From Circle to Hyperbola in Taxicab Geometry

Total Page:16

File Type:pdf, Size:1020Kb

From Circle to Hyperbola in Taxicab Geometry Abstract: The purpose of this article is to provide insight into the shape of circles and related geometric figures in taxicab geometry. This will enable teachers to guide student explorations by designing interesting worksheets, leading knowledgeable class room discussions, and be aware of the different results that students can obtain if they decide to delve deeper into this fascinating subject. From Circle to Hyperbola in Taxicab Geometry Ruth I. Berger, Luther College How far is the shortest path from Grand Central Station to the Empire State building? A pigeon could fly there in a straight line, but a person is confined by the street grid. The geometry obtained from measuring the distance between points by the actual distance traveled on a square grid is known as taxicab geometry. This topic can engage students at all levels, from plotting points and observing surprising shapes, to examining the underlying reasons for why these figures take on this appearance. Having to work with a new distance measurement takes everyone out of their comfort zone of routine memorization and makes them think, even about definitions and facts that seemed obvious before. It can also generate lively group discussions. There are many good resources on taxicab geometry. The ideas from Krause’s classic book [Krause 1986] have been picked up in recent NCTM publications [Dreiling 2012] and [Smith 2013], the latter includes an extensive pedagogy discussion. [House 2005] provides nice worksheets. Definition: Let A and B be points with coordinates (푥1, 푦1) and (푥2, 푦2), respectively. The taxicab distance from A to B is defined as 푑푖푠푡(퐴, 퐵) = |푥1 − 푥2| + |푦1 − 푦2|. This applies to all points in the plane, unlike on a city grid where at least one coordinate needs to be an integer in order to be located on a street. To compute the distance between two points in taxicab geometry we need to add their horizontal and vertical distances. The distance between A(-2,1) and B(3,5) is: |−2 − 3| + |1 − 5| = 5 + 4 = 9. Rather than formally computing this, just note that to get from A to B we move a total of 5 right and 4 up. Interestingly, the shortest path is not unique, just alternate the up and right segments, see figure 1. This change in how distance is measured has huge implications for the shapes of well known geometric figures. Working in taxicab geometry requires careful attention to definitions. Nothing can be assumed or intuitively derived. What does a circle look like in this geometry? The set of all points of distance 5 from the origin is shown in figure 2. By definition, this circle consists of all points (x,y) with |x|+|y|=5. From this we derive the four straight line segments that make up the circle: 푦 = ±푥 ± 5. Using a different center point or radius still results in this diamond shape. Fact 1: In Taxicab geometry a circle consists of four congruent segments of slope ±1. Check your student’s understanding: Hold a pen of length 5 inches vertically, so it extends from (0,0) to (0,5). Now tilt it so the tip is at (3,4). The taxicab distance from base to tip is 3+4=7, the pen became longer! This can be confirmed by holding it over the circle of radius 5 and noting that the tilted pen sticks out beyond the circle. Keep rotating, it will be longest at 45°, then shrink back to length 5 in the horizontal position. This activity shows that an object’s length changes when it is tilted, so be careful to never use a ruler to measure distances in taxicab geometry. Always count the number of horizontal and vertical moves to get from A to B. *********************************** Grid City Worksheet Adam, Brenna, Carl, Dana, and Erik live in Grid City where each city block is exactly 300 feet wide. They were in Middle school last year, but now they attend Grid City High school. The Middle school (MS) is located 6 blocks east and 4 blocks north of the High school (HS). Using the information below, plot all possible locations for everyone’s homes on separate sheets. A. Adam lives 5 blocks (1500ft) from HS. B. Last year Brenna walked 7 blocks (2100ft) to MS, this year she only has to walk 3 blocks (900ft) to HS. C. Carl uses his skateboard to get to school. He says that it is