Digital Distance Geometry: a Survey
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Asymmetric Distances
Analysis and Geometry in Metric Spaces Research Article • DOI: 10.2478/agms-2013-0004 • AGMS • 2013 • 200-231 On Asymmetric Distances Abstract ∗ In this paper we discuss asymmetric length structures and Andrea C. G. Mennucci asymmetric metric spaces. A length structure induces a (semi)distance function; by using Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy the total variation formula, a (semi)distance function induces a length. In the first part we identify a topology in the set of paths that best describes when the above operations are idempo- tent. As a typical application, we consider the length of paths Received 24 March 2013 defined by a Finslerian functional in Calculus of Variations. Accepted 15 May 2013 In the second part we generalize the setting of General metric spaces of Busemann, and discuss the newly found aspects of the theory: we identify three interesting classes of paths, and compare them; we note that a geodesic segment (as defined by Busemann) is not necessarily continuous in our setting; hence we present three different notions of intrinsic metric space. Keywords Asymmetric metric • general metric • quasi metric • ostensible metric • Finsler metric • run–continuity • intrinsic metric • path metric • length structure MSC: 54C99, 54E25, 26A45 © Versita sp. z o.o. 1. Introduction Besides, one insists that the distance function be symmetric, that is, d(x; y) = d(y; x) (This unpleasantly limits many applications [...]) M. Gromov ([12], Intr.) The main purpose of this paper is to study an asymmetric metric theory; this theory naturally generalizes the metric part of Finsler Geometry, much as symmetric metric theory generalizes the metric part of Riemannian Geometry. -
Vol 45 Ams / Maa Anneli Lax New Mathematical Library
45 AMS / MAA ANNELI LAX NEW MATHEMATICAL LIBRARY VOL 45 10.1090/nml/045 When Life is Linear From Computer Graphics to Bracketology c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2014959438 Print edition ISBN: 978-0-88385-649-9 Electronic edition ISBN: 978-0-88385-988-9 Printed in the United States of America Current Printing (last digit): 10987654321 When Life is Linear From Computer Graphics to Bracketology Tim Chartier Davidson College Published and Distributed by The Mathematical Association of America To my parents, Jan and Myron, thank you for your support, commitment, and sacrifice in the many nonlinear stages of my life Committee on Books Frank Farris, Chair Anneli Lax New Mathematical Library Editorial Board Karen Saxe, Editor Helmer Aslaksen Timothy G. Feeman John H. McCleary Katharine Ott Katherine S. Socha James S. Tanton ANNELI LAX NEW MATHEMATICAL LIBRARY 1. Numbers: Rational and Irrational by Ivan Niven 2. What is Calculus About? by W. W. Sawyer 3. An Introduction to Inequalities by E. F.Beckenbach and R. Bellman 4. Geometric Inequalities by N. D. Kazarinoff 5. The Contest Problem Book I Annual High School Mathematics Examinations 1950–1960. Compiled and with solutions by Charles T. Salkind 6. The Lore of Large Numbers by P.J. Davis 7. Uses of Infinity by Leo Zippin 8. Geometric Transformations I by I. M. Yaglom, translated by A. Shields 9. Continued Fractions by Carl D. Olds 10. Replaced by NML-34 11. Hungarian Problem Books I and II, Based on the Eotv¨ os¨ Competitions 12. 1894–1905 and 1906–1928, translated by E. -
Taxicab Space, Inversion, Harmonic Conjugates, Taxicab Sphere
TAXICAB SPHERICAL INVERSIONS IN TAXICAB SPACE ADNAN PEKZORLU∗, AYS¸E BAYAR DEPARTMENT OF MATHEMATICS-COMPUTER UNIVERSITY OF ESKIS¸EHIR OSMANGAZI E-MAILS: [email protected], [email protected] (Received: 11 June 2019, Accepted: 29 May 2020) Abstract. In this paper, we define an inversion with respect to a taxicab sphere in the three dimensional taxicab space and prove several properties of this inversion. We also study cross ratio, harmonic conjugates and the inverse images of lines, planes and taxicab spheres in three dimensional taxicab space. AMS Classification: 40Exx, 51Fxx, 51B20, 51K99. Keywords: taxicab space, inversion, harmonic conjugates, taxicab sphere. 1. Introduction The inversion was introduced by Apollonius of Perga in his last book Plane Loci, and systematically studied and applied by Steiner about 1820s, [2]. During the following decades, many physicists and mathematicians independently rediscovered inversions, proving the properties that were most useful for their particular applica- tions by defining a central cone, ellipse and circle inversion. Some of these features are inversion compared to the classical circle. Inversion transformation and basic concepts have been presented in literature. The inversions with respect to the central conics in real Euclidean plane was in- troduced in [3]. Then the inversions with respect to ellipse was studied detailed in ∗ CORRESPONDING AUTHOR JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER VOL. 9, NUMBERS 1-2 (2020) 45-54. DOI: 10.22103/JMMRC.2020.14232.1095 c MAHANI MATHEMATICAL RESEARCH CENTER 45 46 ADNAN PEKZORLU, AYS¸E BAYAR [13]. In three-dimensional space a generalization of the spherical inversion is given in [16]. Also, the inversions with respect to the taxicab distance, α-distance [18], [4], or in general a p-distance [11]. -
