Generalizing and Transferring Mathematical Definitions from Euclidean to Taxicab Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Generalizing and Transferring Mathematical Definitions from Euclidean to Taxicab Geometry Georgia State University ScholarWorks @ Georgia State University Mathematics Dissertations Department of Mathematics and Statistics 8-7-2018 Generalizing and Transferring Mathematical Definitions from Euclidean to Taxicab Geometry Aubrey Kemp Follow this and additional works at: https://scholarworks.gsu.edu/math_diss Recommended Citation Kemp, Aubrey, "Generalizing and Transferring Mathematical Definitions from Euclidean to Taxicab Geometry." Dissertation, Georgia State University, 2018. https://scholarworks.gsu.edu/math_diss/58 This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Mathematics Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. GENERALIZING AND TRANSFERRING MATHEMATICAL DEFINITIONS FROM EUCLIDEAN TO TAXICAB GEOMETRY by AUBREY KEMP Under the Direction of Draga Vidakovic, PhD ABSTRACT Research shows that by observing properties of figures and making conjectures in non- Euclidean geometries, students can better develop their understanding of concepts in Euclidean geometry. It is also known that definitions in mathematics are an integral part of understanding concepts and are often not used correctly in proof or logic courses by students. To further investigate student understanding of mathematical definitions, this dissertation studied students’ uses of dynamic geometry software and group work to generalize their understanding of definitions as they completed activities in Taxicab geometry. As a result of the analysis from the group work and use of Geometer’s Sketchpad by 18 students in a College Geometry class, suggestions are provided to implement cooperative learning and technology in the classroom. In addition, results are provided from the data analysis of responses to questions pertaining to the definition of circle (and its relevant concepts) of 15 students enrolled in the course who volunteered to participate in semi-structured interviews. This dissertation specifically utilizes APOS Theory (Arnon et al., 2014) and the interaction of schema framework provided by Baker et al. (2000) to determine what components of the circle schema were evoked by these participating students during these interviews. By adapting and transferring their knowledge of concepts back and forth between Euclidean and Taxicab geometry, these students provided evidence for the relationships they had formed between the components of their circle schema. Further, they demonstrated a variety of levels of schema interaction of their evoked Euclidean geometry schema and Taxicab geometry schema. As a result, a model of schema interaction and suggested pedagogical activities were developed to help facilitate student understanding of the definition of a circle and other relevant concepts. INDEX WORDS: Definitions, Geometry, Taxicab, APOS Theory, Circle, Cooperative learning, Geometer’s Sketchpad GENERALIZING AND TRANSFERRING MATHEMATICAL DEFINITIONS FROM EUCLIDEAN TO TAXICAB GEOMETRY by AUBREY KEMP A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the College of Arts and Sciences Georgia State University 2018 Copyright by Aubrey Elizabeth Kemp 2018 GENERALIZING AND TRANSFERRING MATHEMATICAL DEFINITIONS FROM EUCLIDEAN TO TAXICAB GEOMETRY by AUBREY KEMP Committee Chair: Draga Vidakovic Committee: Valerie Miller Mariana Montiel Alexandra Smirnova Electronic Version Approved: Office of Graduate Studies College of Arts and Sciences Georgia State University August 2018 i In memory of Daddaddy and Grandmama (Jack and Maureen Spann) Go raibh céad míle maith agat. v ACKNOWLEDGEMENTS I would like to thank my amazing advisor, Dr. Draga Vidakovic, for her unwavering amount of encouragement, guidance, and affirmation since the day I met her. You truly have been an incredible role model, academic mom, researcher, teacher, and supporter in my life. It is not lost on me how fortunate I am to have learned as much as I have (and to continue learning) from you. I would also like to thank my committee members, Dr. Valerie Miller, Dr. Mariana Montiel, and Dr. Alexandra Smirnova, for their feedback, flexibility, and support for this dissertation and throughout the last five years of my life, as they all have had a major impact on me. You exemplify strong voices and women in my life, and I hope to influence and motivate others the way you have me. I would also like to thank the Department Chair, Dr. Guantao Chen and the rest of the Mathematics and Statistics department at GSU, including past and present instructors, graduate students, and staff members. My experiences for the last five years would not have been the same without every single one of you. Whether it be in