Multilevel Gene Regulation Using Switchable Transcription Terminator and Toehold Switch in Escherichia Coli
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Engineering a Circular Riboregulator in Escherichia Coli
bioRxiv preprint doi: https://doi.org/10.1101/008987; this version posted September 25, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Engineering a circular riboregulator in Escherichia coli William Rostain1,2, Shensi Shen2, Teresa Cordero1, Guillermo Rodrigo2,3 and Alfonso Jaramillo1,2,* 1 School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom. 2 Institute of Systems and Synthetic Biology, CNRS - Université d’Evry val d’Essonne, 91000 Évry, France. 3 Instituto de Biologia Molecular y Celular de Plantas, CSIC – Universidad Politécnica de Valencia, 46022 Valencia, Spain. * Corresponding author. School of Life Sciences, University of Warwick. Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom. Tel: +44 (0)24 765 73432, E-mail: [email protected] Type: Letter Running title: Circular Riboregulator. Keywords: Biotechnology, Riboregulators, Splicing, Synthetic Biology. 1 bioRxiv preprint doi: https://doi.org/10.1101/008987; this version posted September 25, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Circular RNAs have recently been shown to be important gene expression regulators in mammalian cells. However, their role in prokaryotes remains elusive. Here, we engineered a synthetic riboregulator that self-splice to produce a circular molecule, exploiting group I permuted intron-exon (PIE) sequences. We demonstrated that the resulting circular riboregulator can activate gene expression, showing increased dynamic range compared to the linear form. We characterized the system with a fluorescent reporter and with an antibiotic resistance marker. -
Dynamic Signal Processing by Ribozyme-Mediated RNA Circuits to Control Gene Expression
bioRxiv preprint doi: https://doi.org/10.1101/016915; this version posted March 23, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Dynamic signal processing by ribozyme- mediated RNA circuits to control gene expression Shensi Shen1,†, Guillermo Rodrigo1,†, Satya Prakash3, Eszter Majer2, Thomas E. Landrain1, Boris Kirov1, José-Antonio Daròs2, and Alfonso 1,3,* Jaramillo 1 Institute of Systems and Synthetic Biology, Université d’Évry Val d’Essonne, CNRS, F-91000 Évry, France 2 Instituto de Biología Molecular y Celular de Plantas, CSIC - Universidad Politécnica de Valencia, 46022 Valencia, Spain 3 School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom † Equal contribution to the work. * Correspondence: School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom. E-mail: Alfonso.Jaramillo at warwick.ac.uk Manuscript information Type: Article. Subject category: RNA -- Synthetic Biology & Chemistry. Manuscript size: about 8,100 words (total). Abstract size: 144 words. Number of Figures: 6 (color). With Supplementary Information. 1" bioRxiv preprint doi: https://doi.org/10.1101/016915; this version posted March 23, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. -
Recent Developments in Terminator Technology in Saccharomyces Cerevisiae
Journal of Bioscience and Bioengineering VOL. 128 No. 6, 655e661, 2019 www.elsevier.com/locate/jbiosc REVIEW Recent developments in terminator technology in Saccharomyces cerevisiae Takashi Matsuyama1 Toyota Central R&D Lab, Nagakute, Aichi 480-1192, Japan Received 20 March 2019; accepted 7 June 2019 Available online 16 July 2019 Metabolically engineered microorganisms that produce useful organic compounds will be helpful for realizing a sustainable society. The budding yeast Saccharomyces cerevisiae has high utility as a metabolic engineering platform because of its high fermentation ability, non-pathogenicity, and ease of handling. When producing yeast strains that produce exogenous compounds, it is a prerequisite to control the expression of exogenous enzyme-encoding genes. Terminator region in a gene expression cassette, as well as promoter region, could be used to improve metabolically engineered yeasts by increasing or decreasing the expression of the target enzyme-encoding genes. The findings on terminators have grown rapidly in the last decade, so an overview of these findings should provide a foothold for new developments. Ó 2019, The Society for Biotechnology, Japan. All rights reserved. [Key words: Terminator; Metabolic engineering; Genetic switch; Gene expression; Synthetic biology; Saccharomyces cerevisiae] In order to realize a sustainable society, many studies have been metabolic engineering, (iv) terminator selection for optimization of conducted to develop microorganisms that efficiently produce gene expression, (v) use of terminators as genetic switches, (vi) useful organic compounds using metabolic engineering (1). mechanism of action of highly active terminators and (vii) chal- Saccharomyces cerevisiae is considered to have high utility as a lenges in artificial terminator development. platform for these genetically-modified microorganisms for rea- sons such as high fermentation ability, high safety and easy BASIC FUNCTIONS OF THE TERMINATOR handling (2). -
