(12) Patent Application Publication (10) Pub. No.: US 2007/0136827 A1 Collins Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2007/0136827 A1 Collins Et Al US 2007013 6827A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0136827 A1 Collins et al. (43) Pub. Date: Jun. 14, 2007 (54) CSFTRANS RIBOREGULATORS Publication Classification (51) Int. Cl. (75) Inventors: James J. Collins, Newton, MA (US); AOIK 67/027 (2006.01) Farren J. Isaacs, Brookline, MA (US); C7H 2L/04 (2006.01) Charles R. Cantor, Del Mar, CA (US); CI2N 15/09 (2006.01) Daniel J. Dwyer, Brookline, MA (US) CI2N 5/06 (2006.01) (52) U.S. Cl. ............................ 800/14; 435/325; 435/455; 536/23.2 Correspondence Address: CHOATE, HALL & STEWART LLP (57) ABSTRACT TWO INTERNATIONAL PLACE BOSTON, MA 02110 (US) The present invention provides nucleic acid molecules, DNA constructs, plasmids, and methods for post-transcrip tional regulation of gene expression using RNA molecules to (73) Assignee: TRUSTEES OF BOSTON UNIVER both repress and activate translation of an open reading SITY, Boston, MA (US) frame. Repression of gene expression is achieved through the presence of a regulatory nucleic acid element (the cis-repressive RNA or crRNA) within the 5' untranslated (21) Appl. No.: 10/535,128 region (5' UTR) of an mRNA molecule. The nucleic acid element forms a hairpin (stem/loop) structure through complementary base pairing. The hairpin blocks access to (22) PCT Fed: Nov. 14, 2003 the mRNA transcript by the ribosome, thereby preventing translation. In particular, in embodiments of the invention PCT No.: PCT/USO3A36506 designed to operate in prokaryotic cells, the stem of the (86) hairpin secondary structure sequesters the ribosome binding S 371(c)(1), site (RBS). In embodiments of the invention designed to (2), (4) Date: Apr. 4, 2006 operate in eukaryotic cells, the stem of the hairpin is positioned upstream of the start codon, anywhere within the 5' UTR of an mRNA. A small RNA (trans-activating RNA, Related U.S. Application Data or taRNA), expressed in trans, interacts with the crRNA and alters the hairpin structure. This alteration allows the ribo Some to gain access to the region of the transcript upstream (60) Provisional application No. 60/426,891, filed on Nov. of the start codon, thereby activating transcription from its 15, 2002. previously repressed state. Patent Application Publication Jun. 14, 2007 Sheet 1 of 12 US 2007/0136827 A1 A. 2. Artificial Riboswitch System DNA s' ...A.Sassass RNA ''Ris Translation cis-Repression Protein &S m r me - - - - - -n - I - - - - - - - - - trans-Activation ulcars TrvashgraseracterstarsagesAUG C RBS Gule Patent Application Publication Jun. 14, 2007 Sheet 2 of 12 US 2007/O136827 A1 R a'yaay wicuccucuuuccaucuu "' ...IEEEEEEEEEEGU an C (Seo ID Jo: sa)er crR7 "Y "Yff freffy." G.gu' A aaasniAdil AAA Aug ( Seq \D No! S3) cR10 " i "iff"fify"2 G a "ErikCa a disceau (set d No. 54) C CrPB 'uuluu("Yi" AucucutAAShikigasaucCau (StG ) NO SS)er 4. CA UUA AA gif d CAGGy C heatedCU i. 'CCAusACUA5 (SEQ D WJO SSC) Figure 2a Patent Application Publication Jun. 14, 2007 Sheet 3 of 12 US 2007/0136827 A1 150 10 Fluorescence (Arbitrary Units) Figure 2b Patent Application Publication Jun. 14, 2007 Sheet 4 of 12 US 2007/0136827 A1 - 10 10 Fluorescence (Arbitrary Units) Figure 2c F - ta1 Ocr10 he ta12cr12 O.B 2. 