the way you helped me study, supported, taught, or befriended me, I will never forget the effect you all have made on my life. Thank you in particular to Sandra Ahuama-Jonas and Beth Connor for the hallway chats and answering my countless emails. Also, to Harrison Stalvey, Annie Burns-Childers, and Leslie Meadows – I thank you for four plus years of great friendship and collaboration in research. I would also like every student that I have had the opportunity to teach, with a special thank you to the participants in this study. You all have taught me about myself as an educator and a person more so than I ever thought possible. I would also like to thank running, yoga, dry shampoo, and red wine for helping me handle graduate school. In addition, I want to thank my dogs, Parker and Quinn, who are so much more to me than just dogs. The cuddles and licks have been a necessity in keeping my sanity. Finally, I would like to thank my entire family, of which I have three types. vi My academic family – Darryl Chamberlain Jr., Russell Jeter, and Robin Baidya, among so many others – I can’t thank you enough for the constant support you all have provided me. Darryl – for your amazing mentorship, for approaching me about pursuing this degree so many years ago, and for showing me how to perfectly merge friendship and research. Russell – for your overall inspiring nature and pushing me to accomplish so many things that I never thought would be possible. You are the only person I know who would have suggested that we train for a marathon while we were both writing our dissertations. Robin – not only for continuing to inspire me mathematically, but for the incredible openness and genuineness you bring to our friendship. You were the first person that befriended me in graduate school which helped me to feel comfortable, and I know I would not have made it to this point without you and your encouragement. My non-academic family – Nicole Bardizbanian, Kristen Owen, Samantha Skadan, Hannah Warner, Alicia Fortino, Tariq Talley, Alex Coble, Robert Vogel, Daniel Owen, Dany Bardizbanian, Sean Skadan, Daniel Evans, Aiken Davis, Chad Dobler, and so many more. There are too many of you to individually and personally thank here, but I want you to know how much I appreciate all of you and the tolerance you have shown me over the last five years by listening to me stress and freak out about the program. I love each and every one of you so uniquely, and I cannot express how much I value the moments we have had together throughout our friendships. Finally, but certainly not least, my family family – Mama, Daddy, Amy, Alex, Felix, Aunt Mare, Brianna, Jason, Uncle Mike, Colin, Uncle Bobby, Aunt Jane, Uncle Steve, Paul, Ally, Aunt Juju, Uncle Pat, John Henry, Angie, Uncle Tommy, Aunt Mary Anne, and Grandma. You all have also supported me and listened to me vent about my stress over the last five years, so I thank you for not throwing food at me across the table at one of our family birthday parties or holiday functions. Also, for continuing to tell me that I could do it – I can’t thank you enough. vii I especially want to thank my immediate family. Mama – for the unending love and compassion you give me and everyone else in your life. Grandmama’s saint-ness was passed down to you (and Aunt Mare), and anyone who has met you knows that you legitimately would do anything for anyone without expecting anything in return. Everything that you have done for me in the last 27 years that I am thankful for is inexplicable. You really are the best Mama and friend in the world. Daddy – for your strength and leadership of our family and for giving me such a wonderful person to look up to. I know you are my Daddy, but you are also one of my closest friends and I have learned so much about life from you. From hiking/camping trips or dancing with you as I stood on your feet when I was younger, to our more recent pastimes like running, sitting in a cove at the lake, or grabbing a beer when we have time…I always have and always will be your little girl. Amy and Alex – I am so proud you both and of the relationship we have with one another. I can’t thank you enough for being such great people to grow up with. Mama always told us that she wanted us to not only be siblings but become each other’s best friends, and I know that we have done this. You two bring such love and laughter to my life, and I would not be the person I am today if it weren’t for you helping to shape me along the way. I can’t thank God enough for the entire family (of all types) he has blessed me with. To Daddaddy and Grandmama, for whom this dissertation is dedicated, I want to thank you for showing me what unconditional love looks like. The family you raised and have left behind is an amazing one and has provided so much support for one another.
