Hilbert-Spaces.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Hilbert-Spaces.Pdf 222 BRUCE K. DRIVER† 12. Hilbert Spaces 12.1. Hilbert Spaces Basics. Definition 12.1. Let H be a complex vector space. An inner product on H is a function, , : H H C, such that h· ·i × → (1) ax + by, z = a x, z + b y, z i.e. x x, z is linear. h i h i h i → h i (2) x, y = y, x . (3) hx 2i hx, x i 0 with equality x 2 =0iff x =0. k k ≡ h i ≥ k k Notice that combining properties (1) and (2) that x z,x is anti-linear for fixed z H, i.e. → h i ∈ z,ax + by =¯a z,x + ¯b z,y . h i h i h i We will often find the following formula useful: x + y 2 = x + y,x + y = x 2 + y 2 + x, y + y, x k k h i k k k k h i h i (12.1) = x 2 + y 2 +2Re x, y k k k k h i Theorem 12.2 (Schwarz Inequality). Let (H, , ) be an inner product space, then for all x, y H h· ·i ∈ x, y x y |h i| ≤ k kk k and equality holds iff x and y are linearly dependent. Proof. If y =0, the result holds trivially. So assume that y =0. First off notice 2 6 that if x = αy for some α C, then x, y = α y and hence ∈ h i k k x, y = α y 2 = x y . |h i| | |k k k kk k x,y h i Moreover, in this case α := y 2 . k k 2 Now suppose that x H is arbitrary, let z x y − x, y y. (So z is the “orthogonal projection”∈ of x onto y, seeFigure28.)Then≡ − k k h i Figure 28. The picture behind the proof. x, y 2 x, y 2 x, y 0 z 2 = x h iy = x 2 + |h i| y 2 2Re x, h iy ≤ k k − y 2 k k y 4 k k − h y 2 i ° k k ° k k k k ° x, y° 2 = °x 2 |h °i| k° k − y °2 k k from which it follows that 0 y 2 x 2 x, y 2 with equality iff z =0or 2 ≤ k k k k − |h i| equivalently iff x = y − x, y y. k k h i ANALYSIS TOOLS WITH APPLICATIONS 223 Corollary 12.3. Let (H, , ) be an inner product space and x := x, x . Then is a norm on H. Moreoverh· ·i , is continuous on H H,kwherek H his viewedi as thek·k normed space (H, ). h· ·i × p k·k Proof. The only non-trivial thing to verify that is a norm is the triangle inequality: k·k x + y 2 = x 2 + y 2 +2Re x, y x 2 + y 2 +2 x y k k k k k k h i ≤ k k k k k kk k =( x + y )2 k k k k where we have made use of Schwarz’s inequality. Taking the square root of this inequality shows x + y x + y . For the continuity assertion: k k ≤ k k k k x, y x0,y0 = x x0,y + x0,y y0 |h i − h i| |h − i h − i| y x x0 + x0 y y0 ≤ k kk − k k kk − k y x x0 +( x + x x0 ) y y0 ≤ k kk − k k k k − k k − k = y x x0 + x y y0 + x x0 y y0 k kk − k k kk − k k − kk − k from which it follows that , is continuous. h· ·i Definition 12.4. Let (H, , ) be an inner product space, we say x, y H are orthogonal and write x h· y·i iff x, y =0. More generally if A H ∈is a set, x H is orthogonal to⊥A andh writei x A iff x, y =0for all⊂ y A. Let ∈ ⊥ h i ∈ A⊥ = x H : x A be the set of vectors orthogonal to A. We also say that a set S { H∈ is orthogonal⊥ } if x y for all x, y S such that x = y. If S further satisfies,⊂ x =1for all x S, then⊥ S is said to∈ be orthonormal.6 k k ∈ Proposition 12.5. Let (H, , ) be an inner product space then h· ·i (1) (Parallelogram Law) (12.2) x + y 2 + x y 2 =2 x 2 +2 y 2 k k k − k k k k k for all x, y H. (2) (Pythagorean∈ Theorem) If S H is a finite orthonormal set, then ⊂ (12.3) x 2 = x 2. k k k k x S x S X∈ X∈ (3) If A H isaset,thenA⊥ is a closed linear subspace of H. ⊂ Remark 12.6. See Proposition 12.37 in the appendix below for the “converse” of the parallelogram law. Proof. IwillassumethatH