exactly the same distance from his apartment to HS as it was from his apartment to MS last year. D. Dana rides her bike to school. She complains that this year she has to ride 4 blocks (1200ft) further every morning than when she biked to MS last year. The exact opposite is true for her best friend Denise, her bike ride to school is now 1200ft shorter. E. Last year Erik’s best friend Earl moved to the suburbs, but finished the school year in the city. After school he walked from MS to Erik’s house, and later he walked to HS to catch a ride home with his sister after her Basket Ball practice. Earl’s total walking distance was 14 blocks (4200ft). Repeat the above if MS is located 5 blocks east and 5 blocks north of HS. Note to teachers: You might want to first consider an easier case where MS and HS are 8 blocks apart on the same street. ************************************** The questions on the Grid City worksheet lead to well known figures in Euclidean geometry: A-Circle. B-Intersection of circles. C-Set of points equidistant to two points. D-Hyperbola. E- Ellipse. To facilitate investigations we use the following notation: Two points on the same horizontal or vertical line will be called h/v-aligned. The rectangle with diagonal vertex points A and B will be referred to as AB-box. If A and B are h/v-aligned, the AB-box collapses to segment AB. We already observed that in taxicab geometry there can be many paths of minimal length between points A and B. Fact 2: For any point Q in or on an AB-box dist(A,Q)+dist(Q,B)= dist(A,B). Proof: There exists a shortest path from A to B that passes through Q, see fig.1. Fact 3: a) Let P be at perpendicular distance r from any point Q on an AB-box, as shown in figure 3. Then dist(P,A)=r+dist(Q,A) and dist(P,B)=r+dist(Q,B). b) The same holds true for points P on a quarter-circle segment of radius r centered at vertex Q. Proof: There exists a shortest path from P to A, or B, that passes through Q. Let’s examine the Grid City problems. A. Adam lives on a circle of radius 5 around HS, see figure 2. B. Brenna lives at the intersection of circles of radius 3 and 7 around HS and MS, respectively. Two circles can be “tangent” in a segment of slope 푚 = ±1, instead of one point, see figure 4. Let 퐷 = 푑푖푠푡(퐶1, 퐶2) be the distance of the centers of circles of radius 푟1 and 푟2, respectively. If 푟1 + 푟2 < 퐷: no intersection. If 푟1 + 푟2 = 퐷: they intersect in a segment inside the 퐶1퐶2-box, or a point if the centers are h/v- aligned. If 푟1 + 푟2 > 퐷 the circles intersect in two points except for the following cases: o If |푟1 − 푟2| = 퐷 the intersection is one segment, or two adjacent segments if the centers are h/v-aligned. o If |푟1 − 푟2| = 푡 − 푠, where 0 < 푠 < 푡 are the sides of the 퐶1퐶2-box, they intersect in a segment and a point. o If the 퐶1퐶2-box is a square (s=t) and 푟1 = 푟2 they intersect in two segments. On the worksheet MS and HS are located 푟1 + 푟2 = 퐷 blocks apart on different streets. C. For Carl’s apartment we need to find the set of all points P that are equidistant from two points A and B: 푑푖푠푡(푃, 퐴) = 푑푖푠푡(푃, 퐵). Draw circles of varying radii around A and B and find their intersection. If A and B are h/v- aligned this leads to a familiar figure: the points on the perpendicular bisector of segment AB. For other arrangements of A and B this set of points has surprising shapes, see figure 5. The smallest such 푑푖푠푡(퐴,퐵) circles have radius 푟 = , they intersect in a segment of slope ±1 in the interior of the AB-box. 2 Once points Q on the longer sides of the box are reached, the set of equidistant points P continue on in rays perpendicular to the sides. Proof: Since Q is equidistant from A and B, so is P by fact 3a. If the AB-box is square the interior segments end at vertex points Q, so by fact 3b the set of points P equidistant to A and B contains not only vertical and horizontal components, but also all points in between! Definition: Given two points 퐹1, 퐹2 (foci) of distance D, and a positive real number 푘 < 퐷, a hyperbola is the set of all points P such that the absolute value of the difference of its distances from the focus points is k. |푑푖푠푡(푃, 퐹1) − 푑푖푠푡(푃, 퐹2)| = 푘 D. Dana and Denise live on different branches of a hyperbola with foci HS & MS and constant difference k=4. Dana’s house is located on the branch closer to focus point MS.