Recommended publications
  • Vol 45 Ams / Maa Anneli Lax New Mathematical Library
    45 AMS / MAA ANNELI LAX NEW MATHEMATICAL LIBRARY VOL 45 10.1090/nml/045 When Life is Linear From Computer Graphics to Bracketology c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2014959438 Print edition ISBN: 978-0-88385-649-9 Electronic edition ISBN: 978-0-88385-988-9 Printed in the United States of America Current Printing (last digit): 10987654321 When Life is Linear From Computer Graphics to Bracketology Tim Chartier Davidson College Published and Distributed by The Mathematical Association of America To my parents, Jan and Myron, thank you for your support, commitment, and sacrifice in the many nonlinear stages of my life Committee on Books Frank Farris, Chair Anneli Lax New Mathematical Library Editorial Board Karen Saxe, Editor Helmer Aslaksen Timothy G. Feeman John H. McCleary Katharine Ott Katherine S. Socha James S. Tanton ANNELI LAX NEW MATHEMATICAL LIBRARY 1. Numbers: Rational and Irrational by Ivan Niven 2. What is Calculus About? by W. W. Sawyer 3. An Introduction to Inequalities by E. F.Beckenbach and R. Bellman 4. Geometric Inequalities by N. D. Kazarinoff 5. The Contest Problem Book I Annual High School Mathematics Examinations 1950–1960. Compiled and with solutions by Charles T. Salkind 6. The Lore of Large Numbers by P.J. Davis 7. Uses of Infinity by Leo Zippin 8. Geometric Transformations I by I. M. Yaglom, translated by A. Shields 9. Continued Fractions by Carl D. Olds 10. Replaced by NML-34 11. Hungarian Problem Books I and II, Based on the Eotv¨ os¨ Competitions 12. 1894–1905 and 1906–1928, translated by E.
    [Show full text]
  • Taxicab Space, Inversion, Harmonic Conjugates, Taxicab Sphere
    TAXICAB SPHERICAL INVERSIONS IN TAXICAB SPACE ADNAN PEKZORLU∗, AYS¸E BAYAR DEPARTMENT OF MATHEMATICS-COMPUTER UNIVERSITY OF ESKIS¸EHIR OSMANGAZI E-MAILS: [email protected], [email protected] (Received: 11 June 2019, Accepted: 29 May 2020) Abstract. In this paper, we define an inversion with respect to a taxicab sphere in the three dimensional taxicab space and prove several properties of this inversion. We also study cross ratio, harmonic conjugates and the inverse images of lines, planes and taxicab spheres in three dimensional taxicab space. AMS Classification: 40Exx, 51Fxx, 51B20, 51K99. Keywords: taxicab space, inversion, harmonic conjugates, taxicab sphere. 1. Introduction The inversion was introduced by Apollonius of Perga in his last book Plane Loci, and systematically studied and applied by Steiner about 1820s, [2]. During the following decades, many physicists and mathematicians independently rediscovered inversions, proving the properties that were most useful for their particular applica- tions by defining a central cone, ellipse and circle inversion. Some of these features are inversion compared to the classical circle. Inversion transformation and basic concepts have been presented in literature. The inversions with respect to the central conics in real Euclidean plane was in- troduced in [3]. Then the inversions with respect to ellipse was studied detailed in ∗ CORRESPONDING AUTHOR JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER VOL. 9, NUMBERS 1-2 (2020) 45-54. DOI: 10.22103/JMMRC.2020.14232.1095 c MAHANI MATHEMATICAL RESEARCH CENTER 45 46 ADNAN PEKZORLU, AYS¸E BAYAR [13]. In three-dimensional space a generalization of the spherical inversion is given in [16]. Also, the inversions with respect to the taxicab distance, α-distance [18], [4], or in general a p-distance [11].