Taxicab Geometry, Or When a Circle Is a Square
Taxicab Geometry, or When a Circle is a Square Circle on the Road 2012, Math Festival Olga Radko (Los Angeles Math Circle, UCLA) April 14th, 2012 Abstract The distance between two points is the length of the shortest path connecting them. In plane Euclidean geometry such a path is along the straight line connecting the two points. In contrast, in a city consisting of a square grid of streets shortest paths between two points are no longer straight lines (as every cab driver knows). We will explore the geometry of this unusual distance and play several related games. 1 René Descartes (1596-1650) was a French mathematician, philosopher and writer. Among his many accomplishments, he developed a very convenient way to describe positions of points on a plane. This method was very important for fu- ture development of mathematics and physics. We will start learning about this invention today. The city of Descartes is a plane that extends infinitely in all directions: The center of the city is marked by point O. • The horizontal (West-East) line going through O is called • the x-axis. The vertical (South-North) line going through O is called • the y-axis. Each house in the city is represented by a point which • is the intersection of a vertical and a horizontal line. Each house has an address which consists of two whole numbers written inside of parenthesis. 2 Example. Point A shown below has coordinates (2, 3). The first number tells you the distance to the y-axis. • The distance is positive if you are on the right of the y-axis. -
Nonlinear Mapping and Distance Geometry
Nonlinear Mapping and Distance Geometry Alain Franc, Pierre Blanchard , Olivier Coulaud arXiv:1810.08661v2 [cs.CG] 9 May 2019 RESEARCH REPORT N° 9210 October 2018 Project-Teams Pleiade & ISSN 0249-6399 ISRN INRIA/RR--9210--FR+ENG HiePACS Nonlinear Mapping and Distance Geometry Alain Franc ∗†, Pierre Blanchard ∗ ‡, Olivier Coulaud ‡ Project-Teams Pleiade & HiePACS Research Report n° 9210 — version 2 — initial version October 2018 — revised version April 2019 — 14 pages Abstract: Distance Geometry Problem (DGP) and Nonlinear Mapping (NLM) are two well established questions: Distance Geometry Problem is about finding a Euclidean realization of an incomplete set of distances in a Euclidean space, whereas Nonlinear Mapping is a weighted Least Square Scaling (LSS) method. We show how all these methods (LSS, NLM, DGP) can be assembled in a common framework, being each identified as an instance of an optimization problem with a choice of a weight matrix. We study the continuity between the solutions (which are point clouds) when the weight matrix varies, and the compactness of the set of solutions (after centering). We finally study a numerical example, showing that solving the optimization problem is far from being simple and that the numerical solution for a given procedure may be trapped in a local minimum. Key-words: Distance Geometry; Nonlinear Mapping, Discrete Metric Space, Least Square Scaling; optimization ∗ BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France † Pleiade team - INRIA Bordeaux-Sud-Ouest, France ‡ HiePACS team, Inria Bordeaux-Sud-Ouest, -
Distance Geometry and Data Science1
TOP (invited survey, to appear in 2020, Issue 2) Distance Geometry and Data Science1 Leo Liberti1 1 LIX CNRS, Ecole´ Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France Email:[email protected] September 19, 2019 Dedicated to the memory of Mariano Bellasio (1943-2019). Abstract Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its relation with mathematical programming. We discuss applications, solution methods, dimensional reduction techniques and some of their limits. We then present an application of some of these ideas to neural networks, showing that distance geometry techniques can give competitive performance with respect to more traditional graph-to-vector map- pings. Keywords: Euclidean distance, Isometric embedding, Random projection, Mathematical Program- ming, Machine Learning, Artificial Neural Networks. Contents 1 Introduction 2 2 Mathematical Programming 4 2.1 Syntax . .4 2.2 Taxonomy . .4 2.3 Semantics . .5 2.4 Reformulations . .5 arXiv:1909.08544v1 [cs.LG] 18 Sep 2019 3 Distance Geometry 6 3.1 The distance geometry problem . .7 3.2 Number of solutions . .7 3.3 Applications . .8 3.4 Complexity . 10 1This research was partly funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement n. 764759 ETN \MINOA". 1 INTRODUCTION 2 4 Representing data by graphs 10 4.1 Processes . -