Recommended publications
  • Device Constructions with Hyperbolas
    Device Constructions with Hyperbolas Alfonso Croeze1 William Kelly1 William Smith2 1Department of Mathematics Louisiana State University Baton Rouge, LA 2Department of Mathematics University of Mississippi Oxford, MS July 8, 2011 Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas Hyperbola Definition Conic Section Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas Hyperbola Definition Conic Section Two Foci Focus and Directrix Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas The Project Basic constructions Constructing a Hyperbola Advanced constructions Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas Rusty Compass Theorem Given a circle centered at a point A with radius r and any point C different from A, it is possible to construct a circle centered at C that is congruent to the circle centered at A with a compass and straightedge. Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas X B C A Y Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas X D B C A Y Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas A B X Y Angle Duplication A X Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas Angle Duplication A X A B X Y Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas C Z A B X Y C Z A B X Y Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas C Z A B X Y C Z A B X Y Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas Constructing a Perpendicular C C A B Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas C C X X O A B A B Y Y Croeze, Kelly, Smith LSU&UoM Device Constructions with Hyperbolas We needed a way to draw a hyperbola.
    [Show full text]
  • Vol 45 Ams / Maa Anneli Lax New Mathematical Library
    45 AMS / MAA ANNELI LAX NEW MATHEMATICAL LIBRARY VOL 45 10.1090/nml/045 When Life is Linear From Computer Graphics to Bracketology c 2015 by The Mathematical Association of America (Incorporated) Library of Congress Control Number: 2014959438 Print edition ISBN: 978-0-88385-649-9 Electronic edition ISBN: 978-0-88385-988-9 Printed in the United States of America Current Printing (last digit): 10987654321 When Life is Linear From Computer Graphics to Bracketology Tim Chartier Davidson College Published and Distributed by The Mathematical Association of America To my parents, Jan and Myron, thank you for your support, commitment, and sacrifice in the many nonlinear stages of my life Committee on Books Frank Farris, Chair Anneli Lax New Mathematical Library Editorial Board Karen Saxe, Editor Helmer Aslaksen Timothy G. Feeman John H. McCleary Katharine Ott Katherine S. Socha James S. Tanton ANNELI LAX NEW MATHEMATICAL LIBRARY 1. Numbers: Rational and Irrational by Ivan Niven 2. What is Calculus About? by W. W. Sawyer 3. An Introduction to Inequalities by E. F.Beckenbach and R. Bellman 4. Geometric Inequalities by N. D. Kazarinoff 5. The Contest Problem Book I Annual High School Mathematics Examinations 1950–1960. Compiled and with solutions by Charles T. Salkind 6. The Lore of Large Numbers by P.J. Davis 7. Uses of Infinity by Leo Zippin 8. Geometric Transformations I by I. M. Yaglom, translated by A. Shields 9. Continued Fractions by Carl D. Olds 10. Replaced by NML-34 11. Hungarian Problem Books I and II, Based on the Eotv¨ os¨ Competitions 12. 1894–1905 and 1906–1928, translated by E.
    [Show full text]
  • Taxicab Space, Inversion, Harmonic Conjugates, Taxicab Sphere
    TAXICAB SPHERICAL INVERSIONS IN TAXICAB SPACE ADNAN PEKZORLU∗, AYS¸E BAYAR DEPARTMENT OF MATHEMATICS-COMPUTER UNIVERSITY OF ESKIS¸EHIR OSMANGAZI E-MAILS: [email protected], [email protected] (Received: 11 June 2019, Accepted: 29 May 2020) Abstract. In this paper, we define an inversion with respect to a taxicab sphere in the three dimensional taxicab space and prove several properties of this inversion. We also study cross ratio, harmonic conjugates and the inverse images of lines, planes and taxicab spheres in three dimensional taxicab space. AMS Classification: 40Exx, 51Fxx, 51B20, 51K99. Keywords: taxicab space, inversion, harmonic conjugates, taxicab sphere. 1. Introduction The inversion was introduced by Apollonius of Perga in his last book Plane Loci, and systematically studied and applied by Steiner about 1820s, [2]. During the following decades, many physicists and mathematicians independently rediscovered inversions, proving the properties that were most useful for their particular applica- tions by defining a central cone, ellipse and circle inversion. Some of these features are inversion compared to the classical circle. Inversion transformation and basic concepts have been presented in literature. The inversions with respect to the central conics in real Euclidean plane was in- troduced in [3]. Then the inversions with respect to ellipse was studied detailed in ∗ CORRESPONDING AUTHOR JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER VOL. 9, NUMBERS 1-2 (2020) 45-54. DOI: 10.22103/JMMRC.2020.14232.1095 c MAHANI MATHEMATICAL RESEARCH CENTER 45 46 ADNAN PEKZORLU, AYS¸E BAYAR [13]. In three-dimensional space a generalization of the spherical inversion is given in [16]. Also, the inversions with respect to the taxicab distance, α-distance [18], [4], or in general a p-distance [11].