8 0.6 0.4 90.2 O O o o 16 % Arabinose G a. Arabinose (FL) - Arabinose (RNA) +Arabinose (FL) +Arabinose (RNA) s - - Fluorescence (Arbitrary Units) F. ( u(26 3A-3G Patent Application Publication Jun. 14, 2007 Sheet 6 of 12 US 2007/O136827 A1 JAAAccA. RS Crr2 GA UseYUNR AUUAAGAggAGAAAG Guaccaus. (S Q D Nos.) Gu(22 3-H Patent Application Publication Jun. 14, 2007 Sheet 7 of 12 US 2007/O136827 A1 a III) M&A loop NS IILL Patent Application Publication Jun. 14, 2007 Sheet 8 of 12 US 2007/O136827 A1 taRNA T ampf 1 GURC C Patent Application Publication Jun. 14, 2007 Sheet 9 of 12 US 2007/0136827 A1 taR10-cirrit taR12-cirr taR10-cr-0 taR7-cirr10 taR12-Cr 10 taR2-crr2 taR7-cr2 taR10-cr-2 8 do 20 140 160 BO 200 220 24g Patent Application Publication Jun. 14, 2007 Sheet 10 of 12 US 2007/013.6827 A1 s--- D ---- -1N--/ 00 20 140 60 O 220 240 60 --2 Patent Application Publication Jun. 14, 2007 Sheet 11 of 12 US 2007/013.6827 A1 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 04 0.5 0.6 0.7 x (1-x) FIGule 8 Patent Application Publication Jun. 14, 2007 Sheet 12 of 12 US 2007/O136827 A1 S. t V / CD - a 9 it 3. as S. s N. o & - CO \\D Sl 3 e 3 A <A. Ch. s A: CSs CD f o CD c tre s CN n O Ol US 2007/013.6827 A1 Jun. 14, 2007 CIS/TRANS RIBOREGULATORS 0005 Although the approaches described above have proven extremely valuable, they have a variety of features RELATED APPLICATION INFORMATION that limit their usefulness. For example, methods that 0001) This application claims the benefit of U.S. Provi involve alterations in RNA transcription may have slower sional Application Ser. No. 60/426,891, filed Nov. 15, 2002, response times than methods that are based on post-tran which is hereby incorporated by reference. Scriptional regulation. Techniques involving modulation of transcription factors are generally limited to well-character ized transcription factors. Antisense, ribozyme, and RNAi GOVERNMENT SUPPORT based approaches typically require sequence-specific 0002 This invention was made with Government Sup design. It is evident that a need exists in the art for additional port under Grant Number F30602-01-2-0579 awarded by the systems and methods for the control of gene expression. In Air Force Research Laboratory and Grant Number EIA particular, there exists a need for modular systems that 0130331 awarded by the National Science Foundation. The function with a wide variety of genes and that can be Government has certain rights in the invention. integrated into biological networks. Furthermore, there exists a need in the art for systems that would afford the BACKGROUND OF THE INVENTION ability to artificially control gene expression within cells in 0003) Virtually all forms of life exhibit the ability to response to external stimuli. control gene expression, e.g., in response to environmental conditions or as part of the developmental process, and a SUMMARY OF THE INVENTION myriad of different mechanisms for controlling gene expres 0006 The present invention addresses these needs, sion exist in nature. These mechanisms permit cells to among others, by providing systems and methods for the express particular Subsets of genes and allow them to adjust post-transcriptional control of gene expression in prokary the level of particular gene products as required. For otic or eukaryotic cells. The invention provides an artificial example, bacteria and eukaryotic cells are often able to RNA-based system that enables precise control through adjust the expression of enzymes in synthetic or metabolic highly specific RNA-RNA interactions. According to the pathways depending on the availability of Substrates or end invention effective repression is achieved by engineering an products. Similarly, many cells are able to induce synthesis RNA molecule (or template for the RNA molecule), so that of protective molecules such as heat shock proteins in the engineered RNA forms a secondary structure that pre response to environmental stress. Inherited or acquired vents the ribosome from gaining access to the RNA at an defects in mechanisms for control of gene expression are appropriate location to begin translation. Repression of gene believed to play a significant role in human diseases (e.g., expression is achieved through the presence of a regulatory cancer), and targeted disruption of important regulatory nucleic acid element (the cis-repressive RNA or crRNA) molecules in mice