IAP Guidelines on Rickettsial Diseases in Children
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Parinaud's Oculoglandular Syndrome
Tropical Medicine and Infectious Disease Case Report Parinaud’s Oculoglandular Syndrome: A Case in an Adult with Flea-Borne Typhus and a Review M. Kevin Dixon 1, Christopher L. Dayton 2 and Gregory M. Anstead 3,4,* 1 Baylor Scott & White Clinic, 800 Scott & White Drive, College Station, TX 77845, USA; [email protected] 2 Division of Critical Care, Department of Medicine, University of Texas Health, San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; [email protected] 3 Medical Service, South Texas Veterans Health Care System, San Antonio, TX 78229, USA 4 Division of Infectious Diseases, Department of Medicine, University of Texas Health, San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA * Correspondence: [email protected]; Tel.: +1-210-567-4666; Fax: +1-210-567-4670 Received: 7 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Parinaud’s oculoglandular syndrome (POGS) is defined as unilateral granulomatous conjunctivitis and facial lymphadenopathy. The aims of the current study are to describe a case of POGS with uveitis due to flea-borne typhus (FBT) and to present a diagnostic and therapeutic approach to POGS. The patient, a 38-year old man, presented with persistent unilateral eye pain, fever, rash, preauricular and submandibular lymphadenopathy, and laboratory findings of FBT: hyponatremia, elevated transaminase and lactate dehydrogenase levels, thrombocytopenia, and hypoalbuminemia. His condition rapidly improved after starting doxycycline. Soon after hospitalization, he was diagnosed with uveitis, which responded to topical prednisolone. To derive a diagnostic and empiric therapeutic approach to POGS, we reviewed the cases of POGS from its various causes since 1976 to discern epidemiologic clues and determine successful diagnostic techniques and therapies; we found multiple cases due to cat scratch disease (CSD; due to Bartonella henselae) (twelve), tularemia (ten), sporotrichosis (three), Rickettsia conorii (three), R. -
CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India
CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India May - July 2009 Vol. 13 : No. 1 SCRUB TYPHUS & OTHER RICKETTSIOSES it lacks lipopolysaccharide and peptidoglycan RICKETTSIAL DISEASES and does not have an outer slime layer. It is These are the diseases caused by rickettsiae endowed with a major surface protein (56kDa) which are small, gram negative bacilli adapted and some minor surface protein (110, 80, 46, to obligate intracellular parasitism, and 43, 39, 35, 25 and 25kDa). There are transmitted by arthropod vectors. These considerable differences in virulence and organisms are primarily parasites of arthropods antigen composition among individual strains such as lice, fleas, ticks and mites, in which of O.tsutsugamushi. O.tsutsugamushi has they are found in the alimentary canal. In many serotypes (Karp, Gillian, Kato and vertebrates, including humans, they infect the Kawazaki). vascular endothelium and reticuloendothelial GLOBAL SCENARIO cells. Commonly known rickettsial disease is Scrub Typhus. Geographic distribution of the disease occurs within an area of about 13 million km2 including- The family Rickettsiaeceae currently comprises Afghanistan and Pakistan to the west; Russia of three genera – Rickettsia, Orientia and to the north; Korea and Japan to the northeast; Ehrlichia which appear to have descended Indonesia, Papua New Guinea, and northern from a common ancestor. Former members Australia to the south; and some smaller of the family, Coxiella burnetii, which causes islands in the western Pacific. It was Q fever and Rochalimaea quintana causing first observed in Japan where it was found to trench fever have been excluded because the be transmitted by mites. -
Know Your Abcs: a Quick Guide to Reportable Infectious Diseases in Ohio
Know Your ABCs: A Quick Guide to Reportable Infectious Diseases in Ohio From the Ohio Administrative Code Chapter 3701-3; Effective August 1, 2019 Class A: Diseases of major public health concern because of the severity of disease or potential for epidemic spread – report immediately via telephone upon recognition that a case, a suspected case, or a positive laboratory result exists. • Anthrax • Measles • Rubella (not congenital) • Viral hemorrhagic fever • Botulism, foodborne • Meningococcal disease • Severe acute respiratory (VHF), including Ebola virus • Cholera • Middle East Respiratory syndrome (SARS) disease, Lassa fever, Marburg • Diphtheria Syndrome (MERS) • Smallpox hemorrhagic fever, and • Influenza A – novel virus • Plague • Tularemia Crimean-Congo hemorrhagic infection • Rabies, human fever Any unexpected pattern of cases, suspected cases, deaths or increased incidence of any other disease of major public health concern, because of the severity of disease or potential for epidemic spread, which may indicate a newly recognized infectious agent, outbreak, epidemic, related public health hazard or act of bioterrorism. Class B: Disease of public health concern needing timely response because of potential for epidemic spread – report by the end of the next business day after the existence of a case, a suspected case, or a positive laboratory result is known. • Amebiasis • Carbapenemase-producing • Hepatitis B (perinatal) • Salmonellosis • Arboviral neuroinvasive and carbapenem-resistant • Hepatitis C (non-perinatal) • Shigellosis -
Melioidosis in Northern Tanzania: an Important Cause of Febrile Illness?