is a complex Hilbert space, the real case being easier. Items 1. and 2. are proved by the following elementary computations: x + y 2 + x y 2 = x 2 + y 2 +2Re x, y + x 2 + y 2 2Re x, y k k k − k k k k k h i k k k k − h i =2 x 2 +2 y 2, k k k k and x 2 = x, y = x, y k k h i h i x S x S y S x,y S X∈ X∈ X∈ X∈ = x, x = x 2. h i k k x S x S X∈ X∈ 224 BRUCE K. DRIVER† Item 3. is a consequence of the continuity of , and the fact that h· ·i A⊥ = x A ker( ,x ) ∩ ∈ h· i where ker( ,x )= y H : y,x =0 — a closed subspace of H. h· i { ∈ h i } Definition 12.7. A Hilbert space is an inner product space (H, , ) such that the induced Hilbertian norm is complete. h· ·i Example 12.8. Let (X, ,µ) be a measure space then H := L2(X, ,µ) with inner product M M (f,g)= f gdµ¯ · ZX is a Hilbert space. In Exercise 12.6 you will show every Hilbert space H is “equiv- alent” to a Hilbert space of this form. Definition 12.9. A subset C of a vector space X is said to be convex if for all x, y C the line segment [x, y]:= tx +(1 t)y :0 t 1 joining x to y is contained∈ in C as well. (Notice that any{ vector− subspace≤ of≤X }is convex.) Theorem 12.10. Suppose that H is a Hilbert space and M H beaclosedconvex subset of H. Then for any x H there exists a unique y M⊂ such that ∈ ∈ x y = d(x, M)= inf x z . z M k − k ∈ k − k Moreover, if M is a vector subspace of H, then the point y may also be characterized astheuniquepointinM such that (x y) M. − ⊥ Proof. By replacing M by M x := m x : m M we may assume x =0. − { − ∈ } Let δ := d(0,M)=infm M m and y, z M, seeFigure29. ∈ k k ∈ Figure 29. Thegeometryofconvexsets. By the parallelogram law and the convexity of M, y + z (12.4) 2 y 2 +2 z 2 = y+z 2 + y z 2 =4 2 + y z 2 4δ2 + y z 2. k k k k k k k − k k 2 || k − k ≥ k − k Hence if y = z = δ, then 2δ2 +2δ2 4δ2 + y z 2, so that y z 2 =0. k k k k ≥ k − k k − k Therefore, if a minimizer for d(0, ) M exists, it is unique. · | ANALYSIS TOOLS WITH APPLICATIONS 225 Existence. Let yn M be chosen such that yn = δn δ d(0,M). Taking ∈ 2 k2 k 2 → ≡ 2 y = ym and z = yn in Eq. (12.4) shows 2δm +2δn 4δ + yn ym . Passing to the limit m, n in this equation implies, ≥ k − k →∞ 2 2 2 2 2δ +2δ 4δ + lim sup yn ym . ≥ m,n k − k →∞ Therefore yn ∞ is Cauchy and hence convergent. Because M is closed, y := { }n=1 lim yn M and because is continuous, n →∞ ∈ k·k y = lim yn = δ = d(0,M). n k k →∞ k k So y is the desired point in M which is closest to 0. Now for the second assertion we further assume that M is a closed subspace of H and x H. Let y M be the closest point in M to x. Then for w M, the function ∈ ∈ ∈ g(t) x (y + tw) 2 = x y 2 2tRe x y, w + t2 w 2 ≡ k − k k − k − h − i k k has a minimum at t =0. Therefore 0=g0(0) = 2Re x y,w . Since w M is arbitrary, this implies that (x y) M. Finally suppose− h −y Miis any point∈ such that (x y) M. Then for z −M,⊥by Pythagorean’s theorem,∈ − ⊥ ∈ x z 2 = x y + y z 2 = x y 2 + y z 2 x y 2 k − k k − − k k − k k − k ≥ k − k which shows d(x, M)2 x y 2. That is to say y is the point in M closest to x. ≥ k − k Definition 12.11. Suppose that A : H H is a bounded operator. The adjoint → of A, denote A∗, is the unique operator A∗ : H H such that Ax, y = x, A∗y . → h i h i (The proof that A∗ exists and is unique will be given in Proposition 12.16 below.) A bounded operator A : H H is self - adjoint or Hermitian if A = A∗.