Signal Integration: Applications of RNA Riboregulator Capabilities Kyliah Clarkson, Natasha Tuskovich, Derek Jacoby, Chris Tuttle, Layne Woodfin
Signal Integration: Applications of RNA Riboregulator Capabilities Kyliah Clarkson, Natasha Tuskovich, Derek Jacoby, Chris Tuttle, Layne Woodfin Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC Introduction Background – Biothermometer Background - Ribolock and Ribokey Self-complementary messenger RNA has a high potential for tunable repression An RNA hairpin will also unfold when exposed to a sequence of higher of translation. A self-complementary hairpin which includes the Shine-Dalgarno site An RNA hairpin will unfold when exposed to temperatures past the melting point for the sequence. This permits the temperature-sensitive expression of the specificity. When the expression of such a complementary sequence is controlled by in the stem will greatly reduce protein expression until the necessary conditions are a separate promoter, this permits a condition-sensitive expression of the downstream met for the hairpin to completely unfold. downstream gene. The TUDelft 2008 iGEM team retrieved natural RNA thermometers from three species, then sequenced and redesigned them to test for a gene. The condition may be the presence or absence of a metabolite, of an antibiotic modified temperature range. We worked with their 32°C thermometer as it was or toxin, or of various wavelengths of light. The Berkeley 2006 iGEM team began found to be their most effective. with the ribosome binding site hairpin (the "ribolock") and the highly specific complementary sequence (the "ribokey") produced by Collins et al., then redesigned the lock and key sequences to reduce background transcription and increase activated transcription. Figure 1. Temperature sensitive hairpin loop Figure 2. The 32°C temperature sensitive hairpin part of TUDelft Figure 3. -
(12) Patent Application Publication (10) Pub. No.: US 2007/0136827 A1 Collins Et Al
US 2007013 6827A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0136827 A1 Collins et al. (43) Pub. Date: Jun. 14, 2007 (54) CSFTRANS RIBOREGULATORS Publication Classification (51) Int. Cl. (75) Inventors: James J. Collins, Newton, MA (US); AOIK 67/027 (2006.01) Farren J. Isaacs, Brookline, MA (US); C7H 2L/04 (2006.01) Charles R. Cantor, Del Mar, CA (US); CI2N 15/09 (2006.01) Daniel J. Dwyer, Brookline, MA (US) CI2N 5/06 (2006.01) (52) U.S. Cl. ............................ 800/14; 435/325; 435/455; 536/23.2 Correspondence Address: CHOATE, HALL & STEWART LLP (57) ABSTRACT TWO INTERNATIONAL PLACE BOSTON, MA 02110 (US) The present invention provides nucleic acid molecules, DNA constructs, plasmids, and methods for post-transcrip tional regulation of gene expression using RNA molecules to (73) Assignee: TRUSTEES OF BOSTON UNIVER both repress and activate translation of an open reading SITY, Boston, MA (US) frame. Repression of gene expression is achieved through the presence of a regulatory nucleic acid element (the cis-repressive RNA or crRNA) within the 5' untranslated (21) Appl. No.: 10/535,128 region (5' UTR) of an mRNA molecule. The nucleic acid element forms a hairpin (stem/loop) structure through complementary base pairing. The hairpin blocks access to (22) PCT Fed: Nov. 14, 2003 the mRNA transcript by the ribosome, thereby preventing translation. In particular, in embodiments of the invention PCT No.: PCT/USO3A36506 designed to operate in prokaryotic cells, the stem of the (86) hairpin secondary structure sequesters the ribosome binding S 371(c)(1), site (RBS). -
Structural and Mechanistic Studies of the THI Box and SMK Box Riboswitches
Structural and Mechanistic Studies of the THI Box and SMK Box Riboswitches Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Angela Mae Smith, M.S. Graduate Program in Microbiology The Ohio State University 2009 Dissertation Committee: Professor Tina Henkin, Advisor Professor Kurt Fredrick Professor Michael Ibba Professor Ross Dalbey ABSTRACT Organisms have evolved a variety of mechanisms for regulating gene expression. Expression of individual genes is carefully modulated during different stages of cell development and in response to changing environmental conditions. A number of regulatory mechanisms involve structural elements within messenger RNAs (mRNAs) that, in response to an environmental signal, undergo a conformational change that affects expression of a gene encoded on that mRNA. RNA elements of this type that operate independently of proteins or translating ribosomes are termed riboswitches. In this work, the THI box and SMK box riboswitches were investigated in order to gain insight into the structural basis for ligand recognition and the mechanism of regulation employed by each of these RNAs. Both riboswitches are predicted to regulate at the level of translation initiation using a mechanism in which the Shine-Dalgarno (SD) sequence is occluded in response to ligand binding. For the THI box riboswitch, the studies presented here demonstrated that 30S ribosomal subunit binding at the SD region decreases in the presence of thiamin pyrophosphate (TPP). Mutation of conserved residues in the ligand binding domain resulted in loss of TPP-dependent repression in vivo. Based on these experiments two classes of mutant phenotypes were identified. -
