Hilbert-Spaces.Pdf

Hilbert-Spaces.Pdf

222 BRUCE K. DRIVER† 12. Hilbert Spaces 12.1. Hilbert Spaces Basics. Definition 12.1. Let H be a complex vector space. An inner product on H is a function, , : H H C, such that h· ·i × → (1) ax + by, z = a x, z + b y, z i.e. x x, z is linear. h i h i h i → h i (2) x, y = y, x . (3) hx 2i hx, x i 0 with equality x 2 =0iff x =0. k k ≡ h i ≥ k k Notice that combining properties (1) and (2) that x z,x is anti-linear for fixed z H, i.e. → h i ∈ z,ax + by =¯a z,x + ¯b z,y . h i h i h i We will often find the following formula useful: x + y 2 = x + y,x + y = x 2 + y 2 + x, y + y, x k k h i k k k k h i h i (12.1) = x 2 + y 2 +2Re x, y k k k k h i Theorem 12.2 (Schwarz Inequality). Let (H, , ) be an inner product space, then for all x, y H h· ·i ∈ x, y x y |h i| ≤ k kk k and equality holds iff x and y are linearly dependent. Proof. If y =0, the result holds trivially. So assume that y =0. First off notice 2 6 that if x = αy for some α C, then x, y = α y and hence ∈ h i k k x, y = α y 2 = x y . |h i| | |k k k kk k x,y h i Moreover, in this case α := y 2 . k k 2 Now suppose that x H is arbitrary, let z x y − x, y y. (So z is the “orthogonal projection”∈ of x onto y, seeFigure28.)Then≡ − k k h i Figure 28. The picture behind the proof. x, y 2 x, y 2 x, y 0 z 2 = x h iy = x 2 + |h i| y 2 2Re x, h iy ≤ k k − y 2 k k y 4 k k − h y 2 i ° k k ° k k k k ° x, y° 2 = °x 2 |h °i| k° k − y °2 k k from which it follows that 0 y 2 x 2 x, y 2 with equality iff z =0or 2 ≤ k k k k − |h i| equivalently iff x = y − x, y y. k k h i ANALYSIS TOOLS WITH APPLICATIONS 223 Corollary 12.3. Let (H, , ) be an inner product space and x := x, x . Then is a norm on H. Moreoverh· ·i , is continuous on H H,kwherek H his viewedi as thek·k normed space (H, ). h· ·i × p k·k Proof. The only non-trivial thing to verify that is a norm is the triangle inequality: k·k x + y 2 = x 2 + y 2 +2Re x, y x 2 + y 2 +2 x y k k k k k k h i ≤ k k k k k kk k =( x + y )2 k k k k where we have made use of Schwarz’s inequality. Taking the square root of this inequality shows x + y x + y . For the continuity assertion: k k ≤ k k k k x, y x0,y0 = x x0,y + x0,y y0 |h i − h i| |h − i h − i| y x x0 + x0 y y0 ≤ k kk − k k kk − k y x x0 +( x + x x0 ) y y0 ≤ k kk − k k k k − k k − k = y x x0 + x y y0 + x x0 y y0 k kk − k k kk − k k − kk − k from which it follows that , is continuous. h· ·i Definition 12.4. Let (H, , ) be an inner product space, we say x, y H are orthogonal and write x h· y·i iff x, y =0. More generally if A H ∈is a set, x H is orthogonal to⊥A andh writei x A iff x, y =0for all⊂ y A. Let ∈ ⊥ h i ∈ A⊥ = x H : x A be the set of vectors orthogonal to A. We also say that a set S { H∈ is orthogonal⊥ } if x y for all x, y S such that x = y. If S further satisfies,⊂ x =1for all x S, then⊥ S is said to∈ be orthonormal.6 k k ∈ Proposition 12.5. Let (H, , ) be an inner product space then h· ·i (1) (Parallelogram Law) (12.2) x + y 2 + x y 2 =2 x 2 +2 y 2 k k k − k k k k k for all x, y H. (2) (Pythagorean∈ Theorem) If S H is a finite orthonormal set, then ⊂ (12.3) x 2 = x 2. k k k k x S x S X∈ X∈ (3) If A H isaset,thenA⊥ is a closed linear subspace of H. ⊂ Remark 12.6. See Proposition 12.37 in the appendix below for the “converse” of the parallelogram law. Proof. IwillassumethatH is a complex Hilbert space, the real case