frequently results in severe phenotypic within the 5' untranslated region (5' UTR) of an mRNA defects. molecule. The nucleic acid element forms a hairpin (stem/ 0004. A number of approaches have been developed in loop) structure through complementary base pairing. The order to artificially control levels of gene expression, many hairpin blocks access to the mRNA transcript by the ribo of which are modeled on naturally occurring regulatory Some, thereby preventing translation. A Small RNA (trans systems. In general, gene expression can be controlled at the activating RNA, or taRNA), expressed in trans, interacts level of RNA transcription or post-transcriptionally, e.g., by with the crRNA and alters the hairpin structure. This alter controlling the processing or degradation of mRNA mol ation allows the ribosome to gain access to the region of the ecules, or by controlling their translation. For example, transcript upstream of the start codon, thereby activating modulating the activity of transcription factors (e.g., by transcription from its previously repressed state. administration of small molecule activators or inhibitors) is being pursued as a method of controlling mRNA levels (see, 0007. In one aspect, the invention provides an engineered e.g., Nyanguile O, Uesugi M., Austin DJ, Verdine G L. Proc nucleic acid molecule comprising: (i) a first stem-forming Natl Acad Sci USA. 1997, 94(25): 13402-6. A nonnatural portion; (ii) a second stem-forming portion, wherein the two transcriptional coactivator.). Antisense strategies for gene stem-forming portions are complementary or Substantially silencing, in which an antisense RNA or DNA binds to a complementary, and (iii) a non-stem-forming portion that target RNA and results in inactivation, are also being forms a loop connecting the 3' end of the first stem-forming actively pursued for applications ranging from functional portion and the 5' end of the second stem-forming portion, genomics to therapeutics (Giles RV, “Antisense oligonucle wherein the engineered nucleic acid molecule forms a otide technology: from EST to therapeutics'Curr Opin Mol stem-loop structure that represses translation when posi Ther: 2000, 203):238-52).
Recommended publications
  • Engineering a Circular Riboregulator in Escherichia Coli
    bioRxiv preprint doi: https://doi.org/10.1101/008987; this version posted September 25, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Engineering a circular riboregulator in Escherichia coli William Rostain1,2, Shensi Shen2, Teresa Cordero1, Guillermo Rodrigo2,3 and Alfonso Jaramillo1,2,* 1 School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom. 2 Institute of Systems and Synthetic Biology, CNRS - Université d’Evry val d’Essonne, 91000 Évry, France. 3 Instituto de Biologia Molecular y Celular de Plantas, CSIC – Universidad Politécnica de Valencia, 46022 Valencia, Spain. * Corresponding author. School of Life Sciences, University of Warwick. Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom. Tel: +44 (0)24 765 73432, E-mail: [email protected] Type: Letter Running title: Circular Riboregulator. Keywords: Biotechnology, Riboregulators, Splicing, Synthetic Biology. 1 bioRxiv preprint doi: https://doi.org/10.1101/008987; this version posted September 25, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Circular RNAs have recently been shown to be important gene expression regulators in mammalian cells. However, their role in prokaryotes remains elusive. Here, we engineered a synthetic riboregulator that self-splice to produce a circular molecule, exploiting group I permuted intron-exon (PIE) sequences. We demonstrated that the resulting circular riboregulator can activate gene expression, showing increased dynamic range compared to the linear form. We characterized the system with a fluorescent reporter and with an antibiotic resistance marker.