Melioidosis and serological evidence of exposure to Burkholderia pseudomallei among patients with fever, northern Tanzania Michael Maze Department of Medicine University of Otago, Christchurch Melioidosis Melioidosis caused by Burkholderia pseudomallei • Challenging to identify when cultured Soil reservoir, with human infection from contact with contaminated water Most infected people are asymptomatic: 1 clinical illness for 4,500 antibody producing exposures Febrile illness with a variety of presentations and bacteraemia is present in 40-60% of people with acute illness Estimated 89,000 deaths globally Gavin Koh CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=4975784 Laboratory diagnosis of febrile inpatients, northern Tanzania, 2007-8 (n=870) Malaria (1.6%) Bacteremia (9.8%) Mycobacteremia (1.6%) Fungemia (2.9%) Brucellosis (3.5%) Leptospirosis (8.8%) Q fever (5.0%) No diagnosis (50.1%) Spotted fever group rickettsiosis (8.0%) Typhus group rickettsiosis (0.4%) Chikungunya (7.9%) Crump PLoS Neglect Trop Dis 2013; 7: e2324 Predicted environmental suitability for B. pseudomallei in East Africa Large areas of Africa are predicted to be highly suitable for Burkholderia pseudomallei East Africa is less suitable but pockets of higher suitability including northern Tanzania Northern Tanzania Increasing suitability for B. pseudomallei Limmathurotsakul Nat Microbiol. 2016;1(1). Melioidosis epidemiology in Africa Paucity of empiric data • Scattered case reports • Report from Kilifi, Kenya identified 4 bacteraemic cases from 66,000 patients who had blood cultured1 • 5.9% seroprevalence among healthy adults in Uganda2 • No reports from Tanzania 1. Limmathurotsakul Nat Microbiol. 2016;1(1). 2. Frazer J R Army Med Corps. 1982;128(3):123-30. -
The Difference in Clinical Characteristics Between Acute Q Fever and Scrub Typhus in Southern Taiwan
International Journal of Infectious Diseases (2009) 13, 387—393 http://intl.elsevierhealth.com/journals/ijid The difference in clinical characteristics between acute Q fever and scrub typhus in southern Taiwan Chung-Hsu Lai a,b, Chun-Kai Huang a, Hui-Ching Weng c, Hsing-Chun Chung a, Shiou-Haur Liang a, Jiun-Nong Lin a,b, Chih-Wen Lin d, Chuan-Yuan Hsu d, Hsi-Hsun Lin a,* a Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital/I-Shou University, 1 E-Da Road, Jiau-Shu Tsuen, Yan-Chau Shiang, Kaohsiung County, 824 Taiwan, Republic of China b Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung County, Taiwan, Republic of China c Department of Health Management, I-Shou University, Kaohsiung County, Taiwan, Republic of China d Section of Gastroenterology, Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung County, Taiwan, Republic of China Received 14 April 2008; received in revised form 17 July 2008; accepted 29 July 2008 Corresponding Editor: Craig Lee, Ottawa, Canada KEYWORDS Summary Acute Q fever; Objective: To identify the differences in clinical characteristics between acute Q fever and scrub Coxiella burnetii; typhus in southern Taiwan. Scrub typhus; Methods: A prospective observational study was conducted in which serological tests for acute Q Orientia tsutsugamushi; fever and scrub typhus were performed simultaneously regardless of which disease was suspected Clinical characteristics; clinically. From April 2004 to December 2007, 80 and 40 cases of serologically confirmed acute Q Taiwan fever and scrub typhus, respectively, were identified and included in the study for comparison. -
Scrub Typhus and Molecular Characterization of Orientia Tsutsugamushi from Central Nepal
