Pythium Root Rot of Common Bean: Biology and Control Methods. a Review

Total Page:16

File Type:pdf, Size:1020Kb

Pythium Root Rot of Common Bean: Biology and Control Methods. a Review B A S E Biotechnol. Agron. Soc. Environ. 2012 16(3), 405-413 Focus on: Pythium root rot of common bean: biology and control methods. A review John Rusagara Nzungize (1), François Lyumugabe (2), Jean-Pierre Busogoro (3), Jean-Pierre Baudoin (1) (1) Univ. Liege - Gembloux Agro-Bio Tech. Tropical Crop Husbandry and Horticulture. Passage des Déportés, 2. B-5030 Gembloux (Belgium). E-mail: [email protected] (2) National University of Rwanda. Biotechnology Unit. P.O. Box 117. Butare (Rwanda). (3) Belgium Technical Cooperation. IPM project. Kigali (Rwanda). Received on September 2, 2011; accepted on March 20, 2012. Pythium root rot constitutes a highly damaging constraint on the common bean, Phaseolus vulgaris L., grown in several areas of Eastern and Central Africa. Here, this food legume is cultivated intensively under poor conditions of crop rotation due to the exiguity of the land in the region. Yield losses of up to 70% in traditional local bean cultivars have been reported in Kenya and Rwanda. In this study, a detailed analysis of the biology and diversity of the Pythium genus was carried out in order to understand the mechanisms leading to the development of the disease. Various control methods for reducing the damage provoked by this disease were analyzed. Keywords. Phaseolus vulgaris, Pythium, root rots, plant disease control, disease resistance, Africa. Pourriture racinaire du haricot commun causée par Pythium : biologie et méthodes de lutte. La pourriture racinaire causée par Pythium constitue une importante contrainte pour la production du haricot commun (Phaseolus vulgaris L.) dans plusieurs régions de l’Afrique centrale et orientale où la production du haricot est intense dans des conditions de non-respect des schémas de rotation à cause de l’exiguïté des terres. Des pertes de rendement allant jusqu’à 70 % au sein des cultivars locaux traditionnels de haricot ont été rapportées au Kenya et au Rwanda. Dans ce travail, une analyse détaillée de la biologie du genre Pythium et de sa diversité a été conduite pour comprendre les mécanismes qui mènent au développement de la maladie. Pour réduire les dégâts provoqués par ce pathogène, diverses méthodes de contrôle ont été analysées. Mots-clés. Phaseolus vulgaris, Pythium, pourritures des racines, lutte antimaladie des plantes, résistance aux maladies, Afrique. 1. INTRODUCTION increase in the importance of Pythium bean root rots in several countries of Eastern and Central Africa, Common bean (Phaseolus vulgaris L.) is one of the such as Burundi, the Democratic Republic of Congo, most widely cultivated food legume species in the Kenya and Uganda (Otsyula et al., 2003). For example, world (Baudoin et al., 2001). The crop is exploited in a in Western Kenya and in Rwanda, many farmers wide range of areas extending from around 52° North stopped growing beans between 1991 and 1993 due to latitude to 32° South latitude and from sea level to a severe outbreak of root rots, which caused serious 3,000 m above sea level, and it displays great variation food shortages and price increases beyond the reach of in growth habits and length of vegetation (FAO, 2005). many resource-poor households (Nekesa et al., 1998). On a practical level, common bean is a major source of In tropical regions, common bean is characterized by low cost calories, protein, dietary fiber, minerals and low and unstable grain yields due to various ecological vitamins for poor populations (Hillocks et al., 2006). In and agronomic parameters. Among these parameters, Rwanda, this food source provides up to 25% of the total bean root rot and a decline in soil fertility have been calories and 45% of the total dietary protein; this level cited as being among the major causes leading to bean of contribution of common bean to the population’s yield losses (Miklas et al., 2006). In Rwanda, Western diet is considered to be the highest in the world Kenya and South Western Uganda, Pythium spp. are (Pachico, 1993). Pythium species are spread worldwide the fungal pathogens most frequently associated with (Paul, 2004). Over the last 20 years, there has been an severe root rot epidemics (Rusuku et al., 1997). Yield 406 Biotechnol. Agron. Soc. Environ. 