    [Show full text]
  • Dynamic Signal Processing by Ribozyme-Mediated RNA Circuits to Control Gene Expression
    bioRxiv preprint doi: https://doi.org/10.1101/016915; this version posted March 23, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Dynamic signal processing by ribozyme- mediated RNA circuits to control gene expression Shensi Shen1,†, Guillermo Rodrigo1,†, Satya Prakash3, Eszter Majer2, Thomas E. Landrain1, Boris Kirov1, José-Antonio Daròs2, and Alfonso 1,3,* Jaramillo 1 Institute of Systems and Synthetic Biology, Université d’Évry Val d’Essonne, CNRS, F-91000 Évry, France 2 Instituto de Biología Molecular y Celular de Plantas, CSIC - Universidad Politécnica de Valencia, 46022 Valencia, Spain 3 School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom † Equal contribution to the work. * Correspondence: School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom. E-mail: Alfonso.Jaramillo at warwick.ac.uk Manuscript information Type: Article. Subject category: RNA -- Synthetic Biology & Chemistry. Manuscript size: about 8,100 words (total). Abstract size: 144 words. Number of Figures: 6 (color). With Supplementary Information. 1" bioRxiv preprint doi: https://doi.org/10.1101/016915; this version posted March 23, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression.
    [Show full text]
  • Signal Integration: Applications of RNA Riboregulator Capabilities Kyliah Clarkson, Natasha Tuskovich, Derek Jacoby, Chris Tuttle, Layne Woodfin
    Signal Integration: Applications of RNA Riboregulator Capabilities Kyliah Clarkson, Natasha Tuskovich, Derek Jacoby, Chris Tuttle, Layne Woodfin Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC Introduction Background – Biothermometer Background - Ribolock and Ribokey Self-complementary messenger RNA has a high potential for tunable repression An RNA hairpin will also unfold when exposed to a sequence of higher of translation. A self-complementary hairpin which includes the Shine-Dalgarno site An RNA hairpin will unfold when exposed to temperatures past the melting point for the sequence. This permits the temperature-sensitive expression of the specificity. When the expression of such a complementary sequence is controlled by in the stem will greatly reduce protein expression until the necessary conditions are a separate promoter, this permits a condition-sensitive expression of the downstream met for the hairpin to completely unfold. downstream gene. The TUDelft 2008 iGEM team retrieved natural RNA thermometers from three species, then sequenced and redesigned them to test for a gene. The condition may be the presence or absence of a metabolite, of an antibiotic modified temperature range. We worked with their 32°C thermometer as it was or toxin, or of various wavelengths of light. The Berkeley 2006 iGEM team began found to be their most effective. with the ribosome binding site hairpin (the "ribolock") and the highly specific complementary sequence (the "ribokey") produced by Collins et al., then redesigned the lock and key sequences to reduce background transcription and increase activated transcription. Figure 1. Temperature sensitive hairpin loop Figure 2. The 32°C temperature sensitive hairpin part of TUDelft Figure 3.
    [Show full text]
  • A Ph-Responsive Riboregulator
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press A pH-responsive riboregulator Gal Nechooshtan,1 Maya Elgrably-Weiss,1 Abigail Sheaffer,1 Eric Westhof,2 and Shoshy Altuvia1,3 1Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; 2Architecture et Re´activite´ de l’ARN, Universite´ de Strasbourg, Institut de Biologie Mole´culaire et Cellulaire, CNRS, 67084 Strasbourg Cedex, France The locus alx, which encodes a putative transporter, was discovered previously in a screen for genes induced under extreme alkaline conditions. Here we show that the RNA region preceding the alx ORF acts as a pH-responsive element, which, in response to high pH, leads to an increase in alx expression. Under normal growth conditions this RNA region forms a translationally inactive structure, but when exposed to high pH, a translationally active structure is formed to produce Alx. Formation of the active structure occurs while transcription is in progress under alkaline conditions and involves pausing of RNA polymerase at two distinct sites. Alkali increases the longevity of pausing at these sites and thereby interferes with formation of the inactive structure and promotes folding of the active one. The alx locus represents the first example of a pH-responsive riboregulator of gene expression, introducing a novel regulatory mechanism that involves RNA folding dynamics driven by pH. [Keywords: RNA regulator; transcriptional pausing; alkaline conditions; translation control] Supplemental material is available at http://www.genesdev.org. Received August 6, 2009; revised version accepted September 22, 2009. RNA regulators of gene expression have become a focus of terminator structures.