    [Show full text]
  • Taxicab Geometry, Or When a Circle Is a Square
    Taxicab Geometry, or When a Circle is a Square Circle on the Road 2012, Math Festival Olga Radko (Los Angeles Math Circle, UCLA) April 14th, 2012 Abstract The distance between two points is the length of the shortest path connecting them. In plane Euclidean geometry such a path is along the straight line connecting the two points. In contrast, in a city consisting of a square grid of streets shortest paths between two points are no longer straight lines (as every cab driver knows). We will explore the geometry of this unusual distance and play several related games. 1 René Descartes (1596-1650) was a French mathematician, philosopher and writer. Among his many accomplishments, he developed a very convenient way to describe positions of points on a plane. This method was very important for fu- ture development of mathematics and physics. We will start learning about this invention today. The city of Descartes is a plane that extends infinitely in all directions: The center of the city is marked by point O. • The horizontal (West-East) line going through O is called • the x-axis. The vertical (South-North) line going through O is called • the y-axis. Each house in the city is represented by a point which • is the intersection of a vertical and a horizontal line. Each house has an address which consists of two whole numbers written inside of parenthesis. 2 Example. Point A shown below has coordinates (2, 3). The first number tells you the distance to the y-axis. • The distance is positive if you are on the right of the y-axis.
    [Show full text]
  • Geometry of Some Taxicab Curves
    GEOMETRY OF SOME TAXICAB CURVES Maja Petrović 1 Branko Malešević 2 Bojan Banjac 3 Ratko Obradović 4 Abstract In this paper we present geometry of some curves in Taxicab metric. All curves of second order and trifocal ellipse in this metric are presented. Area and perimeter of some curves are also defined. Key words: Taxicab metric, Conics, Trifocal ellipse 1. INTRODUCTION In this paper, taxicab and standard Euclidean metrics for a visual representation of some planar curves are considered. Besides the term taxicab, also used are Manhattan, rectangular metric and city block distance [4], [5], [7]. This metric is a special case of the Minkowski 1 MSc Maja Petrović, assistant at Faculty of Transport and Traffic Engineering, University of Belgrade, Serbia, e-mail: [email protected] 2 PhD Branko Malešević, associate professor at Faculty of Electrical Engineering, Department of Applied Mathematics, University of Belgrade, Serbia, e-mail: [email protected] 3 MSc Bojan Banjac, student of doctoral studies of Software Engineering, Faculty of Electrical Engineering, University of Belgrade, Serbia, assistant at Faculty of Technical Sciences, Computer Graphics Chair, University of Novi Sad, Serbia, e-mail: [email protected] 4 PhD Ratko Obradović, full professor at Faculty of Technical Sciences, Computer Graphics Chair, University of Novi Sad, Serbia, e-mail: [email protected] 1 metrics of order 1, which is for distance between two points , and , determined by: , | | | | (1) Minkowski metrics contains taxicab metric for value 1 and Euclidean metric for 2. The term „taxicab geometry“ was first used by K. Menger in the book [9].