2012 16(3), 405-413 losses of up to 70% in commercial bean cultivars have controlling bean Pythium root rot with crop rotation been reported in Rwanda and Kenya (Otsyula et al., practices will be of limited efficiency. In the present 2003). In other studies carried out in these countries study, an investigation was undertaken into the various the following species have been isolated from bean biological characteristics of the Pythium agents present samples affected by root rot symptoms. In view of in Rwanda. The aim was to attain a better understanding understanding the biology of root rot diseases, a of the conditions leading to disease development and study was conducted in Kenya, Rwanda and Uganda to establish appropriate control methods to reduce the (Mukalazi, 2004) to identify the causal agents. In these yield losses caused by Pythium root rot. countries the following species were isolated from bean samples affected by root rot symptoms: Pythium nodosum Bhatn, Pythium echinulatum Matthews, 2. TAXONOMY AND BIOLOGICAL Pythium pachycaule Shtayeh, Pythium oligandrum CHARACTERISTICS OF PYTHIUM SPP. Drechsler, Pythium acanthicum Drechsler, Pythium chamaehyphon Sideris, Pythium folliculosum Paul, The genus Pythium belongs to the family Pythiaceae, Pythium indigoferae Butler, Pythium irregulare order Pythiales, class Oomycetes, Phylum Oomycota Buisman, Pythium lutarium Shtayeh, Pythium and kingdom Chromista (Kirk et al., 2008). macrosporum Vaartaja, Pythium myriotylum Drechsler, Pythium species are fungal microorganisms with a Pythium paroecandrum Drechsler, Pythium torulosum filamentous vegetative body called a mycelium. The Coker, Pythium vexans de Bary, Pythium zingiberis mycelium of Pythium species is colorless, sometimes Takah, Pythium graminicola Subraman, Pythium lustrous, and occasionally slightly yellowish or a spinosum Sawada, Pythium ultimum Trow, Pythium grayish lilac (Owen-Going et al., 2008). The mycelia arrhenomanes Drechsler, Pythium catenulatum in Pythium species branch out apically at right angles Matthews, Pythium diclinum Tokun, Pythium to form structures known as hyphae. These hyphae are dissotocum Drechsler, Pythium rostratum Butler, hyaline, with the main hyphae being mostly 5-7 µm Pythium salpingophorum Drechsler and Pythium wide, occasionally reaching a width of up to 10 µm. deliense Meurs (Nzungize et al., 2011; Buruchara et al., Cross septa are lacking except in old, mostly empty 2007). Root rot diseases are widespread in the world hyphae or where the cross septa delimit the hyphae’s and are often considered as a major constraint to bean reproductive organs (Van der Plaats-Niterink, 1981). production, reducing both yield and quality (Abawi et Protoplasmatic streaming is often clearly visible in al., 2000). Depending on the pathogen(s) involved in the young hyphae. According to Postma et al. (2009), development of the disease, general root rot symptoms hyphal walls are composed of 80-90% polysaccharides, might include any combination of various traits such mainly ß1-6 linked glucans and ß1-3 and ß1-4 as poor seedling establishment, damping-off, uneven (cellulose). It should be noted that Pythium spp. do growth, leaf chlorosis, premature defoliation, death not contain chitin or chitosan in the hyphal walls, but of severely infected plants, and lower yield (Abawi et that they do contain protein and lipid at levels varying al., 2006; Schwartz et al., 2007). Pythium is a complex from 3-8% and from 1-3%, respectively (Postma et al., genus containing over 200 described species with a 2009). Pathogenic Pythium spp. may produce hyphae broad host range and occupying a variety of terrestrial with swollen digitate regions, called appressoria, which and aquatic ecological habitats (Dick, 2001). The enable the fungus to attach and penetrate the host cells presence of the pathogens responsible for producing (Lévesque et al., 2004). root rot and the severity of the disease are associated Pythium spp. can reproduce both asexually and with intensification of land use, inappropriate crop sexually. Asexual reproduction takes place through the rotations and/or reduced fallow periods, leading to a zoosporangia and zoospores. In Pythium the zoospores decline in soil fertility and a build-up of soil pathogen are not formed in the sporangium itself but in a vesicle inoculum (Abawi et al., 2006). outside it (Stanghellini et al., 1971). The sporangium In a study conducted in South Western Uganda, is separated from the rest of the mycelium by a cross seven Pythium species from various crops associated wall. The development of a tube can be observed on with beans were obtained: Pythium macrosporum, the sporangium. The undifferentiated content of the Pythium oligandrum, Pythium spinosum Sawada sporangium moves