    [Show full text]
  • A Brief History of Synthetic Biology
    FOCUS ON sYnTHETIc BIoLoGY PERSPECTIVES circuits that underpin the response of a cell TIMELINE to its environment. The ability to assemble new regulatory systems from molecular A brief history of synthetic biology components was soon envisioned5, but it was not until the molecular details of transcrip- tional regulation in bacteria were uncovered D. Ewen Cameron, Caleb J. Bashor and James J. Collins in subsequent years6 that a more concrete Abstract | The ability to rationally engineer microorganisms has been a vision, based on programmed gene long-envisioned goal dating back more than a half-century. With the genomics expression, began to take shape. Following the development of molecular revolution and rise of systems biology in the 1990s came the development of a cloning and PCR in the 1970s and 1980s, rigorous engineering discipline to create, control and programme cellular genetic manipulation became widespread behaviour. The resulting field, known as synthetic biology, has undergone dramatic in microbiology research, ostensibly offer- growth throughout the past decade and is poised to transform biotechnology and ing a technical means to engineer artificial medicine. This Timeline article charts the technological and cultural lifetime of gene regulation. However, during this pre- genomic period, research approaches that synthetic biology, with an emphasis on key breakthroughs and future challenges. were categorized as genetic engineering were mostly restricted to cloning and recom- The founding of the field of synthetic biol- strategies. In this Timeline article, we focus binant gene expression. In short, genetic ogy near the turn of the millennium was on efforts in synthetic biology that deal with engineering was not yet equipped with based on the transformational assertion that microbial systems; work in mammalian the necessary knowledge or tools to create engineering approaches — then mostly for- synthetic biology has been recently reviewed biological systems that display the diversity eign to cell and molecular biology — could elsewhere2,3.
    [Show full text]
  • Multilevel Gene Regulation Using Switchable Transcription Terminator and Toehold Switch in Escherichia Coli
    applied sciences Article Multilevel Gene Regulation Using Switchable Transcription Terminator and Toehold Switch in Escherichia coli Seongho Hong †, Jeongwon Kim † and Jongmin Kim * Department of Life Sciences, Pohang University of Sciences and Technology, Pohang 37673, Korea; [email protected] (S.H.); [email protected] (J.K.) * Correspondence: [email protected] † These authors contributed equally: Seongho Hong, Jeongwon Kim. Abstract: Nucleic acid-based regulatory components provide a promising toolbox for constructing synthetic biological circuits due to their design flexibility and seamless integration towards complex systems. In particular, small-transcriptional activating RNA (STAR) and toehold switch as regulators of transcription and translation steps have shown a large library size and a wide dynamic range, meeting the criteria to scale up genetic circuit construction. Still, there are limited attempts to integrate the heterogeneous regulatory components for multilevel regulatory circuits in living cells. In this work, inspired by the design principle of STAR, we designed several switchable transcription terminators starting from natural and synthetic terminators. These switchable terminators could be designed to respond to specific RNA triggers with minimal sequence constraints. When combined with toehold switches, the switchable terminators allow simultaneous control of transcription and translation processes to minimize leakage in Escherichia coli. Further, we demonstrated a set of logic gates implementing 2-input AND circuits and multiplexing capabilities to control two different Citation: Hong, S.; Kim, J.; Kim, J. output proteins. This study shows the potential of novel switchable terminator designs that can be Multilevel Gene Regulation Using computationally designed and seamlessly integrated with other regulatory components, promising Switchable Transcription Terminator and to help scale up the complexity of synthetic gene circuits in living cells.