Geometry of Some Taxicab Curves
GEOMETRY OF SOME TAXICAB CURVES Maja Petrović 1 Branko Malešević 2 Bojan Banjac 3 Ratko Obradović 4 Abstract In this paper we present geometry of some curves in Taxicab metric. All curves of second order and trifocal ellipse in this metric are presented. Area and perimeter of some curves are also defined. Key words: Taxicab metric, Conics, Trifocal ellipse 1. INTRODUCTION In this paper, taxicab and standard Euclidean metrics for a visual representation of some planar curves are considered. Besides the term taxicab, also used are Manhattan, rectangular metric and city block distance [4], [5], [7]. This metric is a special case of the Minkowski 1 MSc Maja Petrović, assistant at Faculty of Transport and Traffic Engineering, University of Belgrade, Serbia, e-mail: [email protected] 2 PhD Branko Malešević, associate professor at Faculty of Electrical Engineering, Department of Applied Mathematics, University of Belgrade, Serbia, e-mail: [email protected] 3 MSc Bojan Banjac, student of doctoral studies of Software Engineering, Faculty of Electrical Engineering, University of Belgrade, Serbia, assistant at Faculty of Technical Sciences, Computer Graphics Chair, University of Novi Sad, Serbia, e-mail: [email protected] 4 PhD Ratko Obradović, full professor at Faculty of Technical Sciences, Computer Graphics Chair, University of Novi Sad, Serbia, e-mail: [email protected] 1 metrics of order 1, which is for distance between two points , and , determined by: , | | | | (1) Minkowski metrics contains taxicab metric for value 1 and Euclidean metric for 2. The term „taxicab geometry“ was first used by K. Menger in the book [9]. -
LAB 9.1 Taxicab Versus Euclidean Distance
([email protected] LAB 9.1 Name(s) Taxicab Versus Euclidean Distance Equipment: Geoboard, graph or dot paper If you can travel only horizontally or vertically (like a taxicab in a city where all streets run North-South and East-West), the distance you have to travel to get from the origin to the point (2, 3) is 5.This is called the taxicab distance between (0, 0) and (2, 3). If, on the other hand, you can go from the origin to (2, 3) in a straight line, the distance you travel is called the Euclidean distance, or just the distance. Finding taxicab distance: Taxicab distance can be measured between any two points, whether on a street or not. For example, the taxicab distance from (1.2, 3.4) to (9.9, 9.9) is the sum of 8.7 (the horizontal component) and 6.5 (the vertical component), for a total of 15.2. 1. What is the taxicab distance from (2, 3) to the following points? a. (7, 9) b. (–3, 8) c. (2, –1) d. (6, 5.4) e. (–1.24, 3) f. (–1.24, 5.4) Finding Euclidean distance: There are various ways to calculate Euclidean distance. Here is one method that is based on the sides and areas of squares. Since the area of the square at right is y 13 (why?), the side of the square—and therefore the Euclidean distance from, say, the origin to the point (2,3)—must be ͙ෆ13,or approximately 3.606 units. 3 x 2 Geometry Labs Section 9 Distance and Square Root 121 © 1999 Henri Picciotto, www.MathEducationPage.org ([email protected] LAB 9.1 Name(s) Taxicab Versus Euclidean Distance (continued) 2. -
From Circle to Hyperbola in Taxicab Geometry
Abstract: The purpose of this article is to provide insight into the shape of circles and related geometric figures in taxicab geometry. This will enable teachers to guide student explorations by designing interesting worksheets, leading knowledgeable class room discussions, and be aware of the different results that students can obtain if they decide to delve deeper into this fascinating subject. From Circle to Hyperbola in Taxicab Geometry Ruth I. Berger, Luther College How far is the shortest path from Grand Central Station to the Empire State building? A pigeon could fly there in a straight line, but a person is confined by the street grid. The geometry obtained from measuring the distance between points by the actual distance traveled on a square grid is known as taxicab geometry. This topic can engage students at all levels, from plotting points and observing surprising shapes, to examining the underlying reasons for why these figures take on this appearance. Having to work with a new distance measurement takes everyone out of their comfort zone of routine memorization and makes them think, even about definitions and facts that seemed obvious before. It can also generate lively group discussions. There are many good resources on taxicab geometry. The ideas from Krause’s classic book [Krause 1986] have been picked up in recent NCTM publications [Dreiling 2012] and [Smith 2013], the latter includes an extensive pedagogy discussion. [House 2005] provides nice worksheets. Definition: Let A and B be points with coordinates (푥1, 푦1) and (푥2, 푦2), respectively. The taxicab distance from A to B is defined as 푑푖푠푡(퐴, 퐵) = |푥1 − 푥2| + |푦1 − 푦2|. -
