogenetic tree includes robustly supported terminal clades, however with only weak support for deeper nodes. In general, Asterella species and M. gracilis from Russia show low levels of infraspecific variation. An identification key and species descriptions based on Russian specimens are provided, along with details of specimens examined, ecology and diagnostic characters of species. Резюме Род Asterella P. Beauv. представлен в России четырьмя видами: A. leptophylla и A. cruciata ограничены в распространении югом российского Дальнего Востока, а два других вида, A. saccata и A. lindenbergiana, распространены преимущественно в субарктической Азии и северной части европейской России.
    [Show full text]
  • Wikstrom2009chap13.Pdf
    Liverworts (Marchantiophyta) Niklas Wikströma,*, Xiaolan He-Nygrénb, and our understanding of phylogenetic relationships among A. Jonathan Shawc major lineages and the origin and divergence times of aDepartment of Systematic Botany, Evolutionary Biology Centre, those lineages. Norbyvägen 18D, Uppsala University, Norbyvägen 18D 75236, Altogether, liverworts (Phylum Marchantiophyta) b Uppsala, Sweden; Botanical Museum, Finnish Museum of Natural comprise an estimated 5000–8000 living species (8, 9). History, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland; Early and alternative classiA cations for these taxa have cDepartment of Biology, Duke University, Durham, NC 27708, USA *To whom correspondence should be addressed (niklas.wikstrom@ been numerous [reviewed by Schuster ( 10)], but the ebc.uu.se) arrangement of terminal taxa (species, genera) into lar- ger groups (e.g., families and orders) based on morpho- logical criteria alone began in the 1960s and 1970s with Abstract the work of Schuster (8, 10, 11) and Schljakov (12, 13), and culminated by the turn of the millenium with the work Liverworts (Phylum Marchantiophyta) include 5000–8000 of Crandall-Stotler and Stotler (14). 7 ree morphological species. Phylogenetic analyses divide liverworts into types of plant bodies (gametophytes) have generally been Haplomitriopsida, Marchantiopsida, and Jungerman- recognized and used in liverwort classiA cations: “com- niopsida. Complex thalloids are grouped with Blasiales in plex thalloids” including ~6% of extant species diversity Marchantiopsida, and leafy liverworts are grouped with and with a thalloid gametophyte that is organized into Metzgeriidae and Pelliidae in Jungermanniopsida. The distinct layers; “leafy liverworts”, by far the most speci- timetree shows an early Devonian (408 million years ago, ose group, including ~86% of extant species diversity and Ma) origin for extant liverworts.
    [Show full text]
  • Epiphytic Leafy Liverworts Diversified in Angiosperm-Dominated Forests
    Research Collection Journal Article Epiphytic leafy liverworts diversified in angiosperm-dominated forests Author(s): Feldberg, Kathrin; Schneider, Harald; Stadler, Tanja; Schäfer-Verwimp, Alfons; Schmidt, Alexander R.; Heinrichs, Jochen Publication Date: 2014-08-07 Permanent Link: https://doi.org/10.3929/ethz-b-000087846 Originally published in: Scientific Reports 4, http://doi.org/10.1038/srep05974 Rights / License: Creative Commons Attribution 4.0 International This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library OPEN Epiphytic leafy liverworts diversified in SUBJECT AREAS: angiosperm-dominated forests BIOGEOGRAPHY Kathrin Feldberg1, Harald Schneider2, Tanja Stadler3, Alfons Scha¨fer-Verwimp4, Alexander R. Schmidt5 BIODIVERSITY & Jochen Heinrichs1 PHYLOGENETICS 1Systematische Botanik und Mykologie, Ludwig-Maximilians-Universita¨tMu¨nchen, 80638 Mu¨nchen, Germany, 2Department of Life 3 Received Sciences, Natural History Museum, London SW75BD, United Kingdom, Department of Biosystems Science & Engineering, ETH Zu¨rich, 4058 Basel, Switzerland, 4Mittlere Letten 11, 88634 Herdwangen-Scho¨nach, Germany, 5Courant Research Centre 23 April 2014 Geobiology, Georg-August-Universita¨tGo¨ttingen, 37077 Go¨ttingen, Germany. Accepted 21 July 2014 Recent studies have provided evidence for pulses in the diversification of angiosperms, ferns, gymnosperms, Published and mosses as well as various groups of animals during the Cretaceous revolution of terrestrial ecosystems. 7 August 2014 However, evidence for such pulses has not been reported so far for liverworts. Here we provide new insight into liverwort evolution by integrating a comprehensive molecular dataset with a set of 20 fossil age constraints. We found evidence for a relative constant diversification rate of generalistic liverworts (Jungermanniales) since the Palaeozoic, whereas epiphytic liverworts (Porellales) show a sudden increase of Correspondence and lineage accumulation in the Cretaceous.
    [Show full text]