through this tube and forms a isolated from sorghum, Pythium glomeratum B. Paul vesicle at its end. At this level of development, the isolated from potato, Pythium arrhenomanes isolated zoospores are delimited and start moving (Stanghellini from maize, P. ultimum isolated from peas and et al., 1971). After 10 to 20 minutes, the wall of the Pythium heterothallicum W.A. Campb. & F.F. Hendrix vesicle disappears and the zoospores swim away in isolated from sweet potato (Gichuru, 2008). In cases divergent directions. Zoospores are only liberated where these various Pythium species are identified on under wet conditions. Production of sporangia or plant species intercropped with beans, it is likely that hyphal swellings can be stimulated by Mg, K, and Biology and control of bean Pythium root rot 407 Ca ions (Postma et al., 2009). Exudates of roots and – the character of the oogonial wall (smooth or germinating seeds have a stimulatory effect on the ornamental); germination of sporangia and on mycelial growth – the character of the oospore (plerotic or aplerotic); (Stanghellini et al., 1971). Sexual reproduction in – the characteristics of the antheridia (Matsumoto Pythium spp. takes place through the oogonia and et al., 1999).
Recommended publications
  • Salisapiliaceae</I> ÂŒ a New Family of Oomycetes from Marsh Grass Litter
    Persoonia 25, 2010: 109–116 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158510X551763 Salisapiliaceae – a new family of oomycetes from marsh grass litter of southeastern North America J. Hulvey1, S. Telle 2, L. Nigrelli 2, K. Lamour 1*, M. Thines 2,3* Key words Abstract Several filamentous oomycete species of the genus Halophytophthora have recently been described from marine environments, mostly from subtropical and tropical ecosystems. During a survey of oomycetes from internal transcribed spacer leaf litter of Spartina alterniflora in salt marshes of southeastern Georgia, isolates of four taxa were recovered that nuclear ribosomal large subunit (nrLSU) bore similarity to some members of Halophytophthora but were highly divergent from isolates of Halophytophthora Peronosporales s.str. based on a combined sequence analysis of two nuclear loci. In phylogenetic analyses, these isolates were phylogeny placed basal to a monophyletic group comprised of Pythium of the Pythiaceae and the Peronosporaceae. Sequence Pythiaceae and morphology of these taxa diverged from the type species Halophytophthora vesicula, which was placed within the Peronosporaceae with maximum support. As a consequence a new family, the Salisapiliaceae, and a new ge- nus, Salisapilia, are described to accommodate the newly discovered species, along with one species previously classified within Halophytophthora. Morphological features that separate these taxa from Halophytophthora are a smaller hyphal diameter, oospore production, lack of vesicle formation during sporulation, and a plug of hyaline material at the sporangial apex that is displaced during zoospore release. Our findings offer a first glance at the presumably much higher diversity of oomycetes in estuarine environments, of which ecological significance requires further exploration.
    [Show full text]
  • Phytopythium: Molecular Phylogeny and Systematics
    Persoonia 34, 2015: 25–39 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685382 Phytopythium: molecular phylogeny and systematics A.W.A.M. de Cock1, A.M. Lodhi2, T.L. Rintoul 3, K. Bala 3, G.P. Robideau3, Z. Gloria Abad4, M.D. Coffey 5, S. Shahzad 6, C.A. Lévesque 3 Key words Abstract The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium COI clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian LSU phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase Oomycetes subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as Oomycota a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora Peronosporales and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. Phytopythium The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of Pythiales the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense. SSU Article info Received: 28 January 2014; Accepted: 27 September 2014; Published: 30 October 2014. INTRODUCTION establish which species belong to clade K and to make new taxonomic combinations for these species. To achieve this The genus Pythium as defined by Pringsheim in 1858 was goal, phylogenies based on nuclear LSU rRNA (28S), SSU divided by Lévesque & de Cock (2004) into 11 clades based rRNA (18S) and mitochondrial DNA cytochrome oxidase1 (COI) on molecular systematic analyses.
