On Asymmetric Distances
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Isometric Actions on Spheres with an Orbifold Quotient
ISOMETRIC ACTIONS ON SPHERES WITH AN ORBIFOLD QUOTIENT CLAUDIO GORODSKI AND ALEXANDER LYTCHAK Abstract. We classify representations of compact connected Lie groups whose induced action on the unit sphere has an orbit space isometric to a Riemannian orbifold. 1. Introduction In this paper we classify all orthogonal representations of compact connected groups G on Euclidean unit spheres Sn for which the quotient Sn/G is a Riemannian orbifold. We are going to call such representations infinitesimally polar, since they can be equivalently defined by the condition that slice representations at all non-zero vectors are polar. The interest in such representations is two-fold. On the one hand, one can hope to isolate an interesting class of representations in this way. This class contains all polar representations, which can be defined by the property that the corresponding quotient space Sn/G is an orbifold of constant curvature 1. Polar representations very often play an important and special role in geometric questions concern- ing representations (cf. [PT88, BCO03]), and the class investigated in this paper consists of closest relatives of polar representations. On the other hand, any such quotient has positive curvature and all geodesics in the quotient are closed. Any of these two properties is extremely interesting and in both classes the number of known manifold examples is very limited (cf. [Zil12, Bes78]). We have hoped to obtain new examples of positively curved manifolds and of manifolds with closed geodesics as universal orbi-covering of such spaces. Should the orbifolds be bad one could still hope to obtain new examples of interesting orbifolds. -
Nonlinear Mapping and Distance Geometry
Nonlinear Mapping and Distance Geometry Alain Franc, Pierre Blanchard , Olivier Coulaud arXiv:1810.08661v2 [cs.CG] 9 May 2019 RESEARCH REPORT N° 9210 October 2018 Project-Teams Pleiade & ISSN 0249-6399 ISRN INRIA/RR--9210--FR+ENG HiePACS Nonlinear Mapping and Distance Geometry Alain Franc ∗†, Pierre Blanchard ∗ ‡, Olivier Coulaud ‡ Project-Teams Pleiade & HiePACS Research Report n° 9210 — version 2 — initial version October 2018 — revised version April 2019 — 14 pages Abstract: Distance Geometry Problem (DGP) and Nonlinear Mapping (NLM) are two well established questions: Distance Geometry Problem is about finding a Euclidean realization of an incomplete set of distances in a Euclidean space, whereas Nonlinear Mapping is a weighted Least Square Scaling (LSS) method. We show how all these methods (LSS, NLM, DGP) can be assembled in a common framework, being each identified as an instance of an optimization problem with a choice of a weight matrix. We study the continuity between the solutions (which are point clouds) when the weight matrix varies, and the compactness of the set of solutions (after centering). We finally study a numerical example, showing that solving the optimization problem is far from being simple and that the numerical solution for a given procedure may be trapped in a local minimum. Key-words: Distance Geometry; Nonlinear Mapping, Discrete Metric Space, Least Square Scaling; optimization ∗ BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France † Pleiade team - INRIA Bordeaux-Sud-Ouest, France ‡ HiePACS team, Inria Bordeaux-Sud-Ouest, -
Distance Geometry and Data Science1
TOP (invited survey, to appear in 2020, Issue 2) Distance Geometry and Data Science1 Leo Liberti1 1 LIX CNRS, Ecole´ Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France Email:[email protected] September 19, 2019 Dedicated to the memory of Mariano Bellasio (1943-2019). Abstract Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its relation with mathematical programming. We discuss applications, solution methods, dimensional reduction techniques and some of their limits. We then present an application of some of these ideas to neural networks, showing that distance geometry techniques can give competitive performance with respect to more traditional graph-to-vector map- pings. Keywords: Euclidean distance, Isometric embedding, Random projection, Mathematical Program- ming, Machine Learning, Artificial Neural Networks. Contents 1 Introduction 2 2 Mathematical Programming 4 2.1 Syntax . .4 2.2 Taxonomy . .4 2.3 Semantics . .5 2.4 Reformulations . .5 arXiv:1909.08544v1 [cs.LG] 18 Sep 2019 3 Distance Geometry 6 3.1 The distance geometry problem . .7 3.2 Number of solutions . .7 3.3 Applications . .8 3.4 Complexity . 10 1This research was partly funded by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement n. 764759 ETN \MINOA". 1 INTRODUCTION 2 4 Representing data by graphs 10 4.1 Processes . -