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • On the Second Dual of the Space of Continuous Functions
    ON THE SECOND DUAL OF THE SPACE OF CONTINUOUS FUNCTIONS BY SAMUEL KAPLAN Introduction. By "the space of continuous functions" we mean the Banach space C of real continuous functions on a compact Hausdorff space X. C, its first dual, and its second dual are not only Banach spaces, but also vector lattices, and this aspect of them plays a central role in our treatment. In §§1-3, we collect the properties of vector lattices which we need in the paper. In §4 we add some properties of the first dual of C—the space of Radon measures on X—denoted by L in the present paper. In §5 we imbed C in its second dual, denoted by M, and then identify the space of all bounded real functions on X with a quotient space of M, in fact with a topological direct summand. Thus each bounded function on X represents an entire class of elements of M. The value of an element/ of M on an element p. of L is denoted as usual by/(p.)- If/lies in C then of course f(u) =p(f) (usually written J fdp), and thus the multiplication between Afand P is an extension of the multiplication between L and C. Now in integration theory, for each pEL, there is a stand- ard "extension" of ffdu to certain of the bounded functions on X (we confine ourselves to bounded functions in this paper), which are consequently called u-integrable. The question arises: how is this "extension" related to the multi- plication between M and L.
    [Show full text]
  • FUNCTIONAL ANALYSIS 1. Banach and Hilbert Spaces in What
    FUNCTIONAL ANALYSIS PIOTR HAJLASZ 1. Banach and Hilbert spaces In what follows K will denote R of C. Definition. A normed space is a pair (X, k · k), where X is a linear space over K and k · k : X → [0, ∞) is a function, called a norm, such that (1) kx + yk ≤ kxk + kyk for all x, y ∈ X; (2) kαxk = |α|kxk for all x ∈ X and α ∈ K; (3) kxk = 0 if and only if x = 0. Since kx − yk ≤ kx − zk + kz − yk for all x, y, z ∈ X, d(x, y) = kx − yk defines a metric in a normed space. In what follows normed paces will always be regarded as metric spaces with respect to the metric d. A normed space is called a Banach space if it is complete with respect to the metric d. Definition. Let X be a linear space over K (=R or C). The inner product (scalar product) is a function h·, ·i : X × X → K such that (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hαx, yi = αhx, yi; (4) hx1 + x2, yi = hx1, yi + hx2, yi; (5) hx, yi = hy, xi, for all x, x1, x2, y ∈ X and all α ∈ K. As an obvious corollary we obtain hx, y1 + y2i = hx, y1i + hx, y2i, hx, αyi = αhx, yi , Date: February 12, 2009. 1 2 PIOTR HAJLASZ for all x, y1, y2 ∈ X and α ∈ K. For a space with an inner product we define kxk = phx, xi . Lemma 1.1 (Schwarz inequality).