Definition of RNA Polymerase II Cotc Terminator Elements in the Human
Cell Reports Article Definition of RNA Polymerase II CoTC Terminator Elements in the Human Genome Takayuki Nojima,1 Martin Dienstbier,2 Shona Murphy,1 Nicholas J. Proudfoot,1,* and Michael J. Dye1,* 1Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK 2MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QX Oxford, UK *Correspondence: [email protected] (N.J.P.), [email protected] (M.J.D.) http://dx.doi.org/10.1016/j.celrep.2013.03.012 SUMMARY ing and is entirely dependent upon the presence of a functional poly(A) signal (Whitelaw and Proudfoot, 1986; Connelly and Mammalian RNA polymerase II (Pol II) transcription Manley, 1988). Pre-mRNA cleavage at the poly(A) site, mediated termination is an essential step in protein-coding by the 30 end processing complex (Shi et al., 2009), generates 0 gene expression that is mediated by pre-mRNA pro- two RNA products; a 5 cleavage product that is stabilized by polyadenylation as it is processed into mRNA and a 30 cleavage cessing activities and DNA-encoded terminator ele- 0 0 ments. Although much is known about the role of product that is subject to rapid degradation by the 5 -3 exonu- pre-mRNA processing in termination, our under- clease Xrn2. Such Xrn2-mediated transcript degradation has been shown to have a role in Pol II termination (West et al., standing of the characteristics and generality of 2004). The above could lead one to conclude that the poly(A) terminator elements is limited. -
Terminator Operon Reporter: Combining a Transcription Termination Switch with Reporter Technology for Improved Gene Synthesis and Synthetic Biology Applications
www.nature.com/scientificreports OPEN Terminator Operon Reporter: combining a transcription termination switch with reporter Received: 02 March 2016 Accepted: 04 May 2016 technology for improved gene Published: 25 May 2016 synthesis and synthetic biology applications Massimiliano Zampini1, Luis A. J. Mur1, Pauline Rees Stevens1, Justin A. Pachebat1, C. James Newbold1, Finbarr Hayes2 & Alison Kingston-Smith1 Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology. Synthetic biology is an emerging discipline that aims to apply engineering principles to biology and has the poten- tial to drive a revolution in biotechnology1. The discipline has progressed particularly as a result of the implemen- tation of novel and powerful DNA construction techniques that allow for efficient assembly and manipulation of sequences both in vitro and in vivo2,3. -
A Ph-Responsive Riboregulator
Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press A pH-responsive riboregulator Gal Nechooshtan,1 Maya Elgrably-Weiss,1 Abigail Sheaffer,1 Eric Westhof,2 and Shoshy Altuvia1,3 1Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; 2Architecture et Re´activite´ de l’ARN, Universite´ de Strasbourg, Institut de Biologie Mole´culaire et Cellulaire, CNRS, 67084 Strasbourg Cedex, France The locus alx, which encodes a putative transporter, was discovered previously in a screen for genes induced under extreme alkaline conditions. Here we show that the RNA region preceding the alx ORF acts as a pH-responsive element, which, in response to high pH, leads to an increase in alx expression. Under normal growth conditions this RNA region forms a translationally inactive structure, but when exposed to high pH, a translationally active structure is formed to produce Alx. Formation of the active structure occurs while transcription is in progress under alkaline conditions and involves pausing of RNA polymerase at two distinct sites. Alkali increases the longevity of pausing at these sites and thereby interferes with formation of the inactive structure and promotes folding of the active one. The alx locus represents the first example of a pH-responsive riboregulator of gene expression, introducing a novel regulatory mechanism that involves RNA folding dynamics driven by pH. [Keywords: RNA regulator; transcriptional pausing; alkaline conditions; translation control] Supplemental material is available at http://www.genesdev.org. Received August 6, 2009; revised version accepted September 22, 2009. RNA regulators of gene expression have become a focus of terminator structures. -
Mutational Analysis of a Yeast Transcriptional Terminator (Linker Substitution/Saccharomyces Cerevisiae) BRIAN I
