Establishing a Lunar Outpost an Interactive Qualifying Project Report

Total Page:16

File Type:pdf, Size:1020Kb

Establishing a Lunar Outpost an Interactive Qualifying Project Report Project Number: MH1158 Establishing a Lunar Outpost An Interactive Qualifying Project Report Submitted to the faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By ___________________________________ Ian Ball ___________________________________ Joseph Bauer ___________________________________ Andrew Dawson ___________________________________ Stephen Jenkinson <Date> ___________________________________ Professor Mayer Humi <Section> ABSTRACT Our project examined the feasibility of establishing a lunar outpost. This included analysis of Earth to moon transportation, sustainability, uses for the moon, and the potential effects on humanity. We determined that the moon is a viable option for private companies to explore due to the opportunities in establishing life-supporting systems, harvesting fuel for alternative energy, and experimental studies. The lunar outpost would have its greatest effect on humanity by providing alternative energy sources and detection of near earth objects. ii | P a g e TABLE OF CONTENTS Abstract ........................................................................................................................................... ii Table of Tables ............................................................................................................................... v Executive Summary ....................................................................................................................... vi Introduction ..................................................................................................................................... 1 Background ..................................................................................................................................... 2 Getting to the Moon ........................................................................................................................ 5 Introduction ................................................................................................................................. 5 Hohmann Transfer Orbits ........................................................................................................... 5 Formulas ..................................................................................................................................... 6 Patched Conic ............................................................................................................................. 6 S-IC first stage ........................................................................................................................ 8 S-II second stage ..................................................................................................................... 8 S-IVB third stage .................................................................................................................... 8 Lagrange Points ........................................................................................................................ 10 Hall Thrusters............................................................................................................................ 13 Comparison ............................................................................................................................... 15 Future Considerations ............................................................................................................... 16 Our Findings on Transportation ................................................................................................ 18 The Initial Location....................................................................................................................... 19 Life Supporting Technologies....................................................................................................... 25 Water & Waste Management .................................................................................................... 25 Food .......................................................................................................................................... 27 Air Supply & Cabin Pressurization........................................................................................... 27 Long Term Goals .......................................................................................................................... 30 Helium-3 ................................................................................................................................... 30 Choosing a Nuclear Reactant .................................................................................................... 31 Observatory ............................................................................................................................... 38 Near-Earth Objects.................................................................................................................... 38 Cargo ......................................................................................................................................... 39 Launching Pad .......................................................................................................................... 39 Experiments on the Moon ......................................................................................................... 42 Space Based Solar Power.......................................................................................................... 43 Lunar Materials ............................................................................................................................. 46 Harvesting Metals from the Moon‘s Surface ............................................................................ 46 Building Materials .................................................................................................................... 47 iii | P a g e Building a Better Shield ............................................................................................................ 47 CES EduPack ............................................................................................................................ 48 C60 – Buckminsterfullerene ..................................................................................................... 51 Carbon Nanotubes ..................................................................................................................... 54 Smart Materials ......................................................................................................................... 55 Resources and Recycling .......................................................................................................... 56 Improving Technologies ........................................................................................................... 57 The Effects on Humanity .............................................................................................................. 59 Sources .......................................................................................................................................... 67 Figures Courtesy Of: ..................................................................................................................... 76 Tables Courtesy Of ....................................................................................................................... 77 iv | P a g e TABLE OF FIGURES FIGURE 1 - EXAMPLE HOHMANN TRANSFER ORBIT ........................................................................................ 5 FIGURE 2 - PATCHED CONIC TRANSFER USED IN APOLLO MISSIONS ......................................................... 7 FIGURE 3 - ARES I AND V ROCKET SYSTEMS ..................................................................................................... 9 FIGURE 4 - LAGRANGIAN POINTS RELATIVE TO EARTH AND THE MOON ............................................... 12 FIGURE 5 - THE UNSTABLE MANIFOLDS WITHIN THE LAGRANGE POINT ............................................... 13 FIGURE 6 - HALL THRUSTER DIAGRAM ............................................................................................................ 14 FIGURE 7- PERCENT ILLUMINATION FOR THE MOON'S NORTH POLE ....................................................... 20 FIGURE 8 - CPR DATA FOR A ROUGH FRESH CRATER ................................................................................... 20 FIGURE 9 - CPR DATA FOR A WATER ICE CRATER ......................................................................................... 21 FIGURE 10 - NORTH POLE CPR RESULTS ........................................................................................................... 21 FIGURE 11 - PERCENT ILLUMINATION FOR THE MOON'S SOUTH POLE .................................................... 22 FIGURE 12 - A NEARLY CONTINUOUSLY ILLUMINATED SPOT ON THE SOUTH POLE ........................... 23 FIGURE 13 - WATER TANK SCHEMATIC ............................................................................................................ 26 FIGURE 14 - WASTE RECOVERY SYSTEM .......................................................................................................... 26 FIGURE 15 - O2 SUPPLY SYSTEM .......................................................................................................................... 28 FIGURE 16 - COMPLETE AIR PRESSURIZATION SYSTEM FOR ONE COMPARTMENT ............................