    [Show full text]
  • Tracking, Tuning, and Terminating Microbial Physiology Using Synthetic Riboregulators
    Tracking, tuning, and terminating microbial physiology using synthetic riboregulators Jarred M. Calluraa,b,c,1, Daniel J. Dwyera,b,c,1, Farren J. Isaacsd, Charles R. Cantorb,2, and James J. Collinsa,b,c,e,2 aHoward Hughes Medical Institute, bDepartment of Biomedical Engineering and Center for Advanced Biotechnology, Boston University, Boston, MA 02215; cCenter for BioDynamics, Boston University, Boston, MA 02215; dDepartment of Genetics, Harvard Medical School, Boston, MA 02215; and eWyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215 Contributed by Charles R. Cantor, July 13, 2010 (sent for review June 1, 2010) The development of biomolecular devices that interface with bi- In our riboregulator system (Fig. 1), distinct promoters in- ological systems to reveal new insights and produce novel functions dependently regulate the transcription of two RNA species—a cis- is one of the defining goals of synthetic biology. Our lab previously repressed mRNA (crRNA) and a noncoding, trans-activating RNA described a synthetic, riboregulator system that affords for modular, (taRNA). Initially, target gene translation of the crRNA is blocked tunable, and tight control of gene expression in vivo. Here we high- by a stem loop, which spontaneously forms in its 5′-untranslated light several experimental advantages unique to this RNA-based region (UTR), sequesters the ribosome binding site (RBS), and system, including physiologically relevant protein production, com- prevents ribosome docking; stem loop formation is mediated by ponent modularity, leakage minimization, rapid response time, tun- a short sequence (cis-repressive sequence, ≈25 nt) located within able gene expression, and independent regulation of multiple genes. the mRNA 5′-UTR that binds the RBS.
    [Show full text]
  • Genetic Switchboard for Synthetic Biology Applications
    Genetic switchboard for synthetic biology applications Jarred M. Calluraa,b,c, Charles R. Cantorb,1, and James J. Collinsa,b,c,d,1 aHoward Hughes Medical Institute, bDepartment of Biomedical Engineering, and cCenter for BioDynamics, Boston University, Boston, MA 02215; and dWyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215 Contributed by Charles R. Cantor, March 5, 2012 (sent for review February 6, 2012) A key next step in synthetic biology is to combine simple circuits into number of riboregulator variants; this expansion was needed to higher-order systems. In this work, we expanded our synthetic complete a genetic switchboard. We used two distinct rational riboregulation platform into a genetic switchboard that indepen- design strategies that focused on different components of dently controls the expression of multiple genes in parallel. First, we riboregulation. Using RR12 as the prototype, we replaced its designed and characterized riboregulator variants to complete the RBS with an engineered RBS of similar strength and mutated foundation of the genetic switchboard; then we constructed the the bases involved in the initial crRNA–taRNA recognition switchboard sensor, a testing platform that reported on quorum- complex. After obtaining a set of four orthogonal variants, we signaling molecules, DNA damage, iron starvation, and extracellular assembled the riboregulators onto two plasmids in single cells to magnesium concentration in single cells. As a demonstration of the create the genetic switchboard
    [Show full text]
  • Systems Biology Approaches to Probe Gene Regulation in Bacteria
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2012 Systems Biology Approaches to Probe Gene Regulation in Bacteria Diogo F. Troggian Veiga Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Computational Biology Commons, Microbiology Commons, and the Systems Biology Commons Recommended Citation Troggian Veiga, Diogo F., "Systems Biology Approaches to Probe Gene Regulation in Bacteria" (2012). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 278. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/278 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. SYSTEMS BIOLOGY APPROACHES TO PROBE GENE REGULATION IN BACTERIA By Diogo Fernando Troggian Veiga, M.Sc. APPROVED ___________________________
    [Show full text]
  • Small RNA-Controlled Gene Regulatory Networks in Pseudomonas Putida
    Downloaded from orbit.dtu.dk on: Sep 23, 2021 Small RNA-Controlled Gene Regulatory Networks in Pseudomonas putida Bojanovic, Klara Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Bojanovic, K. (2016). Small RNA-Controlled Gene Regulatory Networks in Pseudomonas putida. Novo Nordisk Foundation Center for Biosustainability. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Small RNA-Controlled Gene Regulatory Networks in Pseudomonas putida PhD Thesis Klara Bojanovič Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark August 2016 Small RNA-Controlled Gene Regulatory Networks in Pseudomonas putida PhD thesis written by Klara Bojanovič Supervisor Katherine S. Long © PhD Thesis 2016 Klara Bojanovič Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Kemitorvet 220, 2800 Kgs. Lyngby Denmark When you tread your way, Always go to the end. In spring, to a flower so sweet, In summer, to a shower of wheat, In autumn, to pantries that glow, In winter, to the lady of snow, In life, to the truth that is thine, Until color leaks into your cheeks.