Proc. Natl. Acad. Sci. USA Vol. 86, pp. 4097-4101, June 1989 Cell Biology Mutational analysis of a yeast transcriptional terminator (linker substitution/Saccharomyces cerevisiae) BRIAN I. OSBORNE AND LEONARD GUARENTE Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Communicated by S. E. Luria, January 23, 1989 ABSTRACT We have isolated and mutagenized a DNA scribed and 3' ends for both mRNAs fall within the 83-bp fragment from Saccharomyces cerevisiae that specifies mRNA region (Fig. 1). 3' end formation for the convergently transcribed CYCI and We showed previously that transcription of CYCJ-lacZ on UTRI genes. An in vivo plasmid supercoiling assay previously a plasmid in S. cerevisiae resulted in an increase in negative showed that this fragment is a transcriptional terminator, and supercoiling of the plasmid (27). By inserting the terminator "run-on" assays shown here are consistent with this interpre- fragment into various positions in CYCI-lacZ, we showed tation. The poly(A) sites in the mRNAs formed by the fragment that truncated transcripts of the expected sizes were gener- are the same whether the fragment resides at the native location ated, showing that the terminator fragment was sufficient to or at a heterologous location. No single linker substitution generate 3' ends. Further, the degree of relative, negative abolishes the fragment's activity, whereas certain large, supercoiling ofthese plasmids was proportional to the lengths nonoverlapping deletions have strong, deleterious effects. of truncated transcripts. We interpreted these changes in Therefore, the yeast terminator behaves more like rho- negative supercoiling as resulting from changes in the num- dependent bacterial terminators than terminators of higher bers of transcribing RNA polymerase molecules, suggesting eukaryotes. -
Facilitated Recycling Pathway for RNA Polymerase III
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 84, 245±252, January 26, 1996, Copyright 1996 by Cell Press Facilitated Recycling Pathway for RNA Polymerase III Giorgio Dieci* and Andre Sentenac exception of TFIID, and a new complex must be reas- Service de Biochimie et Ge ne tique Mole culaire sembled for each new cycle (Zawel et al., 1995). TFIID Commissariat aÁ l'Energie Atomique±Saclay remains promoter-bound through the transcription cycle F-91191 Gif-sur-Yvette Cedex and therefore facilitates reinitiation on the same tem- France plate (Hawley and Roeder, 1987; Jiang and Gralla, 1993). However, the release and reassociation of the other fac- tors make the reinitiation process more complex than Summary in the case of pol III and thus increase the number of critical checkpoints for transcriptional modulation. We show that the high in vitro transcription efficiency Some activators of pol II transcription have indeed been of yeast RNA pol III is mainly due to rapid recycling. shown to be required at each new cycle (Arnosti et al., Kinetic analysis shows that RNA polymerase recycling 1993; Roberts et al., 1995). Reinitiation on class III genes, on preassembled tDNA·TFIIIC·TFIIIB complexes is which bypasses almost all the steps required for the much faster than the initial transcription cycle. High initial transcription cycle, does not allow such a fine efficiency of RNA pol III recycling is favored at high regulation, but potentially leads to more efficient RNA UTP concentrations and requires termination at the production. -
Novel Mechanisms of Transcriptional Regulation by Leukemia Fusion Proteins
Novel mechanisms of transcriptional regulation by leukemia fusion proteins A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirement for the degree of Doctor of Philosophy in the Department of Cancer and Cell Biology of the College of Medicine by Chien-Hung Gow M.S. Columbia University, New York M.D. Our Lady of Fatima University B.S. National Yang Ming University Dissertation Committee: Jinsong Zhang, Ph.D. Robert Brackenbury, Ph.D. Sohaib Khan, Ph.D. (Chair) Peter Stambrook, Ph.D. Song-Tao Liu, Ph.D. ABSTRACT Transcription factors and chromatin structure are master regulators of homeostasis during hematopoiesis. Regulatory genes for each stage of hematopoiesis are activated or silenced in a precise, finely tuned manner. Many leukemia fusion proteins are produced by chromosomal translocations that interrupt important transcription factors and disrupt these regulatory processes. Leukemia fusion proteins E2A-Pbx1 and AML1-ETO involve normal function transcription factor E2A, resulting in two distinct types of leukemia: E2A-Pbx1 t(1;19) acute lymphoblastic leukemia (ALL) and AML1-ETO t(8;21) acute myeloid leukemia (AML). E2A, a member of the E-protein family of transcription factors, is a key regulator in hematopoiesis that recruits coactivators or corepressors in a mutually exclusive fashion to regulate its direct target genes. In t(1;19) ALL, the E2A portion of E2A-Pbx1 mediates a robust transcriptional activation; however, the transcriptional activity of wild-type E2A is silenced by high levels of corepressors, such as the AML1-ETO fusion protein in t(8;21) AML and ETO-2 in hematopoietic cells.