Recommended publications
  • Victor Or Villain? Wernher Von Braun and the Space Race
    The Social Studies (2011) 102, 59–64 Copyright C Taylor & Francis Group, LLC ISSN: 0037-7996 print / 2152-405X online DOI: 10.1080/00377996.2010.484444 Victor or Villain? Wernher von Braun and the Space Race JASON L. O’BRIEN1 and CHRISTINE E. SEARS2 1Education Department, University of Alabama in Huntsville, Huntsville, Alabama, USA 2History Department, University of Alabama in Huntsville, Huntsville, Alabama, USA Set during the Cold War and space race, this historical role-play focuses on Wernher von Braun’s involvement in and culpability for the use of slave laborers to produce V-2 rockets for Nazi Germany. Students will grapple with two central questions. Should von Braun have been allowed to emigrate to the United States given his affiliation with the Nazis and use of slave laborers? Should the U.S. government and military have put Braun in powerful positions in NASA and military programs? This activity encourages students to hone their critical thinking skills as they consider and debate a complex, multi-layered historical scenario. Students also have opportunity to articulate persuasive arguments either for or against von Braun. Each character sketch includes basic information, but additional references are included for teachers and students who want a more in depth background. Keywords: role-play, Wernher von Braun, Space Race, active learning Victor or Villain? Wernher von Braun and the Space Role-Playing as an Instructional Strategy Race By engaging in historical role-plays, students can explore In 2009, the United States celebrated the fortieth anniver- different viewpoints regarding controversial topics (Clegg sary of the Apollo 11 crew’s landing on the moon.
    [Show full text]
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • An Early Manned Lunar Landing Q
    . ' - ,, ,, ,, . ... , " X64 80440 O~s7!- A FEASIBLE APPROACH FOR AN EARLY MANNED LUNAR LANDING Q PART I SUMMARY REPORT OF AD HOC TASK GROUP STU6Y (u) JUNE 16, 1961 Restriction/Classification Cancelled NA§A HEADQUARTERS, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ' I ------AD HOC TASK .GROUP . William A. Fleming - Chairman, Hq. Facilities Addison M. Rothrock - Deputy Chairman, Hq.· Albert J. Kelley - Hq. Samuel Snyder - Hq. Berg Paraghamian - Hq. Robert D. Briskman - ·Hq. Walter W. Haase - Hq. Secrest L. Berry - Hq. Spacecraft Llle Sciences . ..John H. Disher - Hq. James P. Nolan, Jr. - ·Hq • Merle. G•. Waugh - Hq. A.H. Schwichtenberg - Lovelace Foundation. Kenneth Kleinknecht - STG Alan B. Kehlet - STG Advanced Technology Launch Vehicles Ernesto. Pearson, Jr. - Hq. Eldon W. Hall - Hq. Space Sciences Melvyn Savage - Hq. Heinz H. Koelle .- MSFC · William Shipley - JPL William L. Lovejoy_~_Hq. Robert Fellows - Hq •.. Norman Raf el - Hq. Alfred M. Nelson - Hq. The effort: or the Ad Hoc Task Group were supplemented very signllicantly by major contributions in each technical area from a large number or other staff members at the various NASA Centers and at NASA Headquarters. Although these· added participants are too numerous to mention individually, their contributions are a vital part of the study results. i Restriction/Classification Cancelled lil TABLE OF CONTENTS INTRODUCTION ~ Purpose and Study Approach 1 Ground Rules and Guidelines 2 Program Elements 3 Use of the Sequenced Milestone System 4 Approach to Program Funding 5 PROGRAM PLAN ·objectives 6 Program Scope 8 Mission Approach 12 Spacecraft Requirements 24 Launch Vehicle Development 32_ Facilities 48 ' Supporting Research 62 Early .Managemen:b·;_ Actiort:s.
    [Show full text]
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011.