    [Show full text]
  • Pythium Diseases of Ornamental Plants
    Pythium Diseases of Ornamental Plants Introduction Closely related to Phytophthora, Pythium species also attack the roots and stems of a range of ornamental plants. Whilst generally less damaging than Phytophthora, Pythium can nonetheless be troublesome, particularly on seedlings, cuttings, bedding plants and pot plants. Larger shrubs and trees usually tolerate infection without any adverse effects. However Pythium, together with some other soil-borne fungi and nematodes, has been implicated in the problem known as replant disorder, where a plant performs very poorly when placed in soil that has previously grown a plant of the same species. Roses are affected most commonly by this problem, where it is also known as rose sickness. There are more than one hundred different species of Pythium, but not all of these are Keyplant pathogens. Facts Amongst those found attacking ornamentals are Pythium irregulare, P. sylvaticum and P. ultimum. Key Facts • Pythium species are a group of fungus-like organisms • Not all species are plant pathogens • They can survive in plant debris and soil for many years • They can infect all parts of the plant but usually attack the roots and stem base • Symptoms are frequently first seen above ground e.g. damping-off, wilting • Spread may occur via movement of infected plants • Contaminated soil, water, equipment and footwear may harbour the pathogen • Good hygiene will help reduce risk • Chemicals may be used to sterilise soil, standing areas, pots etc • Protective and curative pesticides are available although most suppress symptoms Symptoms Pythium (together with Rhizoctonia) is a common cause of damping-off of seedlings. Damping-off may occur pre-emergence (resulting in gaps where the germinating seed has decayed) or post-emergence (where the seedling rots away shortly after it has appeared above soil level).
    [Show full text]
  • Pythium Root Rot to Always Act the Same
    pests & diseases DON’T EXPECT PYTHIUM ROOT ROT TO ALWAYS ACT THE SAME Cornell University trials are teaching researchers more about this troublesome pathogen, how it interacts with the plants it infects and how it is becoming more difficult to control — and what they’ve learned may surprise you. Seedling geraniums inoculated with Pythium may be stunted or killed. By Gary W. Moorman (Photos courtesy of Margery Daughtrey) and Margery L. Daughtrey ne new development impor- tems because it has a swimming spore stage. pasteurization could lead to Pythium outbreaks. tant to our understanding of Pythium irregulare also forms swimming spores Second, Pythium ultimum favors cool greenhouse Pythium species comes from and is isolated from a very wide variety of temperatures: the minimum for growth is 41° F, the findings of molecular greenhouse crops, almost any crop grown. It is maximum 95° F and optimum 77-86° F. When geneticists. We have long less aggressive than P. aphanidermatum, often other organisms are inhibited by cool tempera- thoughtO of Pythium as a “water mold fun- causing stunting but seldom killing plants quick- ture, P. ultimum can prosper. gus”— now it has been reclassified according to ly. Pythium ultimum, very commonly noted in P. aphanidermatum has a higher minimum tem- information gained from comparing gene simi- old clinic records, is much less common but is perature (50° F) than P. ultimum and a very high larities…and Pythium is no longer a fungus! still isolated from chrysanthemums, verbenas, optimum temperature at 95-104° F. This Pythium DNA analysis has shown us that Pythium is geraniums and sometimes poinsettias.