pathogens Article Scrub Typhus and Molecular Characterization of Orientia tsutsugamushi from Central Nepal Rajendra Gautam 1, Keshab Parajuli 1, Mythili Tadepalli 2, Stephen Graves 2, John Stenos 2,* and Jeevan Bahadur Sherchand 1 1 Department of Microbiology, Maharajgunj Medical Campus, Institute of Medicine, Kathmandu 44600, Nepal; [email protected] (R.G.); [email protected] (K.P.); [email protected] (J.B.S.) 2 Australian Rickettsial Reference Laboratory, Geelong, VIC 3220, Australia; [email protected] (M.T.); [email protected] (S.G.) * Correspondence: [email protected]; Tel.: +61-342151357 Abstract: Scrub typhus is a vector-borne, acute febrile illness caused by Orientia tsutsugamushi. Scrub typhus continues to be an important but neglected tropical disease in Nepal. Information on this pathogen in Nepal is limited to serological surveys with little information available on molecular methods to detect O. tsutsugamushi. Limited information exists on the genetic diversity of this pathogen. A total of 282 blood samples were obtained from patients with suspected scrub typhus from central Nepal and 84 (30%) were positive for O. tsutsugamushi by 16S rRNA qPCR. Positive samples were further subjected to 56 kDa and 47 kDa molecular typing and molecularly compared to other O. tsutsugamushi strains. Phylogenetic analysis revealed that Nepalese O. tsutsugamushi strains largely cluster together and cluster away from other O. tsutsugamushi strains from Asia and elsewhere. One exception was the sample of Nepal_1, with its partial 56 kDa sequence clustering Citation: Gautam, R.; Parajuli, K.; more closely with non-Nepalese O. tsutsugamushi 56 kDa sequences, potentially indicating that Tadepalli, M.; Graves, S.; Stenos, J.; homologous recombination may influence the genetic diversity of strains in this region. -
Murine Typhus As a Common Cause of Fever of Intermediate Duration a 17-Year Study in the South of Spain
ORIGINAL INVESTIGATION Murine Typhus as a Common Cause of Fever of Intermediate Duration A 17-Year Study in the South of Spain M. Bernabeu-Wittel, MD; J. Pacho´n, PhD; A. Alarco´n, PhD; L. F. Lo´pez-Corte´s, PhD; P. Viciana, PhD; M. E. Jime´nez-Mejı´as, PhD; J. L. Villanueva, PhD; R. Torronteras, PhD; F. J. Caballero-Granado, PhD Background: Fever of intermediate duration (FID), char- cluded, and MT was the cause in 6.7% of 926 cases of acterized by a febrile syndrome lasting from 7 to 28 days, FID. Insect bites were reported in only 3.8% of the cases is a frequent condition in clinical practice, but its epide- of MT previous to the onset of illness. Most cases (62.5%) miological and etiologic features are not well described. occurred in the summer and fall. A high frequency of rash Murine typhus (MT) is a worldwide illness; neverthe- (62.5%) was noted. Arthromyalgia (77%), headache less, to our knowledge, no studies describing its epide- (71%), and respiratory (25%) and gastrointestinal (23%) miological and clinical characteristics have been per- symptoms were also frequent. Laboratory findings were formed in the south of Spain. Also, its significance as a unspecific. Organ complications were uncommon (8.6%), cause of FID is unknown. but they were severe in 4 cases. The mean duration of fever was 12.5 days. Cure was achieved in all cases, al- Objective: To determine the epidemiological features, though only 44 patients received specific treatment. clinical characteristics, and prognosis of MT and, pro- spectively, its incidence as a cause of FID. -
Tick-Borne Disease Working Group 2020 Report to Congress
2nd Report Supported by the U.S. Department of Health and Human Services • Office of the Assistant Secretary for Health Tick-Borne Disease Working Group 2020 Report to Congress Information and opinions in this report do not necessarily reflect the opinions of each member of the Working Group, the U.S. Department of Health and Human Services, or any other component of the Federal government. Table of Contents Executive Summary . .1 Chapter 4: Clinical Manifestations, Appendices . 114 Diagnosis, and Diagnostics . 28 Chapter 1: Background . 4 Appendix A. Tick-Borne Disease Congressional Action ................. 8 Chapter 5: Causes, Pathogenesis, Working Group .....................114 and Pathophysiology . 44 The Tick-Borne Disease Working Group . 