Six Mathematical Gems from the History of Distance Geometry
Six mathematical gems from the history of Distance Geometry Leo Liberti1, Carlile Lavor2 1 CNRS LIX, Ecole´ Polytechnique, F-91128 Palaiseau, France Email:[email protected] 2 IMECC, University of Campinas, 13081-970, Campinas-SP, Brazil Email:[email protected] February 28, 2015 Abstract This is a partial account of the fascinating history of Distance Geometry. We make no claim to completeness, but we do promise a dazzling display of beautiful, elementary mathematics. We prove Heron’s formula, Cauchy’s theorem on the rigidity of polyhedra, Cayley’s generalization of Heron’s formula to higher dimensions, Menger’s characterization of abstract semi-metric spaces, a result of G¨odel on metric spaces on the sphere, and Schoenberg’s equivalence of distance and positive semidefinite matrices, which is at the basis of Multidimensional Scaling. Keywords: Euler’s conjecture, Cayley-Menger determinants, Multidimensional scaling, Euclidean Distance Matrix 1 Introduction Distance Geometry (DG) is the study of geometry with the basic entity being distance (instead of lines, planes, circles, polyhedra, conics, surfaces and varieties). As did much of Mathematics, it all began with the Greeks: specifically Heron, or Hero, of Alexandria, sometime between 150BC and 250AD, who showed how to compute the area of a triangle given its side lengths [36]. After a hiatus of almost two thousand years, we reach Arthur Cayley’s: the first paper of volume I of his Collected Papers, dated 1841, is about the relationships between the distances of five points in space [7]. The gist of what he showed is that a tetrahedron can only exist in a plane if it is flat (in fact, he discussed the situation in one more dimension). -
Geometrization of Three-Dimensional Orbifolds Via Ricci Flow
GEOMETRIZATION OF THREE-DIMENSIONAL ORBIFOLDS VIA RICCI FLOW BRUCE KLEINER AND JOHN LOTT Abstract. A three-dimensional closed orientable orbifold (with no bad suborbifolds) is known to have a geometric decomposition from work of Perelman [50, 51] in the manifold case, along with earlier work of Boileau-Leeb-Porti [4], Boileau-Maillot-Porti [5], Boileau- Porti [6], Cooper-Hodgson-Kerckhoff [19] and Thurston [59]. We give a new, logically independent, unified proof of the geometrization of orbifolds, using Ricci flow. Along the way we develop some tools for the geometry of orbifolds that may be of independent interest. Contents 1. Introduction 3 1.1. Orbifolds and geometrization 3 1.2. Discussion of the proof 3 1.3. Organization of the paper 4 1.4. Acknowledgements 5 2. Orbifold topology and geometry 5 2.1. Differential topology of orbifolds 5 2.2. Universal cover and fundamental group 10 2.3. Low-dimensional orbifolds 12 2.4. Seifert 3-orbifolds 17 2.5. Riemannian geometry of orbifolds 17 2.6. Critical point theory for distance functions 20 2.7. Smoothing functions 21 3. Noncompact nonnegatively curved orbifolds 22 3.1. Splitting theorem 23 3.2. Cheeger-Gromoll-type theorem 23 3.3. Ruling out tight necks in nonnegatively curved orbifolds 25 3.4. Nonnegatively curved 2-orbifolds 27 Date: May 28, 2014. Research supported by NSF grants DMS-0903076 and DMS-1007508. 1 2 BRUCE KLEINER AND JOHN LOTT 3.5. Noncompact nonnegatively curved 3-orbifolds 27 3.6. 2-dimensional nonnegatively curved orbifolds that are pointed Gromov- Hausdorff close to an interval 28 4. -
NOTES for MATH 5510, FALL 2017, V 0 1. Metric Spaces 1 1.1
NOTES FOR MATH 5510, FALL 2017, V 0 DOMINGO TOLEDO CONTENTS 1. Metric Spaces 1 1.1. Examples of metric spaces 1 1.2. Constructions of Metric Spaces 15 1.3. Limits 16 1.4. Maps Between Metric Spaces 18 1.5. Equivalences Between Metric Spaces 20 2. Groups of Isometries 24 2.1. Isometries of Euclidean Space 25 2.2. The Euclidean and Orthogonal Groups 32 2.3. The Euclidean Group in 2 Dimensions 34 2.4. Isometries of the sphere 39 3. Topological Spaces 40 3.1. Topology of Metric Spaces 40 3.2. Topologies and Continuity 45 3.3. Limits 48 3.4. Basis for a Topology 51 3.5. Infinite Products 55 3.6. The Cantor Set 58 4. Subspaces and Quotient Spaces 60 4.1. The Subspace Topology 61 4.2. Compact Spaces 62 4.3. The Quotient Topology 65 Date: July 23, 2017. 1 2 TOLEDO 4.4. Surfaces as Identification Spaces 70 5. Connected Spaces 74 5.1. Connected Components 79 5.2. Locally Path Connected Spaces 81 5.3. Existence Theorems 83 6. Smooth Surfaces 87 6.1. Smooth maps involving surfaces 95 6.2. Smooth surfaces in R3 as metric spaces 97 6.3. Geodesics 100 6.4. A First Glance at Gaussian Curvature 112 6.5. A Quick Glance at Intrinsic Geometry 114 References 115 1. METRIC SPACES The following definition introduces the most central concept in the course. Think of the plane with its usual distance function as you read the definition. Definition 1.1. A metric space (X; d) is a non-empty set X and a function d : X × X ! R satisfying (1) For all x; y 2 X, d(x; y) ≥ 0 and d(x; y) = 0 if and only if x = y. -