Math 105 Workbook Exploring Mathematics
Math 105 Workbook Exploring Mathematics Douglas R. Anderson, Professor Fall 2018: MWF 11:50-1:00, ISC 101 Acknowledgment First we would like to thank all of our former Math 105 students. Their successes, struggles, and suggestions have shaped how we teach this course in many important ways. We also want to thank our departmental colleagues and several Concordia math- ematics majors for many fruitful discussions and resources on the content of this course and the makeup of this workbook. Some of the topics, examples, and exercises in this workbook are drawn from other works. Most significantly, we thank Samantha Briggs, Ellen Kramer, and Dr. Jessie Lenarz for their work in Exploring Mathematics, as well as other Cobber mathemat- ics professors. We have also used: • Taxicab Geometry: An Adventure in Non-Euclidean Geometry by Eugene F. Krause, • Excursions in Modern Mathematics, Sixth Edition, by Peter Tannenbaum. • Introductory Graph Theory by Gary Chartrand, • The Heart of Mathematics: An invitation to effective thinking by Edward B. Burger and Michael Starbird, • Applied Finite Mathematics by Edmond C. Tomastik. Finally, we want to thank (in advance) you, our current students. Your suggestions for this course and this workbook are always encouraged, either in person or over e-mail. Both the course and workbook are works in progress that will continue to improve each semester with your help. Let's have a great semester this fall exploring mathematics together and fulfilling Concordia's math requirement in 2018. Skol Cobbs! i ii Contents 1 Taxicab Geometry 3 1.1 Taxicab Distance . .3 Homework . .8 1.2 Taxicab Circles . -
Taxicab Geometry
TAXICAB GEOMETRY MICHAEL A. HALL 11/13/2011 EUCLIDEAN GEOMETRY In geometry the primary objects of study are points, lines, angles, and distances. We can identify each point in the plane by its Cartesian coordinates (x; y). The Euclidean distance between points A = (x1; y1) and B = (x2; y2) is p 2 2 dE(A; B) = (x2 − x1) + (y2 − y1) : (Euclidean distance formula) TAXICAB GEOMETRY In “taxicab” geometry, the points, lines, and angles are the same, but the notion of distance is different from the Euclidean distance. The taxicab distance between points A = (x1; y1) and B = (x2; y2) is dT (A; B) = jx2 − x1j + jy2 − y1j: (Taxicab distance formula) Exercises. (1) On a sheet of graph paper, mark each pair of points P and Q and find the both the Euclidean and taxicab distance between them: (a) P = (0; 0), Q = (1; 1) (b) P = (1; 2), Q = (2; 3) (c) P = (1; 0), Q = (5; 0) (2) (Taxi circles) Let A be the point with coordinates (2; 2). (a) Plot A on a piece of graph paper, and mark all points P such that dT (A; P ) = 1. The set of such points is written fP j dT (A; P ) = 1g. Also mark all points in fP j dT (A; P ) = 2g. (b) Graph the set of points which are a distance 2 from the point B = (1; 1). (3) (Lines) Recall that in taxicab geometry, the shapes we call lines are the same as the usual lines in Euclidean geometry. Graph the line ` that passes through the points (3; 0) and (0; 3). -
Six Mathematical Gems from the History of Distance Geometry
Six mathematical gems from the history of Distance Geometry Leo Liberti1, Carlile Lavor2 1 CNRS LIX, Ecole´ Polytechnique, F-91128 Palaiseau, France Email:[email protected] 2 IMECC, University of Campinas, 13081-970, Campinas-SP, Brazil Email:[email protected] February 28, 2015 Abstract This is a partial account of the fascinating history of Distance Geometry. We make no claim to completeness, but we do promise a dazzling display of beautiful, elementary mathematics. We prove Heron’s formula, Cauchy’s theorem on the rigidity of polyhedra, Cayley’s generalization of Heron’s formula to higher dimensions, Menger’s characterization of abstract semi-metric spaces, a result of G¨odel on metric spaces on the sphere, and Schoenberg’s equivalence of distance and positive semidefinite matrices, which is at the basis of Multidimensional Scaling. Keywords: Euler’s conjecture, Cayley-Menger determinants, Multidimensional scaling, Euclidean Distance Matrix 1 Introduction Distance Geometry (DG) is the study of geometry with the basic entity being distance (instead of lines, planes, circles, polyhedra, conics, surfaces and varieties). As did much of Mathematics, it all began with the Greeks: specifically Heron, or Hero, of Alexandria, sometime between 150BC and 250AD, who showed how to compute the area of a triangle given its side lengths [36]. After a hiatus of almost two thousand years, we reach Arthur Cayley’s: the first paper of volume I of his Collected Papers, dated 1841, is about the relationships between the distances of five points in space [7]. The gist of what he showed is that a tetrahedron can only exist in a plane if it is flat (in fact, he discussed the situation in one more dimension).