THE IMPORTANCE of MAINTAINING SHALLOW- WATER HABITATS for the MOVEMENT and SURVIVAL of STREAM FISHES by WILLIAM CHRISTIAN MUSS
Total Page:16
File Type:pdf, Size:1020Kb
THE IMPORTANCE OF MAINTAINING SHALLOW- WATER HABITATS FOR THE MOVEMENT AND SURVIVAL OF STREAM FISHES By WILLIAM CHRISTIAN MUSSELMAN Bachelor of Science in Biology University of Missouri Columbia, Missouri 2007 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 2014 THE IMPORTANCE OF MAINTAINING SHALLOW- WATER HABITATS FOR THE MOVEMENT AND SURVIVAL OF STREAM FISHES Thesis Approved: Dr. Shannon K. Brewer Thesis Adviser Dr. Timothy B. Grabowski Dr. Michael Tobler ii ACKNOWLEDGEMENTS Funding and support provided by: Oklahoma Department of Wildlife Conservation, Oklahoma Cooperative Fish & Wildlife Research Unit, and Oklahoma Scenic Rivers Commission This project would not be possible without direction from my thesis advisor and committee members: Shannon Brewer, Tim Grabowski, and Michi Tobler A special thanks to my technicians for their contributions to this project: Jahna Hill, Shelby Parker, Caitlin Chappell, Nicole Farless, and Chris Kemp To my cohort who swam with me to the end: Joey Dyer, Michael Gatlin, and Randy Stewart For my family. iii Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University. Name: WILLIAM CHRISTIAN MUSSELMAN Date of Degree: DECEMBER, 2014 Title of Study: THE IMPORTANCE OF MAINTAINING SHALLOW-WATER HABITATS FOR THE MOVEMENT AND SURVIVAL OF STREAM FISHES Major Field: NATURAL RESOURCES ECOLOGY & MANAGEMENT ABSTRACT: Environmental flows are important for the conservation of stream biota. Although a range of flows are necessary for the persistence of aquatic species, minimum flow standards are often the most basic component. The objectives of this study were to determine the effects of low flows on habitat availability, habitat connectivity, and water temperature and assess the consequences to stream fish. Stream drying disproportionately affects shallow-water habitat availability in streams. Using a wetted-area approach, I found backwaters, riffles, and runs experienced the greatest loss of area in this study with decreasing discharge. Fish assemblage relationships with channel units were quantified using ordinations. Shallow-water channel units (i.e., riffles, runs, vegetated edgewaters) structured much of the fish assemblage in Barren Fork Creek, particularly benthic fishes. Additional fluvial specialists (e.g., cardinal shiner) were found in the Illinois and Flint Creek and related to higher-velocity habitats. Diel shifts in habitat use were observed in all streams suggesting connectivity between channel units to be important for fish. Continuous recaptures over about 50 days of four PIT-tagged species in Flint Creek were analyzed using a multistate model in MARK. I found survival probabilities of cardinal shiner and orangethroat darter were related to daily discharge. More importantly, transition probabilities were related to daily discharge for three species (i.e., cardinal shiner, orangethroat darter, and slender madtom). Transition probabilities were near zero at approximately 0.43 – 0.57 m3/s suggesting reduced connectivity. Maximum mean daily water temperatures were: 31.63 ˚C and 29.55 ˚C for the Illinois River and Flint Creek, respectively. I used SSTEMP to model a 50% reduction in discharge that resulted in a 0.32 ˚C and 0.13 ˚C decrease in maximum water temperature in each of the two streams. Temperature modeling of Barren Fork Creek was difficult to interpret because of extreme low flows. Increasing discharge in the Illinois River and Flint Creek showed only minimal reductions in risk of exceeding critical thermal maximum (CTM) for fishes. Flint Creek, however, appeared to offer thermal refugia for many species. My results indicated a discharge of 0.57 m3/s was a critical threshold for functional connectivity in Flint Creek. Based on channel morphology, I would expect restricted movements to occur above this threshold in the Barren Fork Creek and Illinois River. iv TABLE OF CONTENTS Chapter Page I. BACKGROUND ........................................................................................................1 References ................................................................................................................4 II. QUANTIFYING CHANGING HABITAT AVAILABILITY OF CHANNEL UNITS IMPORTANT TO OZARK FISH ASSEMBLAGES............................................10 Introduction ............................................................................................................10 Methods..................................................................................................................12 Results ....................................................................................................................18 Discussion ..............................................................................................................24 References ..............................................................................................................29 Tables and Figures .................................................................................................39 III. DEFINING FUNCTIONAL CONNECTIVITY BETWEEN CHANNEL UNITS OF AN OZARK STREAM ..........................................................................................60 Introduction ............................................................................................................60 Methods..................................................................................................................63 Results ....................................................................................................................70 Discussion ..............................................................................................................74 References ..............................................................................................................78 Tables and Figures .................................................................................................89 IV. TEMPERATURE SUITABILITY FOR THE PERSISTENCE OF OZARK STREAM FISH: DOES INCREASING BASEFLOW IMPROVE THERMAL CONDITIONS? ..............................................................................................................................115 Introduction ..........................................................................................................117 Methods................................................................................................................118 Results ..................................................................................................................121 v Chapter Page Discussion ............................................................................................................124 References ............................................................................................................128 Tables and Figures ...............................................................................................139 vi LIST OF TABLES Table Page CHAPTER II: Table 2-1 ...................................................................................................................40 Table 2-2 ...................................................................................................................41 Table 2-2(cont.).........................................................................................................42 Table 2-3 ...................................................................................................................44 Table 2-4 ...................................................................................................................45 Table 2-5 ...................................................................................................................46 Table 2-6 ...................................................................................................................47 Table 2-7 ...................................................................................................................48 Table 2-8 ...................................................................................................................49 Table 2-9 ...................................................................................................................50 Table 2-10 .................................................................................................................51 Table 2-10(cont.).......................................................................................................52 Table 2-11 .................................................................................................................53 Table 2-12 .................................................................................................................54 Table 2-13 .................................................................................................................56 Table 2-14 .................................................................................................................57 Table 2-15 .................................................................................................................58 Table 2-16 .................................................................................................................59 CHAPTER III: Table 3-1 ...................................................................................................................90