being easier. Items 1. and 2. are proved by the following elementary computations: x + y 2 + x y 2 = x 2 + y 2 +2Re x, y + x 2 + y 2 2Re x, y k k k − k k k k k h i k k k k − h i =2 x 2 +2 y 2, k k k k and x 2 = x, y = x, y k k h i h i x S x S y S x,y S X∈ X∈ X∈ X∈ = x, x = x 2. h i k k x S x S X∈ X∈ 224 BRUCE K. DRIVER† Item 3. is a consequence of the continuity of , and the fact that h· ·i A⊥ = x A ker( ,x ) ∩ ∈ h· i where ker( ,x )= y H : y,x =0 — a closed subspace of H. h· i { ∈ h i } Definition 12.7. A Hilbert space is an inner product space (H, , ) such that the induced Hilbertian norm is complete. h· ·i Example 12.8. Let (X, ,µ) be a measure space then H := L2(X, ,µ) with inner product M M (f,g)= f gdµ¯ · ZX is a Hilbert space. In Exercise 12.6 you will show every Hilbert space H is “equiv- alent” to a Hilbert space of this form. Definition 12.9. A subset C of a vector space X is said to be convex if for all x, y C the line segment [x, y]:= tx +(1 t)y :0 t 1 joining x to y is contained∈ in C as well. (Notice that any{ vector− subspace≤ of≤X }is convex.) Theorem 12.10. Suppose that H is a Hilbert space and M H beaclosedconvex subset of H. Then for any x H there exists a unique y M⊂ such that ∈ ∈ x y = d(x, M)= inf x z . z M k − k ∈ k − k Moreover, if M is a vector subspace of H, then the point y may also be characterized astheuniquepointinM such that (x y) M. − ⊥ Proof. By replacing M by M x := m x : m M we may assume x =0. − { − ∈ } Let δ := d(0,M)=infm M m and y, z M, seeFigure29. ∈ k k ∈ Figure 29. Thegeometryofconvexsets. By the parallelogram law and the convexity of M, y + z (12.4) 2 y 2 +2 z 2 = y+z 2 + y z 2 =4 2 + y z 2 4δ2 + y z 2. k k k k k k k − k k 2 || k − k ≥ k − k Hence if y = z = δ, then 2δ2 +2δ2 4δ2 + y z 2, so that y z 2 =0. k k k k ≥ k − k k − k Therefore, if a minimizer for d(0, ) M exists, it is unique. · | ANALYSIS TOOLS WITH APPLICATIONS 225 Existence. Let yn M be chosen such that yn = δn δ d(0,M). Taking ∈ 2 k2 k 2 → ≡ 2 y = ym and z = yn in Eq. (12.4) shows 2δm +2δn 4δ + yn ym . Passing to the limit m, n in this equation implies, ≥ k − k →∞ 2 2 2 2 2δ +2δ 4δ + lim sup yn ym . ≥ m,n k − k →∞ Therefore yn ∞ is Cauchy and hence convergent. Because M is closed, y := { }n=1 lim yn M and because is continuous, n →∞ ∈ k·k y = lim yn = δ = d(0,M). n k k →∞ k k So y is the desired point in M which is closest to 0. Now for the second assertion we further assume that M is a closed subspace of H and x H. Let y M be the closest point in M to x. Then for w M, the function ∈ ∈ ∈ g(t) x (y + tw) 2 = x y 2 2tRe x y, w + t2 w 2 ≡ k − k k − k − h − i k k has a minimum at t =0. Therefore 0=g0(0) = 2Re x y,w . Since w M is arbitrary, this implies that (x y) M. Finally suppose− h −y Miis any point∈ such that (x y) M. Then for z −M,⊥by Pythagorean’s theorem,∈ − ⊥ ∈ x z 2 = x y + y z 2 = x y 2 + y z 2 x y 2 k − k k − − k k − k k − k ≥ k − k which shows d(x, M)2 x y 2. That is to say y is the point in M closest to x. ≥ k − k Definition 12.11. Suppose that A : H H is a bounded operator. The adjoint → of A, denote A∗, is the unique operator A∗ : H H such that Ax, y = x, A∗y . → h i h i (The proof that A∗ exists and is unique will be given in Proposition 12.16 below.) A bounded operator A : H H is self - adjoint or Hermitian if A = A∗.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us