    [Show full text]
  • Orthonormal Bases in Hilbert Space APPM 5440 Fall 2017 Applied Analysis
    Orthonormal Bases in Hilbert Space APPM 5440 Fall 2017 Applied Analysis Stephen Becker November 18, 2017(v4); v1 Nov 17 2014 and v2 Jan 21 2016 Supplementary notes to our textbook (Hunter and Nachtergaele). These notes generally follow Kreyszig’s book. The reason for these notes is that this is a simpler treatment that is easier to follow; the simplicity is because we generally do not consider uncountable nets, but rather only sequences (which are countable). I have tried to identify the theorems from both books; theorems/lemmas with numbers like 3.3-7 are from Kreyszig. Note: there are two versions of these notes, with and without proofs. The version without proofs will be distributed to the class initially, and the version with proofs will be distributed later (after any potential homework assignments, since some of the proofs maybe assigned as homework). This version does not have proofs. 1 Basic Definitions NOTE: Kreyszig defines inner products to be linear in the first term, and conjugate linear in the second term, so hαx, yi = αhx, yi = hx, αy¯ i. In contrast, Hunter and Nachtergaele define the inner product to be linear in the second term, and conjugate linear in the first term, so hαx,¯ yi = αhx, yi = hx, αyi. We will follow the convention of Hunter and Nachtergaele, so I have re-written the theorems from Kreyszig accordingly whenever the order is important. Of course when working with the real field, order is completely unimportant. Let X be an inner product space. Then we can define a norm on X by kxk = phx, xi, x ∈ X.
    [Show full text]
  • Lecture 4: April 8, 2021 1 Orthogonality and Orthonormality
    Mathematical Toolkit Spring 2021 Lecture 4: April 8, 2021 Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani) 1 Orthogonality and orthonormality Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if hu, vi = 0. A set of vectors S ⊆ V is said to consist of mutually orthogonal vectors if hu, vi = 0 for all u 6= v, u, v 2 S. A set of S ⊆ V is said to be orthonormal if hu, vi = 0 for all u 6= v, u, v 2 S and kuk = 1 for all u 2 S. Proposition 1.2 A set S ⊆ V n f0V g consisting of mutually orthogonal vectors is linearly inde- pendent. Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finite set fv1,..., vng of linearly independent vectors, there exists a set of orthonormal vectors fw1,..., wng such that Span (fw1,..., wng) = Span (fv1,..., vng) . Proof: By induction. The case with one vector is trivial. Given the statement for k vectors and orthonormal fw1,..., wkg such that Span (fw1,..., wkg) = Span (fv1,..., vkg) , define k u + u = v − hw , v i · w and w = k 1 . k+1 k+1 ∑ i k+1 i k+1 k k i=1 uk+1 We can now check that the set fw1,..., wk+1g satisfies the required conditions. Unit length is clear, so let’s check orthogonality: k uk+1, wj = vk+1, wj − ∑ hwi, vk+1i · wi, wj = vk+1, wj − wj, vk+1 = 0. i=1 Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis.
    [Show full text]
  • THE DIMENSION of a VECTOR SPACE 1. Introduction This Handout
    THE DIMENSION OF A VECTOR SPACE KEITH CONRAD 1. Introduction This handout is a supplementary discussion leading up to the definition of dimension of a vector space and some of its properties. We start by defining the span of a finite set of vectors and linear independence of a finite set of vectors, which are combined to define the all-important concept of a basis. Definition 1.1. Let V be a vector space over a field F . For any finite subset fv1; : : : ; vng of V , its span is the set of all of its linear combinations: Span(v1; : : : ; vn) = fc1v1 + ··· + cnvn : ci 2 F g: Example 1.2. In F 3, Span((1; 0; 0); (0; 1; 0)) is the xy-plane in F 3. Example 1.3. If v is a single vector in V then Span(v) = fcv : c 2 F g = F v is the set of scalar multiples of v, which for nonzero v should be thought of geometrically as a line (through the origin, since it includes 0 · v = 0). Since sums of linear combinations are linear combinations and the scalar multiple of a linear combination is a linear combination, Span(v1; : : : ; vn) is a subspace of V . It may not be all of V , of course. Definition 1.4. If fv1; : : : ; vng satisfies Span(fv1; : : : ; vng) = V , that is, if every vector in V is a linear combination from fv1; : : : ; vng, then we say this set spans V or it is a spanning set for V . Example 1.5. In F 2, the set f(1; 0); (0; 1); (1; 1)g is a spanning set of F 2.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • A Study of Uniform Boundedness