Semidefinite Programming Approaches to Distance Geometry Problems
SEMIDEFINITE PROGRAMMING APPROACHES TO DISTANCE GEOMETRY PROBLEMS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Pratik Biswas June 2007 c Copyright by Pratik Biswas 2007 All Rights Reserved ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Yinyu Ye) Principal Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Stephen Boyd) I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Leonidas Guibas Computer Science) Approved for the University Committee on Graduate Studies. iii iv Abstract Given a subset of all the pair-wise distances between a set of points in a fixed dimension, and possibly the positions of few of the points (called anchors), can we estimate the (relative) positions of all the unknown points (in the given dimension) accurately? This problem is known as the Euclidean Distance Geometry or Graph Realization problem, and generally involves solving a hard non-convex optimization problem. In this thesis, we introduce a polynomial-time solvable Semidefinite Programming (SDP) relaxation to the original for- mulation. The SDP yields higher dimensional solutions when the given distances are noisy. -
Digital Distance Geometry: a Survey
Sddhan& Vol. 18, Part 2, June 1993, pp. 159-187. © Printed in India. Digital distance geometry: A survey P P DAS t and B N CHATTERJI* Department of Computer Science and Engineering, and * Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302, India Abstract. Digital distance geometry (DDG) is the study of distances in the geometry of digitized spaces. This was introduced approximately 25 years ago, when the study of digital geometry itself began, for providing a theoretical background to digital picture processing algorithms. In this survey we focus our attention on the DDG of arbitrary dimensions and other related issues and compile an up-to-date list of references on the topic. Keywords. Digital space; neighbourhood; path; distance function; metric; digital distance geometry. 1. Introduction Digital geometry (DG) is the study of the geometry of discrete point (or lattice point, grid point) spaces where every point has integral coordinates. In its simplest form we talk about the DG of the two-dimensional (2-D) space which is an infinite array of equispaced points called pixels. Creation of this geometry was initiated in the sixties when it was realized that the digital analysis of visual patterns needed a proper understanding of the discrete space. Since a continuous space cannot be represented in the computer, an approximated digital model found extensive use. However, the digital model failed to capture many properties of Euclidean geometry (EG) and thus the formulation of a new geometrical paradigm was necessary. A similarity can be drawn here between the arithmetic of real numbers and that of integers to highlight the above point. -
Distance Geometry and Data Science
TOP (invited survey, to appear in 2020, Issue 2) manuscript No. (will be inserted by the editor) Distance Geometry and Data Science Leo Liberti Dedicated to the memory of Mariano Bellasio (1943-2019). Received: date / Accepted: date Abstract Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its relation with mathematical pro- gramming. We discuss applications, solution methods, dimensional reduction techniques and some of their limits. We then present an application of some of these ideas to neural networks, showing that distance geometry techniques can give competitive performance with respect to more traditional graph-to-vector mappings. Keywords Euclidean distance · Isometric embedding · Random projection · Mathematical Programming · Machine Learning · Artificial Neural Networks Contents 1 Introduction . .2 2 Mathematical Programming . .4 2.1 Syntax . .4 2.2 Taxonomy . .4 2.3 Semantics . .5 2.4 Reformulations . .5 3 Distance Geometry . .7 3.1 The distance geometry problem . .8 3.2 Number of solutions . .8 This research was partly funded by the European Union's Horizon 2020 research and in- novation programme under the Marie Sklodowska-Curie grant agreement n. 764759 ETN \MINOA". L. Liberti LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, France E-mail: [email protected] 2 Leo Liberti 3.3 Applications . 10 3.4 Complexity . 11 4 Representing data by graphs . 12 4.1 Processes . -
Distance Geometry Theory and Applications