    [Show full text]
  • LAB 9.1 Taxicab Versus Euclidean Distance
    ([email protected] LAB 9.1 Name(s) Taxicab Versus Euclidean Distance Equipment: Geoboard, graph or dot paper If you can travel only horizontally or vertically (like a taxicab in a city where all streets run North-South and East-West), the distance you have to travel to get from the origin to the point (2, 3) is 5.This is called the taxicab distance between (0, 0) and (2, 3). If, on the other hand, you can go from the origin to (2, 3) in a straight line, the distance you travel is called the Euclidean distance, or just the distance. Finding taxicab distance: Taxicab distance can be measured between any two points, whether on a street or not. For example, the taxicab distance from (1.2, 3.4) to (9.9, 9.9) is the sum of 8.7 (the horizontal component) and 6.5 (the vertical component), for a total of 15.2. 1. What is the taxicab distance from (2, 3) to the following points? a. (7, 9) b. (–3, 8) c. (2, –1) d. (6, 5.4) e. (–1.24, 3) f. (–1.24, 5.4) Finding Euclidean distance: There are various ways to calculate Euclidean distance. Here is one method that is based on the sides and areas of squares. Since the area of the square at right is y 13 (why?), the side of the square—and therefore the Euclidean distance from, say, the origin to the point (2,3)—must be ͙ෆ13,or approximately 3.606 units. 3 x 2 Geometry Labs Section 9 Distance and Square Root 121 © 1999 Henri Picciotto, www.MathEducationPage.org ([email protected] LAB 9.1 Name(s) Taxicab Versus Euclidean Distance (continued) 2.
    [Show full text]
  • From Circle to Hyperbola in Taxicab Geometry
    Abstract: The purpose of this article is to provide insight into the shape of circles and related geometric figures in taxicab geometry. This will enable teachers to guide student explorations by designing interesting worksheets, leading knowledgeable class room discussions, and be aware of the different results that students can obtain if they decide to delve deeper into this fascinating subject. From Circle to Hyperbola in Taxicab Geometry Ruth I. Berger, Luther College How far is the shortest path from Grand Central Station to the Empire State building? A pigeon could fly there in a straight line, but a person is confined by the street grid. The geometry obtained from measuring the distance between points by the actual distance traveled on a square grid is known as taxicab geometry. This topic can engage students at all levels, from plotting points and observing surprising shapes, to examining the underlying reasons for why these figures take on this appearance. Having to work with a new distance measurement takes everyone out of their comfort zone of routine memorization and makes them think, even about definitions and facts that seemed obvious before. It can also generate lively group discussions. There are many good resources on taxicab geometry. The ideas from Krause’s classic book [Krause 1986] have been picked up in recent NCTM publications [Dreiling 2012] and [Smith 2013], the latter includes an extensive pedagogy discussion. [House 2005] provides nice worksheets. Definition: Let A and B be points with coordinates (푥1, 푦1) and (푥2, 푦2), respectively. The taxicab distance from A to B is defined as 푑푖푠푡(퐴, 퐵) = |푥1 − 푥2| + |푦1 − 푦2|.
    [Show full text]
  • Math 105 Workbook Exploring Mathematics
    Math 105 Workbook Exploring Mathematics Douglas R. Anderson, Professor Fall 2018: MWF 11:50-1:00, ISC 101 Acknowledgment First we would like to thank all of our former Math 105 students. Their successes, struggles, and suggestions have shaped how we teach this course in many important ways. We also want to thank our departmental colleagues and several Concordia math- ematics majors for many fruitful discussions and resources on the content of this course and the makeup of this workbook. Some of the topics, examples, and exercises in this workbook are drawn from other works. Most significantly, we thank Samantha Briggs, Ellen Kramer, and Dr. Jessie Lenarz for their work in Exploring Mathematics, as well as other Cobber mathemat- ics professors. We have also used: • Taxicab Geometry: An Adventure in Non-Euclidean Geometry by Eugene F. Krause, • Excursions in Modern Mathematics, Sixth Edition, by Peter Tannenbaum. • Introductory Graph Theory by Gary Chartrand, • The Heart of Mathematics: An invitation to effective thinking by Edward B. Burger and Michael Starbird, • Applied Finite Mathematics by Edmond C. Tomastik. Finally, we want to thank (in advance) you, our current students. Your suggestions for this course and this workbook are always encouraged, either in person or over e-mail. Both the course and workbook are works in progress that will continue to improve each semester with your help. Let's have a great semester this fall exploring mathematics together and fulfilling Concordia's math requirement in 2018. Skol Cobbs! i ii Contents 1 Taxicab Geometry 3 1.1 Taxicab Distance . .3 Homework . .8 1.2 Taxicab Circles .