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • Taxicab Geometry, Or When a Circle Is a Square
    Taxicab Geometry, or When a Circle is a Square Circle on the Road 2012, Math Festival Olga Radko (Los Angeles Math Circle, UCLA) April 14th, 2012 Abstract The distance between two points is the length of the shortest path connecting them. In plane Euclidean geometry such a path is along the straight line connecting the two points. In contrast, in a city consisting of a square grid of streets shortest paths between two points are no longer straight lines (as every cab driver knows). We will explore the geometry of this unusual distance and play several related games. 1 René Descartes (1596-1650) was a French mathematician, philosopher and writer. Among his many accomplishments, he developed a very convenient way to describe positions of points on a plane. This method was very important for fu- ture development of mathematics and physics. We will start learning about this invention today. The city of Descartes is a plane that extends infinitely in all directions: The center of the city is marked by point O. • The horizontal (West-East) line going through O is called • the x-axis. The vertical (South-North) line going through O is called • the y-axis. Each house in the city is represented by a point which • is the intersection of a vertical and a horizontal line. Each house has an address which consists of two whole numbers written inside of parenthesis. 2 Example. Point A shown below has coordinates (2, 3). The first number tells you the distance to the y-axis. • The distance is positive if you are on the right of the y-axis.
    [Show full text]
  • Geometry of Some Taxicab Curves
    GEOMETRY OF SOME TAXICAB CURVES Maja Petrović 1 Branko Malešević 2 Bojan Banjac 3 Ratko Obradović 4 Abstract In this paper we present geometry of some curves in Taxicab metric. All curves of second order and trifocal ellipse in this metric are presented. Area and perimeter of some curves are also defined. Key words: Taxicab metric, Conics, Trifocal ellipse 1. INTRODUCTION In this paper, taxicab and standard Euclidean metrics for a visual representation of some planar curves are considered. Besides the term taxicab, also used are Manhattan, rectangular metric and city block distance [4], [5], [7]. This metric is a special case of the Minkowski 1 MSc Maja Petrović, assistant at Faculty of Transport and Traffic Engineering, University of Belgrade, Serbia, e-mail: [email protected] 2 PhD Branko Malešević, associate professor at Faculty of Electrical Engineering, Department of Applied Mathematics, University of Belgrade, Serbia, e-mail: [email protected] 3 MSc Bojan Banjac, student of doctoral studies of Software Engineering, Faculty of Electrical Engineering, University of Belgrade, Serbia, assistant at Faculty of Technical Sciences, Computer Graphics Chair, University of Novi Sad, Serbia, e-mail: [email protected] 4 PhD Ratko Obradović, full professor at Faculty of Technical Sciences, Computer Graphics Chair, University of Novi Sad, Serbia, e-mail: [email protected] 1 metrics of order 1, which is for distance between two points , and , determined by: , | | | | (1) Minkowski metrics contains taxicab metric for value 1 and Euclidean metric for 2. The term „taxicab geometry“ was first used by K. Menger in the book [9].
    [Show full text]
  • 14. Mathematics for Orbits: Ellipses, Parabolas, Hyperbolas Michael Fowler
    14. Mathematics for Orbits: Ellipses, Parabolas, Hyperbolas Michael Fowler Preliminaries: Conic Sections Ellipses, parabolas and hyperbolas can all be generated by cutting a cone with a plane (see diagrams, from Wikimedia Commons). Taking the cone to be xyz222+=, and substituting the z in that equation from the planar equation rp⋅= p, where p is the vector perpendicular to the plane from the origin to the plane, gives a quadratic equation in xy,. This translates into a quadratic equation in the plane—take the line of intersection of the cutting plane with the xy, plane as the y axis in both, then one is related to the other by a scaling xx′ = λ . To identify the conic, diagonalized the form, and look at the coefficients of xy22,. If they are the same sign, it is an ellipse, opposite, a hyperbola. The parabola is the exceptional case where one is zero, the other equates to a linear term. It is instructive to see how an important property of the ellipse follows immediately from this construction. The slanting plane in the figure cuts the cone in an ellipse. Two spheres inside the cone, having circles of contact with the cone CC, ′, are adjusted in size so that they both just touch the plane, at points FF, ′ respectively. It is easy to see that such spheres exist, for example start with a tiny sphere inside the cone near the point, and gradually inflate it, keeping it spherical and touching the cone, until it touches the plane. Now consider a point P on the ellipse.