    CANADIAN THESES H pap^^ are missmg, contact the university whch granted the Sil manque des pages, veuiflez communlquer avec I'univer- degree.-. sit6 qui a mf&B b grade. henaPsty coWngMed materiats (journal arbcks. puMished Les documents qui tont c&j& robjet dun dfoit dautew (Wicks tests, etc.) are not filmed. de revue, examens pubiles, etc.) ne scmt pas mlcrofiimes. Repockbm in full or in part of this film is governed by the lareproduction, m&ne partielk, de ce microfibn est soumise . Gawc&n CoWnght Act, R.S.C. 1970, c. G30. P!ease read B h Ldcanaden ne sur b droit &auteur, SRC 1970, c. C30. the alrhmfm fmwhich mpanythfs tksts. Veuikz pm&e des fmhdautortsetion qui A ac~ompegnentcette Mse. - - - -- - - -- - -- ppp- -- - THIS DISSERTATlON LA W&E A - - -- EXACTLY AS RECEIVED NOUS L'AVONS RECUE d the fitsr. da prdrer w de vervke des exsaplairas du fib, *i= -4 wit- tM arrhor's rrrittm lsrmissitn. (Y .~-rmntrep&ds sns rrror;s~m&rite de /.auefa. e-zEEEsXs-a--==-- , THE RZ~lREHEHTFOR THE DEGREB OF in the Wpartesent R.T. SBantunga, 1983 SLW PRllSER BNFJERSI'PY Decenber 1983 Hae: Degree: Title of Thesis: _ C, Godsil ~srtsrnalgnamniner I3e-t of Hathematics Shmn Praser University 'i hereby grant to Simn Fraser University tba right to .lend ,y 'hcsis, or ~.ndadessay 4th title of which is 5taun helor) f to users ot the 5imFrasar University Library, and to mke partial or r'H.lgtrt copies oniy for such users 5r in response to a request fram the 1 Ibrary oh any other university, or other educationat institution, on its orn behaif or for one of its users.
    [Show full text]
  • A Novel Dual Approach to Nonlinear Semigroups of Lipschitz Operators
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 357, Number 1, Pages 409{424 S 0002-9947(04)03635-9 Article electronically published on August 11, 2004 A NOVEL DUAL APPROACH TO NONLINEAR SEMIGROUPS OF LIPSCHITZ OPERATORS JIGEN PENG AND ZONGBEN XU Abstract. Lipschitzian semigroup refers to a one-parameter semigroup of Lipschitz operators that is strongly continuous in the parameter. It con- tains C0-semigroup, nonlinear semigroup of contractions and uniformly k- Lipschitzian semigroup as special cases. In this paper, through developing a series of Lipschitz dual notions, we establish an analysis approach to Lips- chitzian semigroup. It is mainly proved that a (nonlinear) Lipschitzian semi- group can be isometrically embedded into a certain C0-semigroup. As ap- plication results, two representation formulas of Lipschitzian semigroup are established, and many asymptotic properties of C0-semigroup are generalized to Lipschitzian semigroup. 1. Introduction Let X and Y be Banach spaces over the same coefficient field K (= R or C), and let C ⊂ X and D ⊂ Y be their subsets. A mapping T from C into D is called Lipschitz operator if there exists a real constant M>0 such that (1.1) k Tx− Ty k≤ M k x − y k; 8x; y 2 C; where the constant M is commonly referred to as a Lipschitz constant of T . Clearly, if the mapping T is a constant (that is, there exists a vector y0 2 D such that Tx= y0 for all x 2 C), then T is a Lipschitz operator. Let Lip(C; D) denote the space of Lipschitz operators from C into D,andfor every T 2 Lip(C; D)letL(T ) denote the minimum Lipschitz constant of T , i.e., k Tx− Ty k (1.2) L(T )= sup : x;y2C;x=6 y k x − y k Then, it can be shown that the nonnegative functional L(·)isaseminormof Lip(C; D) and hence (Lip(C; D);L(·)) is a seminormed linear space.
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Multilinear Algebra
    Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R.
    [Show full text]