    [Show full text]
  • Taxicab Geometry
    TAXICAB GEOMETRY MICHAEL A. HALL 11/13/2011 EUCLIDEAN GEOMETRY In geometry the primary objects of study are points, lines, angles, and distances. We can identify each point in the plane by its Cartesian coordinates (x; y). The Euclidean distance between points A = (x1; y1) and B = (x2; y2) is p 2 2 dE(A; B) = (x2 − x1) + (y2 − y1) : (Euclidean distance formula) TAXICAB GEOMETRY In “taxicab” geometry, the points, lines, and angles are the same, but the notion of distance is different from the Euclidean distance. The taxicab distance between points A = (x1; y1) and B = (x2; y2) is dT (A; B) = jx2 − x1j + jy2 − y1j: (Taxicab distance formula) Exercises. (1) On a sheet of graph paper, mark each pair of points P and Q and find the both the Euclidean and taxicab distance between them: (a) P = (0; 0), Q = (1; 1) (b) P = (1; 2), Q = (2; 3) (c) P = (1; 0), Q = (5; 0) (2) (Taxi circles) Let A be the point with coordinates (2; 2). (a) Plot A on a piece of graph paper, and mark all points P such that dT (A; P ) = 1. The set of such points is written fP j dT (A; P ) = 1g. Also mark all points in fP j dT (A; P ) = 2g. (b) Graph the set of points which are a distance 2 from the point B = (1; 1). (3) (Lines) Recall that in taxicab geometry, the shapes we call lines are the same as the usual lines in Euclidean geometry. Graph the line ` that passes through the points (3; 0) and (0; 3).
    [Show full text]
  • Taxi Cab Geometry: History and Applications!
    The Mathematics Enthusiast Volume 2 Number 1 Article 6 4-2005 Taxi Cab Geometry: History and Applications! Chip Reinhardt Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation Reinhardt, Chip (2005) "Taxi Cab Geometry: History and Applications!," The Mathematics Enthusiast: Vol. 2 : No. 1 , Article 6. Available at: https://scholarworks.umt.edu/tme/vol2/iss1/6 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TMME, Vol2, no.1, p.38 Taxi Cab Geometry: History and Applications Chip Reinhardt Stevensville High School, Stevensville, Montana Paper submitted: December 9, 2003 Accepted with revisions: 27. July 2004 We will explore three real life situations proposed in Eugene F. Krause's book Taxicab Geometry. First a dispatcher for Ideal City Police Department receives a report of an accident at X = (-1,4). There are two police cars located in the area. Car C is at (2,1) and car D is at (-1,-1). Which car should be sent? Second there are three high schools in Ideal city. Roosevelt at (2,1), Franklin at ( -3,-3) and Jefferson at (-6,-1). Draw in school district boundaries so that each student in Ideal City attends the school closet to them. For the third problem a telephone company wants to set up payphone booths so that everyone living with in twelve blocks of the center of town is with in four blocks of a payphone.
    [Show full text]
  • Digital Distance Geometry: a Survey
    Sddhan& Vol. 18, Part 2, June 1993, pp. 159-187. © Printed in India. Digital distance geometry: A survey P P DAS t and B N CHATTERJI* Department of Computer Science and Engineering, and * Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302, India Abstract. Digital distance geometry (DDG) is the study of distances in the geometry of digitized spaces. This was introduced approximately 25 years ago, when the study of digital geometry itself began, for providing a theoretical background to digital picture processing algorithms. In this survey we focus our attention on the DDG of arbitrary dimensions and other related issues and compile an up-to-date list of references on the topic. Keywords. Digital space; neighbourhood; path; distance function; metric; digital distance geometry. 1. Introduction Digital geometry (DG) is the study of the geometry of discrete point (or lattice point, grid point) spaces where every point has integral coordinates. In its simplest form we talk about the DG of the two-dimensional (2-D) space which is an infinite array of equispaced points called pixels. Creation of this geometry was initiated in the sixties when it was realized that the digital analysis of visual patterns needed a proper understanding of the discrete space. Since a continuous space cannot be represented in the computer, an approximated digital model found extensive use. However, the digital model failed to capture many properties of Euclidean geometry (EG) and thus the formulation of a new geometrical paradigm was necessary. A similarity can be drawn here between the arithmetic of real numbers and that of integers to highlight the above point.