    [Show full text]
  • LAB 9.1 Taxicab Versus Euclidean Distance
    ([email protected] LAB 9.1 Name(s) Taxicab Versus Euclidean Distance Equipment: Geoboard, graph or dot paper If you can travel only horizontally or vertically (like a taxicab in a city where all streets run North-South and East-West), the distance you have to travel to get from the origin to the point (2, 3) is 5.This is called the taxicab distance between (0, 0) and (2, 3). If, on the other hand, you can go from the origin to (2, 3) in a straight line, the distance you travel is called the Euclidean distance, or just the distance. Finding taxicab distance: Taxicab distance can be measured between any two points, whether on a street or not. For example, the taxicab distance from (1.2, 3.4) to (9.9, 9.9) is the sum of 8.7 (the horizontal component) and 6.5 (the vertical component), for a total of 15.2. 1. What is the taxicab distance from (2, 3) to the following points? a. (7, 9) b. (–3, 8) c. (2, –1) d. (6, 5.4) e. (–1.24, 3) f. (–1.24, 5.4) Finding Euclidean distance: There are various ways to calculate Euclidean distance. Here is one method that is based on the sides and areas of squares. Since the area of the square at right is y 13 (why?), the side of the square—and therefore the Euclidean distance from, say, the origin to the point (2,3)—must be ͙ෆ13,or approximately 3.606 units. 3 x 2 Geometry Labs Section 9 Distance and Square Root 121 © 1999 Henri Picciotto, www.MathEducationPage.org ([email protected] LAB 9.1 Name(s) Taxicab Versus Euclidean Distance (continued) 2.
    [Show full text]
  • 2.3 Conic Sections: Hyperbola ( ) ( ) ( )
    2.3 Conic Sections: Hyperbola Hyperbola (locus definition) Set of all points (x, y) in the place such that the absolute value of the difference of each distances from F1 and F2 to (x, y) is a constant distance, d. In the figure above: The distance from F1 to (x1, y1 ) - the distance from F2 to (x1, y1 ) = d and The distance from F1 to (x2 , y2 ) - the distance from F2 to (x2 , y2 ) = d Standard Form of a Hyperbola: Horizontal Hyperbola Vertical Hyperbola 2 2 2 2 (x − h) (y − k) (y − k) (x − h) 2 − 2 = 1 2 − 2 = 1 a b a b center = (h,k) 2a = distance between vertices c = distance from center to focus c2 = a2 + b2 c eccentricity e = ( e > 1 for a hyperbola) a Conjugate axis = 2b Transverse axis = 2a Horizontal Asymptotes Vertical Asymptotes b a y − k = ± (x − h) y − k = ± (x − h) a b Show how d = 2a 2 (x − 2) y2 Ex. Graph − = 1 4 25 Center: (2, 0) Vertices (4, 0) & (0, 0) Foci (2 ± 29,0) 5 Asymptotes: y = ± (x − 2) 2 Ex. Graph 9y2 − x2 − 6x −10 = 0 9y2 − x2 − 6x = 10 9y2 −1(x2 + 6x + 9) = 10 − 9 2 9y2 −1(x + 3) = 1 2 9y2 1(x + 3) 1 − = 1 1 1 2 y2 x + 3 ( ) 1 1 − = 9 1 Center: (-3, 0) ⎛ 1⎞ ⎛ 1⎞ Vertices −3, & −3,− ⎝⎜ 3⎠⎟ ⎝⎜ 3⎠⎟ ⎛ 10 ⎞ Foci −3,± ⎝⎜ 3 ⎠⎟ 1 Asymptotes: y = ± (x + 3) 3 Hyperbolas can be used in so-called ‘trilateration’ or ‘positioning’ problems. The procedure outlined in the next example is the basis of the Long Range Aid to Navigation (LORAN) system, (outdated now due to GPS) Ex.