    [Show full text]
  • Title Development of Simple Detection Methods of Plant Pathogenic Oomycetes( 本文(Fulltext) ) Author(S) FENG, WENZHUO Report N
    Development of Simple Detection Methods of Plant Pathogenic Title Oomycetes( 本文(Fulltext) ) Author(s) FENG, WENZHUO Report No.(Doctoral Degree) 博士(農学) 甲第708号 Issue Date 2019-03-13 Type 博士論文 Version ETD URL http://hdl.handle.net/20.500.12099/77944 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 Development of Simple Detection Methods of Plant Pathogenic Oomycetes (植物病原性卵菌類の簡易検出法の開発) 2018 The United Graduate School of Agriculture Science, Gifu University Science of Biological Environment (Gifu University) FENG WENZHUO Development of Simple Detection Methods of Plant Pathogenic Oomycetes (植物病原性卵菌類の簡易検出法の開発) FENG WENZHUO INDEX PREFACE .......................................................................................................... 1 CHAPTER 1 Establishment of simple LAMP procedures with detection of Pythium irregulare in field samples ................................................................... 12 MATERIALS AND METHODS ..................................................................................... 13 RESULTS ................................................................................................................... 17 1. Primer design and specificity ............................................................................... 17 2. Sensitivity of LAMP ............................................................................................. 18 3. Practical detection of P. irregulare in field samples .............................................. 18 DISCUSSION ............................................................................................................
    [Show full text]
  • Control of Phytophthora, Pythium and Rhizoctonia in Container-Grown Hardy Ornamentals
    Factsheet 16/04 Horticultural Bradbourne House Development East Malling Council Kent ME19 6DZ Hardy Nursery Stock T: 01732 848383 F: 01732 848498 E: [email protected] Control of Phytophthora, Pythium and Rhizoctonia in container-grown hardy ornamentals By Tim O’Neill and David Ann, ADAS Root, crown and basal stem rots caused by species of Phytophthora, Pythium and Rhizoctonia are economically important diseases of container-grown hardy ornamentals. This factsheet describes the symptoms caused by these pathogens, their biology, and a management strategy for disease control. It does not deal with the diseases caused by Phytophthora ramorum (see factsheet 19/03), or with the less common crown and root rot diseases caused by other fungal pathogens. Action points Nursery hygiene because of the high humidity. • Implement a nursery hygiene regime If necessary, use a protectant Stockplant management that covers all the stages of propa- fungicide treatment. • Ensure stock plants are free from gation and production to include Phytophthora, Pythium and cleaning and/or disinfecting beds, • Where there is significant disease Rhizoctonia and take appropriate pots, tools, machinery, water and risk, include appropriate fungicide cultural and other measures to irrigation equipment. Consider treatment(s). Early fungicide maintain their health (see provision creating a plant quarantine area treatment, before the disease is of healthy propagating material). (see section on hygiene). established, is important for effective control. • If possible, grow stock plants in Use of fungicides containers, in well drained growing • Cuttings are particularly susceptible media with high air capacity. to Rhizoctonia during rooting • Where feasible, train stock plants to discourage prostrate growth and stimulate production of cutting material higher up.
    [Show full text]
  • Characterization of Resistance in Soybean and Population Diversity Keiddy Esperanza Urrea Romero University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 7-2015 Pythium: Characterization of Resistance in Soybean and Population Diversity Keiddy Esperanza Urrea Romero University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Agronomy and Crop Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons Recommended Citation Urrea Romero, Keiddy Esperanza, "Pythium: Characterization of Resistance in Soybean and Population Diversity" (2015). Theses and Dissertations. 1272. http://scholarworks.uark.edu/etd/1272 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Pythium: Characterization of Resistance in Soybean and Population Diversity A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Science by Keiddy E. Urrea Romero Universidad Nacional de Colombia Agronomic Engineering, 2003 University of Arkansas Master of Science in Plant Pathology, 2010 July 2015 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ________________________________ Dr. John C. Rupe Dissertation Director ___________________________________ ___________________________________ Dr. Craig S. Rothrock Dr. Pengyin Chen Committee Member Committee Member ___________________________________ ___________________________________ Dr. Burton H. Bluhm Dr. Brad Murphy Committee Member Committee Member Abstract Pythium spp. are an important group of pathogens causing stand losses in Arkansas soybean production. New inoculation methods and advances in molecular techniques allow a better understanding of cultivar resistance and responses of Pythium communities to cultural practices.