    [Show full text]
  • On Some Regular Polygons in the Taxicab 3−Space
    KoG•19–2015 S. Yuksel,¨ M. Ozcan:¨ On Some Regular Polygons in the Taxicab 3−Space Original scientific paper SULEYMAN¨ YUKSEL¨ Accepted 17. 12. 2015. MUNEVVER¨ O¨ ZCAN On Some Regular Polygons in the Taxicab 3−Space On Some Regular Polygons in the Taxicab O nekim pravilnim mnogokutima u taxicab trodi- 3−Space menzionalnom prostoru ABSTRACT SAZETAKˇ In this study, it has been researched which Euclidean reg- U ovom se radu prouˇcavakoji su euklidski pravilni mno- ular polygons are also taxicab regular and which are not. gokuti ujedno i taxicab pravilni, a koji to nisu. Takod-er se The existence of non-Euclidean taxicab regular polygons istraˇzujepostojanje taxicab pravinih mnogokuta koji nisu in the taxicab 3-space has also been investigated. pravilni u euklidskom smislu. Key words: taxicab geometry, Euclidean geometry, regu- lar polygons Kljuˇcnerijeˇci: taxicab geometrija, euklidska geometrija, pravilni mnogokuti MSC2010: 51K05, 51K99, 51N25 1 Introduction which is centered at M = (x0;y0) point with radius r. In 3, the equation of taxicab sphere is 3 R The taxicab 3-dimensional space RT is almost the same 3 jx − x j + jy − y j + jz − z j = r as the Euclidean analytical 3-dimensional space R . The 0 0 0 (4) points, lines and planes are the same in Euclidean and taxi- which is centered at M = (x0;y0;z0) point with radius r cab geometry and the angles are measured in the same way, (see [7], [8], [9]). Then, a taxicab circle can be defined by but the distance function is different. The taxicab metric is a plane and a taxicab sphere.
    [Show full text]
  • Taxicab Geometry
    PROJECT for Chapter 1 Taxicab Geometry OBJECTIVE Compare distances in taxicab geometry to distances in Euclidean geometry. Materials: ruler, graph paper, colored pencils, poster paper In taxicab geometry, distances are measured along paths that are made of horizontal and vertical segments. Diagonal paths are not allowed. This simulates the movement of taxicabs in a city, which can travel only on streets, never through buildings. FINDING TAXICAB DISTANCES Follow these steps to learn more about distance in taxicab geometry. B B 14 B 10 A A A 12 1 Copy points A and 2 Trace paths from A 3 Calculate the B on a piece of to B using the grid distances covered graph paper. lines. You may move by your paths. horizontally and vertically but not diagonally. INVESTIGATION Repeat Steps 2 and 3 above several times, then answer the exercises. 1. Compare your paths and those of your classmates. Are the distances always the same? What is the length of the shortest possible path from A to B? 2. The length of the shortest path from A to B is called the taxicab distance from A to B. Can you find other paths from A to B that have the same distance? 3. Use the Distance Formula to find the Euclidean distance from A to B. Which is greater, the taxicab distance from A to B or the Euclidean distance? 4. On another piece of graph paper, plot a new pair of points. Find the taxicab distance and Euclidean distance for the points. Repeat this for several pairs of points.
    [Show full text]