DIMACS Workshop on Distance Geometry Theory and Applications Proceedings edited by Leo Liberti CNRS LIX, Ecole Polytechnique, France [email protected] 26-29 July 2016 at DIMACS, Rutgers University, NJ 2 Scientific Committee Amir Ali Ahmadi, Princeton University, USA Farid Alizadeh, Rutgers University, USA (co-chair) Marcia Fampa, Universidade Federal do Rio de Janeiro, Brazil Bill Jackson, Queen Mary and Westfield, London, UK Nathan Krislock, Northern Illinois University, USA Monique Laurent, CWI, The Netherlands Leo Liberti, CNRS & Ecole Polytechnique, France (co-chair) Thérèse Malliavin, CNRS & Institut Pasteur, France Michel Petitjean, University of Paris 7, France Nicolas Rojas, Yale University, USA Amit Singer, Princeton University, USA Ileana Streinu, Smith College, USA Henry Wolkowicz, University of Waterloo, Canada Yinyu Ye, Stanford University, USA Organization Farid Alizadeh, Rutgers University, USA Tami Carpenter, DIMACS, Rutgers University, USA Linda Casals, DIMACS, Rutgers University, USA Nicole Clark, DIMACS, Rutgers University, USA Leo Liberti, CNRS & Ecole Polytechnique, France Rebecca Wright, DIMACS, Rutgers University, USA Materials from the workshop are available on the workshop website (dimacs.rutgers.edu/ Workshops/Distance). We are videotaping the four tutorial presentations, and the videos will be posted on the website when they are available. We gratefully acknowledge support from the National Science Foundation through awards DMS-1623007 and CCF-1144502. Timetable Wed 27 July Tue 26 July Thu 28 July -
Euclidean Distance Matrix Trick
Euclidean Distance Matrix Trick Samuel Albanie Visual Geometry Group University of Oxford [email protected] June, 2019 Abstract This is a short note discussing the cost of computing Euclidean Distance Matrices. 1 Computing Euclidean Distance Matrices d Suppose we have a collection of vectors fxi 2 R : i 2 f1; : : : ; ngg and we want to compute the n × n matrix, D, of all pairwise distances between them. We first consider the case where each element in the matrix represents the squared Euclidean distance (see Sec.3 for the non-square case) 1, a calculation that frequently arises in machine learning and computer vision. The distance matrix is defined as follows: 2 Dij = jjxi − xjjj2 (1) or equivalently, T 2 T 2 Dij = (xi − xj) (xi − xj) = jjxijj2 − 2xi xj + jjxjjj2 (2) There is a popular “trick” for computing Euclidean Distance Matrices (although it’s perhaps more of an observation than a trick). The observation is that it is generally preferable to compute the second expression, rather than the first2. Writing X 2 Rd×n for the matrix formed by stacking the collection of vectors as columns, we can compute Eqn.1 by creating two views of the matrix with shapes of d × n × 1 and d × 1 × n respectively. In libraries such as numpy,PyTorch,Tensorflow etc. these operations are essentially free because they simply modify the meta-data associated with the matrix, rather than the underlying elements in memory. We then compute the difference between these reshaped matrices, square all resulting elements and sum along the zeroth dimension to produce D, as shown in Algorithm1. -
Long Geodesics on Convex Surfaces
Long geodesics on convex surfaces Arseniy Akopyan Anton Petrunin Abstract We review the theory of intrinsic geometry of convex surfaces in the Euclidean space and prove the following theorem: if the boundary surface of a convex body K contains arbitrarily long closed simple geodesics, then K is an isosceles tetrahedron. 1 Introduction The goal of this note is to introduce the reader to the theory of intrinsic geometry of convex surfaces. We illustrate the power of the tools by proving a theorem on convex surfaces containing an arbitrarily long closed simple geodesic. Let us remind that a curve in a surface is called geodesic if every sufficiently short arc of the curve is length minimizing; if in addition it has no self intersections, we call it simple geodesic. A tetrahedron with equal opposite edges will be called isosceles. arXiv:1702.05172v2 [math.DG] 9 Apr 2018 1.1. Theorem. Assume that the boundary surface Σ of a convex body K in the Eu- clidean space E3 admits an arbitrarily long simple closed geodesic. Then K is an isosceles tetrahedron. This gives an affirmative answer to the question asked by Vladimir Protasov; he proved the statement in assumption that Σ is the boundary surface of a convex polyhedron, see [11, 12]. The axiomatic method of Alexandrov geometry allows to work with metrics of convex surfaces directly, without approximating it first by smooth or polyhedral metric. Such approximations destroy the closed geodesics on the surface; therefore it is hard (if at all 1 possible) to apply approximations in the proof of our theorem.