    [Show full text]
  • The Genus Pythium in Mainland China
    菌物学报 [email protected] 8 April 2013, 32(增刊): 20-44 Http://journals.im.ac.cn Mycosystema ISSN1672-6472 CN11-5180/Q © 2013 IMCAS, all rights reserved. The genus Pythium in mainland China HO Hon-Hing* Department of Biology, State University of New York, New Paltz, New York 12561, USA Abstract: A historical review of studies on the genus Pythium in mainland China was conducted, covering the occurrence, distribution, taxonomy, pathogenicity, plant disease control and its utilization. To date, 64 species of Pythium have been reported and 13 were described as new to the world: P. acrogynum, P. amasculinum, P. b ai sen se , P. boreale, P. breve, P. connatum, P. falciforme, P. guiyangense, P. guangxiense, P. hypoandrum, P. kummingense, P. nanningense and P. sinensis. The dominant species is P. aphanidermatum causing serious damping off and rotting of roots, stems, leaves and fruits of a wide variety of plants throughout the country. Most of the Pythium species are pathogenic with 44 species parasitic on plants, one on the red alga, Porphyra: P. porphyrae, two on mosquito larvae: P. carolinianum and P. guiyangense and two mycoparasitic: P. nunn and P. oligandrum. In comparison, 48 and 28 species have been reported, respectively, from Taiwan and Hainan Island with one new species described in Taiwan: P. sukuiense. The prospect of future study on the genus Pythium in mainland China was discussed. Key words: Pythiaceae, taxonomy, Oomycetes, Chromista, Straminopila 中国大陆的腐霉属菌物 何汉兴* 美国纽约州立大学 纽约 新帕尔茨 12561 摘 要:综述了中国大陆腐霉属的研究进展,内容包括腐霉属菌物的发生、分布、分类鉴定、致病性、所致植物病 害防治及腐霉的利用等方面。至今,中国已报道的腐霉属菌物有 64 个种,其中有 13 个种作为世界新种进行了描述, 这 13 个新种分别为:顶生腐霉 Pythium acrogynum,孤雌腐霉 P.
    [Show full text]
  • The Taxonomy and Biology of Phytophthora and Pythium
    Journal of Bacteriology & Mycology: Open Access Review Article Open Access The taxonomy and biology of Phytophthora and Pythium Abstract Volume 6 Issue 1 - 2018 The genera Phytophthora and Pythium include many economically important species Hon H Ho which have been placed in Kingdom Chromista or Kingdom Straminipila, distinct from Department of Biology, State University of New York, USA Kingdom Fungi. Their taxonomic problems, basic biology and economic importance have been reviewed. Morphologically, both genera are very similar in having coenocytic, hyaline Correspondence: Hon H Ho, Professor of Biology, State and freely branching mycelia, oogonia with usually single oospores but the definitive University of New York, New Paltz, NY 12561, USA, differentiation between them lies in the mode of zoospore differentiation and discharge. Email [email protected] In Phytophthora, the zoospores are differentiated within the sporangium proper and when mature, released in an evanescent vesicle at the sporangial apex, whereas in Pythium, the Received: January 23, 2018 | Published: February 12, 2018 protoplast of a sporangium is transferred usually through an exit tube to a thin vesicle outside the sporangium where zoospores are differentiated and released upon the rupture of the vesicle. Many species of Phytophthora are destructive pathogens of especially dicotyledonous woody trees, shrubs and herbaceous plants whereas Pythium species attacked primarily monocotyledonous herbaceous plants, whereas some cause diseases in fishes, red algae and mammals including humans. However, several mycoparasitic and entomopathogenic species of Pythium have been utilized respectively, to successfully control other plant pathogenic fungi and harmful insects including mosquitoes while the others utilized to produce valuable chemicals for pharmacy and food industry.