8 Appendix B. Tick-Borne Disease Working Chapter 6: Treatment . 51 Group Subcommittees ...............117 Second Report: Focus and Structure . 8 Chapter 7: Clinician and Public Appendix C. Acronyms and Abbreviations 126 Chapter 2: Methods of the Education, Patient Access Working Group . .10 to Care . 59 Appendix D. 21st Century Cures Act ...128 Topic Development Briefs ............ 10 Chapter 8: Epidemiology and Appendix E. Working Group Charter. .131 Surveillance . 84 Subcommittees ..................... 10 Chapter 9: Federal Inventory . 93 Appendix F. Federal Inventory Survey . 136 Federal Inventory ....................11 Chapter 10: Public Input . 98 Appendix G. References .............149 Minority Responses ................. 13 Chapter 11: Looking Forward . .103 Chapter 3: Tick Biology, Conclusion . 112 Ecology, and Control . .14 Contributions U.S. Department of Health and Human Services James J. Berger, MS, MT(ASCP), SBB B. Kaye Hayes, MPA Working Group Members David Hughes Walker, MD (Co-Chair) Adalbeto Pérez de León, DVM, MS, PhD Leigh Ann Soltysiak, MS (Co-Chair) Kevin R. -
Infectious Diseases and the Development of Health Systems in Thailand
20 Infectious Diseases and the Development of Health Systems in Thailand Visanu Thamlikitkul1, Viroj Tangcharoensathien2, and Natth Bhamarapravati3 1 Siriraj Hostpital, Mahidol University, Bangkok, Thailand 2Ministry of Public Health, Nonthaburi, Thailand 3 Mahidol University Salaya, Nakhonpathom, Thailand HISTORY AND CURRENT STATUS with emerging infectious diseases, especially OF INFECTIOUS DISEASES HIV/ AIDS, and re-emerging diseases such IN THAILAND as leptospirosis. Several emerging infectious diseases originating in neighboring countries Infectious diseases have been a major such as severe acute respiratory syndrome public health problem in Thailand for the past (SARS), avian flu, and Nipah virus infections several centuries. Most infectious diseases in are also a threat to Thai people. Moreover, in earlier days were food and water-borne dis fectious diseases due to drug resistant micro eases, vector-borne diseases, and infectious organisms e.g., drug resistant Streptococcus diseases related to poor sanitation (Wright and pneumoniae, methicillin-resistant Staphylo Breakspears, 1903; Beek, 2001). Some infec coccus aureus, and multi-drug resistant gram tious diseases have now been eradicated, for negative bacilli have also been increasing. example smallpox. The last case of small There are 47 infectious diseases docu pox in Thailand was documented in 1962. mented in the current Thai Communicable Some diseases have been brought under con Diseases Act. These include cholera, plaque, trol by vaccines, such as diphtheria, pertus -
Clinical Presentation of Scrub Typhus During a Major Outbreak in Central Nepal
ORIGINAL ARTICLE ASIAN JOURNAL OF MEDICAL SCIENCES Clinical presentation of scrub typhus during a major outbreak in central Nepal Arun Sedhain1, Gandhi R Bhattarai2 1Associate Professor, Department of Medicine, Nephrology unit, Chitwan Medical College, Bharatpur, Chitwan, Nepal, 2Director, Health Services Research, United Health Group, OptumInsight, CT, USA. Submitted: 15-04-2017 Revised: 23-05-2017 Published: 01-07-2017 ABSTRACT Background: Scrub typhus, an emerging rickettsial disease caused by the organism Access this article online Orientiatsutsugamushi, is associated with multi-organ involvement. We prospectively Website: studied the clinical manifestations of the disease during a major outbreak in central http://nepjol.info/index.php/AJMS part of Nepal. Aims and Objective: This study was carried out with an aim to analyze the clinical presentations, laboratory parameters, complications and outcomes of scrub DOI: 10.3126/ajms.v8i4.17163 2091-0576 typhus. Materials and Methods: A prospective observational study was conducted in the E-ISSN: P-ISSN: 2467-9100 Department of Medicine in a tertiary teaching hospital. A