    [Show full text]
  • AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
    AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance
    [Show full text]
  • Constellation Program Overview
    Constellation Program Overview October 2008 hris Culbert anager, Lunar Surface Systems Project Office ASA/Johnson Space Center Constellation Program EarthEarth DepartureDeparture OrionOrion -- StageStage CrewCrew ExplorationExploration VehicleVehicle AresAres VV -- HeavyHeavy LiftLift LaunchLaunch VehicleVehicle AltairAltair LunarLunar LanderLander AresAres II -- CrewCrew LaunchLaunch VehicleVehicle Lunar Capabilities Concept Review EstablishedEstablished Lunar Lunar Transportation Transportation EstablishEstablish Lunar Lunar Surface SurfaceArchitecturesArchitectures ArchitectureArchitecture Point Point of of Departure: Departure: StrategiesStrategies which: which: Satisfy NASA NGO’s to acceptable degree ProvidesProvides crew crew & & cargo cargo delivery delivery to to & & from from the the Satisfy NASA NGO’s to acceptable degree within acceptable schedule moonmoon within acceptable schedule Are consistent with capacity and capabilities ProvidesProvides capacity capacity and and ca capabilitiespabilities consistent consistent Are consistent with capacity and capabilities withwith candidate candidate surface surface architectures architectures ofof the the transportation transportation systems systems ProvidesProvides sufficient sufficient performance performance margins margins IncludeInclude set set of of options options fo for rvarious various prioritizations prioritizations of cost, schedule & risk RemainsRemains within within programmatic programmatic constraints constraints of cost, schedule & risk ResultsResults in in acceptable
    [Show full text]
  • Project Horizon Report
    Volume I · SUMMARY AND SUPPORTING CONSIDERATIONS UNITED STATES · ARMY CRD/I ( S) Proposal t c• Establish a Lunar Outpost (C) Chief of Ordnance ·cRD 20 Mar 1 95 9 1. (U) Reference letter to Chief of Ordnance from Chief of Research and Devel opment, subject as above. 2. (C) Subsequent t o approval by t he Chief of Staff of reference, repre­ sentatives of the Army Ballistic ~tissiles Agency indicat e d that supplementar y guidance would· be r equired concerning the scope of the preliminary investigation s pecified in the reference. In particular these r epresentatives requested guidance concerning the source of funds required to conduct the investigation. 3. (S) I envision expeditious development o! the proposal to establish a lunar outpost to be of critical innportance t o the p. S . Army of the future. This eva luation i s appar ently shar ed by the Chief of Staff in view of his expeditious a pproval and enthusiastic endorsement of initiation of the study. Therefore, the detail to be covered by the investigation and the subs equent plan should be as com­ plete a s is feas ible in the tin1e limits a llowed and within the funds currently a vailable within t he office of t he Chief of Ordnance. I n this time of limited budget , additional monies are unavailable. Current. programs have been scrutinized r igidly and identifiable "fat'' trimmed awa y. Thus high study costs are prohibitive at this time , 4. (C) I leave it to your discretion t o determine the source and the amount of money to be devoted to this purpose.
    [Show full text]
  • Go for Lunar Landing Conference Report
    CONFERENCE REPORT Sponsored by: REPORT OF THE GO FOR LUNAR LANDING: FROM TERMINAL DESCENT TO TOUCHDOWN CONFERENCE March 4-5, 2008 Fiesta Inn, Tempe, AZ Sponsors: Arizona State University Lunar and Planetary Institute University of Arizona Report Editors: William Gregory Wayne Ottinger Mark Robinson Harrison Schmitt Samuel J. Lawrence, Executive Editor Organizing Committee: William Gregory, Co-Chair, Honeywell International Wayne Ottinger, Co-Chair, NASA and Bell Aerosystems, retired Roberto Fufaro, University of Arizona Kip Hodges, Arizona State University Samuel J. Lawrence, Arizona State University Wendell Mendell, NASA Lyndon B. Johnson Space Center Clive Neal, University of Notre Dame Charles Oman, Massachusetts Institute of Technology James Rice, Arizona State University Mark Robinson, Arizona State University Cindy Ryan, Arizona State University Harrison H. Schmitt, NASA, retired Rick Shangraw, Arizona State University Camelia Skiba, Arizona State University Nicolé A. Staab, Arizona State University i Table of Contents EXECUTIVE SUMMARY..................................................................................................1 INTRODUCTION...............................................................................................................2 Notes...............................................................................................................................3 THE APOLLO EXPERIENCE............................................................................................4 Panelists...........................................................................................................................4
    [Show full text]
  • PROJECT PENGUIN Robotic Lunar Crater Resource Prospecting VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY Kevin T
    PROJECT PENGUIN Robotic Lunar Crater Resource Prospecting VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY Kevin T. Crofton Department of Aerospace & Ocean Engineering TEAM LEAD Allison Quinn STUDENT MEMBERS Ethan LeBoeuf Brian McLemore Peter Bradley Smith Amanda Swanson Michael Valosin III Vidya Vishwanathan FACULTY SUPERVISOR AIAA 2018 Undergraduate Spacecraft Design Dr. Kevin Shinpaugh Competition Submission i AIAA Member Numbers and Signatures Ethan LeBoeuf Brian McLemore Member Number: 918782 Member Number: 908372 Allison Quinn Peter Bradley Smith Member Number: 920552 Member Number: 530342 Amanda Swanson Michael Valosin III Member Number: 920793 Member Number: 908465 Vidya Vishwanathan Dr. Kevin Shinpaugh Member Number: 608701 Member Number: 25807 ii Table of Contents List of Figures ................................................................................................................................................................ v List of Tables ................................................................................................................................................................vi List of Symbols ........................................................................................................................................................... vii I. Team Structure ........................................................................................................................................................... 1 II. Introduction ..............................................................................................................................................................