    [Show full text]
  • Translation Mechanism in Production of Cocksfoot Mottle Virus Proteins
    Recent Publications in this Series: MÄKELÄINEN KATRI MÄKELÄINEN KATRI View metadata, citation and similar papers at core.ac.uk brought to you by CORE 6/2005 Sanna Edelman provided by Helsingin yliopiston digitaalinen arkisto Mucosa-Adherent Lactobacilli: Commensal and Pathogenic Characteristics 7/2005 Leena Karhinen Glycosylation and Sorting Of Secretory Proteins in the Endoplasmic Reticulum of the Yeast Saccharomyces cerevisiae 8/2005 Saurabh Sen Functional Studies on alpha2-Adrenergic Receptor Subtypes Proteins Virus of Cocksfoot Mottle Mechanisms in Production Translation Translation: Lost in Proteins Virus of Cocksfoot Mottle Mechanisms in Production Translation Translation: Lost in 9/2005 Tiina E. Raevaara Functional Significance of Minor MLH1 Germline Alterations Found in Colon Cancer Patients 10/2005 Katja Pihlainen Liquid Chromatography and Atmospheric Pressure Ionisation Mass Spectrometry in Analysing Drug Seizures 11/2005 Pietri Puustinen Posttranslational Modifications of Potato Virus A Movement Related Proteins CP and VPg 12/2005 Irmgard Suominen Paenibacillus and Bacillus Related to Paper and Spruce Tree 13/2005 Heidi Hyytiäinen Regulatory Networks Controlling Virulence in the Plant Pathogen Erwinia Carotovora Ssp. Carotovora 14/2005 Sanna Janhunen Lost in Translation: Translation Mechanisms in Different Responses of the Nigrostriatal and Mesolimbic Dopaminergic Pathways to Nicotinic Receptor Agonists 15/2005 Denis Kainov Packaging Motors of Cystoviruses Production of Cocksfoot Mottle Virus Proteins 16/2005 Ivan Pavlov Heparin-Binding
    [Show full text]
  • Developments of Riboswitches and Toehold Switches for Molecular Detection—Biosensing and Molecular Diagnostics
    International Journal of Molecular Sciences Review Developments of Riboswitches and Toehold Switches for Molecular Detection—Biosensing and Molecular Diagnostics Tin Hoang Trung Chau, Dung Hoang Anh Mai, Diep Ngoc Pham, Hoa Thi Quynh Le and Eun Yeol Lee * Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; [email protected] (T.H.T.C.); [email protected] (D.H.A.M.); [email protected] (D.N.P.); [email protected] (H.T.Q.L.) * Correspondence: [email protected]; Tel.: +82-31-201-3839 Received: 16 March 2020; Accepted: 29 April 2020; Published: 30 April 2020 Abstract: Riboswitches and toehold switches are considered to have potential for implementation in various fields, i.e., biosensing, metabolic engineering, and molecular diagnostics. The specific binding, programmability, and manipulability of these RNA-based molecules enable their intensive deployments in molecular detection as biosensors for regulating gene expressions, tracking metabolites, or detecting RNA sequences of pathogenic microorganisms. In this review, we will focus on the development of riboswitches and toehold switches in biosensing and molecular diagnostics. This review introduces the operating principles and the notable design features of riboswitches as well as toehold switches. Moreover, we will describe the advances and future directions of riboswitches and toehold switches in biosensing and molecular diagnostics. Keywords: riboswitches; toehold switches; molecular detection; biosensors; molecular diagnostics 1. Introduction In addition to the regulatory applications, the RNA-based regulatory system, specifically riboswitches and toehold switches, has attracted scientific interest to develop systems for molecular detection applications as biosensing and molecular diagnostics [1,2].
    [Show full text]