    [Show full text]
  • Math 105 Workbook Exploring Mathematics
    Math 105 Workbook Exploring Mathematics Douglas R. Anderson, Professor Fall 2018: MWF 11:50-1:00, ISC 101 Acknowledgment First we would like to thank all of our former Math 105 students. Their successes, struggles, and suggestions have shaped how we teach this course in many important ways. We also want to thank our departmental colleagues and several Concordia math- ematics majors for many fruitful discussions and resources on the content of this course and the makeup of this workbook. Some of the topics, examples, and exercises in this workbook are drawn from other works. Most significantly, we thank Samantha Briggs, Ellen Kramer, and Dr. Jessie Lenarz for their work in Exploring Mathematics, as well as other Cobber mathemat- ics professors. We have also used: • Taxicab Geometry: An Adventure in Non-Euclidean Geometry by Eugene F. Krause, • Excursions in Modern Mathematics, Sixth Edition, by Peter Tannenbaum. • Introductory Graph Theory by Gary Chartrand, • The Heart of Mathematics: An invitation to effective thinking by Edward B. Burger and Michael Starbird, • Applied Finite Mathematics by Edmond C. Tomastik. Finally, we want to thank (in advance) you, our current students. Your suggestions for this course and this workbook are always encouraged, either in person or over e-mail. Both the course and workbook are works in progress that will continue to improve each semester with your help. Let's have a great semester this fall exploring mathematics together and fulfilling Concordia's math requirement in 2018. Skol Cobbs! i ii Contents 1 Taxicab Geometry 3 1.1 Taxicab Distance . .3 Homework . .8 1.2 Taxicab Circles .
    [Show full text]
  • Taxicab Geometry
    TAXICAB GEOMETRY MICHAEL A. HALL 11/13/2011 EUCLIDEAN GEOMETRY In geometry the primary objects of study are points, lines, angles, and distances. We can identify each point in the plane by its Cartesian coordinates (x; y). The Euclidean distance between points A = (x1; y1) and B = (x2; y2) is p 2 2 dE(A; B) = (x2 − x1) + (y2 − y1) : (Euclidean distance formula) TAXICAB GEOMETRY In “taxicab” geometry, the points, lines, and angles are the same, but the notion of distance is different from the Euclidean distance. The taxicab distance between points A = (x1; y1) and B = (x2; y2) is dT (A; B) = jx2 − x1j + jy2 − y1j: (Taxicab distance formula) Exercises. (1) On a sheet of graph paper, mark each pair of points P and Q and find the both the Euclidean and taxicab distance between them: (a) P = (0; 0), Q = (1; 1) (b) P = (1; 2), Q = (2; 3) (c) P = (1; 0), Q = (5; 0) (2) (Taxi circles) Let A be the point with coordinates (2; 2). (a) Plot A on a piece of graph paper, and mark all points P such that dT (A; P ) = 1. The set of such points is written fP j dT (A; P ) = 1g. Also mark all points in fP j dT (A; P ) = 2g. (b) Graph the set of points which are a distance 2 from the point B = (1; 1). (3) (Lines) Recall that in taxicab geometry, the shapes we call lines are the same as the usual lines in Euclidean geometry. Graph the line ` that passes through the points (3; 0) and (0; 3).
    [Show full text]
  • Ellipse, Hyperbola and Their Conjunction Arxiv:1805.02111V2
    Ellipse, Hyperbola and Their Conjunction Arkadiusz Kobiera Warsaw University of Technology Abstract This article presents a simple analysis of cones which are used to generate a given conic curve by section by a plane. It was found that if the given curve is an ellipse, then the locus of vertices of the cones is a hyperbola. The hyperbola has foci which coincidence with the ellipse vertices. Similarly, if the given curve is the hyperbola, the locus of vertex of the cones is the ellipse. In the second case, the foci of the ellipse are located in the hyperbola's vertices. These two relationships create a kind of conjunction between the ellipse and the hyperbola which originate from the cones used for generation of these curves. The presented conjunction of the ellipse and hyperbola is a perfect example of mathematical beauty which may be shown by the use of very simple geometry. As in the past the conic curves appear to be arXiv:1805.02111v2 [math.HO] 26 Jan 2019 very interesting and fruitful mathematical beings. 1 Introduction The conical curves are mathematical entities which have been known for thousands years since the first Menaechmus' research around 250 B.C. [2]. Anybody who has attempted undergraduate course of geometry knows that ellipse, hyperbola and parabola are obtained by section of a cone by a plane. Every book dealing with the this subject has a sketch where the cone is sec- tioned by planes at various angles, which produces different kinds of conics. Usually authors start with the cone to produce the conic curve by section.
    [Show full text]