    [Show full text]
  • A New Hope for International Space
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Seton Hall University Libraries A NEW HOPE FOR INTERNATIONAL SPACE LAW: INCORPORATING NINETEENTH CENTURY FIRST POSSESSION PRINCIPLES INTO THE 1967 SPACE TREATY FOR THE COLONIZATION OF OUTER SPACE IN THE TWENTY-FIRST CENTURY Brandon C. Gruner∗ INTRODUCTION Legend has it that a friend once asked Mark Twain what he should invest in, and the good-humored author responded “Buy land; they’ve stopped making it.”1 The author’s advice was given more than 100 years ago and it still makes good sense. If a resource is scarce, it is almost always going to become more valuable.2 It is ∗ J.D. Candidate, 2005, Seton Hall University School of Law; B.A. Magna Cum Laude, Phi Beta Kappa, History, 1999, New York University: College of Arts and Science. I would like to thank my parents, Robert and Maria Gruner, for their unwavering support throughout my education, and Paula A. Franzese, the Peter W. Rodino Professor of Law at Seton Hall Law School, for her invaluable knowledge and guidance in writing this Comment. 1 A search of the Lexis and Westlaw databases, as well as the World Wide Web, demonstrates that hundreds of newspapers and Web sites have attributed this quote or some similar version to Mark Twain. See, e.g., Clinton J. Fynes, “Ambassadorial Role” Leads Ian to Property, COURIER-MAIL, Oct. 12, 1990 (relaying the story of Mark Twain advising his friend to “Buy land, they’re not making any more of it.”); Tom Fegely, Lack of Action on Tag Fees Pinches Gamelands Purchases, Maintenance, MORNING CALL (Allentown, PA), Sept.
    [Show full text]
  • Space Resources : Social Concerns / Editors, Mary Fae Mckay, David S
    Frontispiece Advanced Lunar Base In this panorama of an advanced lunar base, the main habitation modules in the background to the right are shown being covered by lunar soil for radiation protection. The modules on the far right are reactors in which lunar soil is being processed to provide oxygen. Each reactor is heated by a solar mirror. The vehicle near them is collecting liquid oxygen from the reactor complex and will transport it to the launch pad in the background, where a tanker is just lifting off. The mining pits are shown just behind the foreground figure on the left. The geologists in the foreground are looking for richer ores to mine. Artist: Dennis Davidson NASA SP-509, vol. 4 Space Resources Social Concerns Editors Mary Fae McKay, David S. McKay, and Michael B. Duke Lyndon B. Johnson Space Center Houston, Texas 1992 National Aeronautics and Space Administration Scientific and Technical Information Program Washington, DC 1992 For sale by the U.S. Government Printing Office Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328 ISBN 0-16-038062-6 Technical papers derived from a NASA-ASEE summer study held at the California Space Institute in 1984. Library of Congress Cataloging-in-Publication Data Space resources : social concerns / editors, Mary Fae McKay, David S. McKay, and Michael B. Duke. xii, 302 p. : ill. ; 28 cm.—(NASA SP ; 509 : vol. 4) 1. Outer space—Exploration—United States. 2. Natural resources. 3. Space industrialization—United States. I. McKay, Mary Fae. II. McKay, David S. III. Duke, Michael B. IV. United States.
    [Show full text]
  • Similarity Laws of Lunar and Terrestrial Volcanic Flows*
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) SIMILARITY LAWS OF LUNAR AND TERRESTRIAL VOLCANIC FLOWS* S. I. Pai and Y. Hsu Institute for Physical Science and Technology and Aerospace Engineering Department, University of Maryland, College Park Maryland 20742, and ^g15Z021.^,, ^.^,121319 7 ^t , John A. O'Keefe Goddard Space Flight Center, Greenbelt, Maryland 204T° JUN 1977 LP '' RECEIVED ^n NASA STI FACILITY INPUT BRANCH \c. STRACT Alt! ; \Z 1Z A mathematical model for the volcanic flow in planets is proposed.^^ This mathematical model, which is one-dimensional, steady duct flow of a mixture of a gas and small solid particles ( rock), has been analyzed. We v+ 0 apply this model to the lunar and the terrestrial volcanic flows under geo- +oN m U co metrically and dynamically similar conditions.
    [Show full text]