    [Show full text]
  • Studies on Root Necrosis of Wheat Caused by Pythium Graminicola Subr John Edward Grafius Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1943 Studies on root necrosis of wheat caused by Pythium graminicola Subr John Edward Grafius Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Plant Pathology Commons Recommended Citation Grafius, oJ hn Edward, "Studies on root necrosis of wheat caused by Pythium graminicola Subr " (1943). Retrospective Theses and Dissertations. 13814. https://lib.dr.iastate.edu/rtd/13814 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI OT lOGf m'lOSIS OF 1^1 m mmwm «»»»» wii*' % SiifcfIns 4 ^iwl# Satoaitfced to th® Gradm#» for the I^gre® of seetoa ©r wii«®« iubjeotss Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. »« UMI Number: DP13246 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Parkinsonia Aculeata
    Investigating the cause of dieback in the invasive plant, Parkinsonia aculeata BY TRACEY VIVIEN STEINRUCKEN A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at Western Sydney University in 2017 This page has been intentionally left blank “Watch with glittering eyes the whole world around you because the greatest secrets are always hidden in the most unlikely places. Those who don't believe in magic will never find it” -- Roald Dahl This page has been intentionally left blank Acknowledgements I would like to thank my advisors Rieks van Klinken (CSIRO Health & Biosecurity), Andrew Bissett (CISRO Oceans & Atmosphere) and Jeff Powell (Hawkesbury Institute for the Enivronment, Western Sydney University) for their excellent mentoring, patient communication across borders and constant support. This research project was supported by Meat and Livestock Australia via a technical assistance grant (B.STU.0271). My PhD was supported by the Australian Government via an Australian Postgraduate Award and Western Sydney University via a top-up stipend. The Hawkesbury Institute for the Environment also supported my work with an annual research allocation and conference attendance funding. Thanks to Patricia Hellier, David Harland, Ian Anderson and Lisa Davison at HIE for administrative support. Thank-you to Kelli Pukallus (Biosecurity Queensland), Andrew White (CSIRO), Eva Pôtet (Agro Campus Oest, Paris), Marcus Klein (HIE at WSU), Donald Gardiner (CSIRO), Shamsul Hoque (CSIRO), Ryan O’Dell (DAFF) and Dylan Smith (UC Berkeley) for field and technical support in various chapters throughout this thesis. Huge thanks to my CSIRO Biosecurity team: Gio Fichera, Ryan Zonneveld, Brad Brown, Andrew White and Jeff Makinson for technical support in Chapter 3.
    [Show full text]
  • Pathogenicity and Host Range of Pythium Kashmirense—A Soil-Borne Oomycete Recently Discovered in the UK
    Journal of Fungi Article Pathogenicity and Host Range of Pythium kashmirense—A Soil-Borne Oomycete Recently Discovered in the UK Clara Benavent-Celma 1,2 , Alexandra Puertolas 3 , Debbie McLaggan 2 , Pieter van West 2 and Steve Woodward 1,* 1 Department of Plant and Soil Science, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK; [email protected] 2 International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; [email protected] (D.M.); [email protected] (P.v.W.) 3 ANSES, Laboratoire de la Santé des Végétaux–Unité de Mycologie, Domaine de Pixérécourt–Bât. E, CS 40009, F-54220 Malzéville, France; [email protected] * Correspondence: [email protected]; Tel.: +44-1224-272-669 Abstract: During a survey of oomycetes in ornamental plants carried out at the University of Aberdeen in 2014–2015, Pythium kashmirense was isolated from a specimen of Viburnum plicatum ‘Lanarth’, the first report of this oomycete in the UK (and in Europe). Pathogenicity of a Py. kashmirense isolate was examined using a range of plant species. Inoculations were carried out under controlled conditions in the absence of other Pythium and Phytophthora species, on Glycine max (soya bean), Phaseolus vulgaris (common bean), Lupinus angustifolius (blue lupin), Cucumis sativa (cucumber) and Viburnum opulus. The majority of inoculations caused pre-emergence damping-off, as well as seed rot Citation: Benavent-Celma, C.; and root rot. In the in vitro assays, germination rates (%) of soya bean and blue lupin seeds were Puertolas, A.; McLaggan, D.; van less than 50%; in the in vivo inoculations on plants, over 50% of soya bean, blue lupin and common West, P.; Woodward, S.
    [Show full text]