total of 1398 patients admitted with acute febrile illness were subjected for Scrub Typhus Detect™ IgM ELISA test, among which 502 (35.90%) patients tested positive and were included in the study. Acute kidney injury was defined according to KDIGO guideline. Statistical analysis was done with SAS University Studio package using t-test for continuous variables and chi-square test for categorical variables. Results: Mean age of the patients was 30.37±18.81 years with 26.29% in the pediatric age group (<14 years). Females comprised of 55.98% of the patients. Majority (97.98%) of the patients were seen between July to November. -
Laboratory Diagnostics of Rickettsia Infections in Denmark 2008–2015
biology Article Laboratory Diagnostics of Rickettsia Infections in Denmark 2008–2015 Susanne Schjørring 1,2, Martin Tugwell Jepsen 1,3, Camilla Adler Sørensen 3,4, Palle Valentiner-Branth 5, Bjørn Kantsø 4, Randi Føns Petersen 1,4 , Ole Skovgaard 6,* and Karen A. Krogfelt 1,3,4,6,* 1 Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), 2300 Copenhagen, Denmark; [email protected] (S.S.); [email protected] (M.T.J.); [email protected] (R.F.P.) 2 European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), 27180 Solnar, Sweden 3 Scandtick Innovation, Project Group, InterReg, 551 11 Jönköping, Sweden; [email protected] 4 Virus and Microbiological Special Diagnostics, Statens Serum Institut (SSI), 2300 Copenhagen, Denmark; [email protected] 5 Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut (SSI), 2300 Copenhagen, Denmark; [email protected] 6 Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark * Correspondence: [email protected] (O.S.); [email protected] (K.A.K.) Received: 19 May 2020; Accepted: 15 June 2020; Published: 19 June 2020 Abstract: Rickettsiosis is a vector-borne disease caused by bacterial species in the genus Rickettsia. Ticks in Scandinavia are reported to be infected with Rickettsia, yet only a few Scandinavian human cases are described, and rickettsiosis is poorly understood. The aim of this study was to determine the prevalence of rickettsiosis in Denmark based on laboratory findings. We found that in the Danish individuals who tested positive for Rickettsia by serology, the majority (86%; 484/561) of the infections belonged to the spotted fever group. -
Tick-Borne Diseases
Focus on... Tick-borne diseases DS20-INTGB - June 2017 With an increase in forested areas, The vector: ticks an increase in the number of large mammals, and developments in forest The main vector of these diseases are use and recreational activities, the hard ticks, acarines of the Ixodidae family. In France, more than 9 out of 10 ticks incidence of tick-borne diseases is on removed from humans are Ixodes ricinus the rise. and it is the main vector in Europe of human-pathogenic Lyme borreliosis (LB) In addition to Lyme disease, which has spirochaetes, the tick-borne encephali- an estimated incidence of 43 cases tis virus (TBEV) and other pathogens of per 100,000 (almost 30,000 new cases humans and domesticated mammals. identified in France each year), ticks can It is only found in ecosystems that are transmit numerous infections. favourable to it: deciduous forests, gla- des, and meadows with a temperate Although the initial manifestations of climate and relatively-high humidity. these diseases are often non-specific, Therefore, it is generally absent above a they can become chronic and develop height of 1200-1500 m and from the dry into severe clinical forms, sometimes Mediterranean region. with very disabling consequences. They Its activity is reduced at temperatures respond better to antibiotic treatment if above 25°C and below 7°C. As a result, it is initiated quickly, hence the need for its activity period is seasonal, reaching a early diagnosis. maximum level in the spring and autumn. Larva Adult female Adult male Nymph 0 1.5 cm It is a blood-sucking ectoparasite with 10 days.