Javier Oscoz.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Javier Oscoz.Pdf Identification Guide of Freshwater Macroinvertebrates of Spain Javier Oscoz · David Galicia Rafael Miranda Editors Identification Guide of Freshwater Macroinvertebrates of Spain Editors Javier Oscoz David Galicia Department of Zoology and Ecology Department of Zoology and Ecology School of Sciences School of Sciences University of Navarra University of Navarra Irunlarrea 1 Irunlarrea 1 Pamplona 31008 Pamplona 31008 Spain Spain [email protected] [email protected] Rafael Miranda Department of Zoology and Ecology School of Sciences University of Navarra Irunlarrea 1 Pamplona 31008 Spain [email protected] ISBN 978-94-007-1553-0 e-ISBN 978-94-007-1554-7 DOI 10.1007/978-94-007-1554-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2011931287 © Springer Science+Business Media B.V. 2011 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover design: SPi Publisher Services Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Freshwater ecosystems are of key importance, since water is a natural resource that exerts vast ecological influences over all the other ecosystems. Furthermore, fluvial systems are considered basic and fundamental indicators of the conservation status of the environment in general because the state of the water is the (integral) consequence of all that occurs within a given river basin. To put it in a different way, the distur- bances and transformations that the environment suffers end up affecting the state of the freshwater ecosystems, as these are the final sewers of those disturbances. Therefore, the ecological status of the water ultimately portrays the status and quality of the entire adjacent ecosystem. The capital importance of freshwater ecosystems leads to the notion of water as heritage. As such, it needs to be protected and defended, promoting the sustainable use of water and improving water quality as much as possible. As a result of the European Commission’s concern on the status of continental waters, and as a clear reflection of the notion of water as heritage to be conserved, in the year 2000 the Water Framework Directive (2000/60/CE) was enacted. Its goal is to establish a framework to protect water and the different aquatic ecosystems by requir- ing the Member States to achieve good ecological status in all their waters by 2015. Like all ecosystems, freshwater ecosystems undergo physical, chemical and en- ergy changes, both of natural and anthropogenic origin. These disturbances affect the organisms living in them and those who utilize their resources. Therefore, evaluating these changes has become a very important task to better understand aquatic systems. The study and analysis of the ecological status of these ecosystems in relation to their conservation status and water quality is thus a fundamental tool for a more efficient and rational management of their resources; that is, a management that does not threaten the ecosystem. The present key for the identification of Spanish freshwater macroinvertebrates aims to facilitate the job of those who go to great lengths to identify macroinverte- brates to then determine biotic indices. All of us who have contributed to this work hope to have achieved this goal. Acknowledgments This monograph is the result of the project entitled “Study and Description of Macroinvertebrate Populations of the Ebro Basin and Comparison among Spanish Basins in the Water Framework Directive”, financed by the Ebro Hydrographic Confederation of the Ministry of Environment, Rural and Marine Affairs of the Spanish Government and supervised by Dr. Concha Durán, manager of v vi Preface the Water Quality Service of this institution. María Díez-León translated into English our confusingly written Spanish paragraphs; without her help and friendship this book could not have been possible. Our colleagues in the Department of Zoology and Ecology of the University of Navarra encouraged us to take this initiative and sup- ported us through its completion. Finally, we are especially grateful to Jose Antonio Salinas (Franky), eminent researcher, precursor, teacher and friend, who introduced us into the amazing world of macroinvertebrates. Contents 1 Why, Where and How: An Identification Guide of Macroinvertebrates ............................................................................... 1 Introduction .................................................................................................. 1 Methods and Materials ................................................................................. 2 Description of the Study Area .................................................................. 2 Study Area and Macroinvertebrate Taxa Considered .............................. 2 Reference Collection ................................................................................ 3 Image Capture and Processing ................................................................. 3 References .................................................................................................... 4 2 Identification Keys ..................................................................................... 7 Key 1 Major Groups .................................................................................... 9 Key 2 Hirudinea ........................................................................................... 11 Key 3 Turbellaria ......................................................................................... 11 Key 4 Mollusca ............................................................................................ 14 Key 5 Crustacea ........................................................................................... 17 Key 6 Hexapoda (General) ........................................................................... 20 Key 7 Coleoptera ......................................................................................... 24 Key to Adult Specimens .......................................................................... 24 Key to Larvae ........................................................................................... 24 Key 8 Plecoptera .......................................................................................... 27 Key 9 Ephemeroptera ................................................................................... 30 Key 10 Neuroptera (Planipennia) ................................................................ 30 Key 11 Odonata ........................................................................................... 33 Key 12 Hemiptera ........................................................................................ 35 Key 13 Diptera ............................................................................................. 39 Key 14 Trichoptera....................................................................................... 44 References .................................................................................................... 45 3 Taxa Description and Biology ................................................................... 47 Spongillidae ................................................................................................. 47 Description ............................................................................................... 47 Biology ..................................................................................................... 47 vii viii Contents Hydridae ....................................................................................................... 49 Description ............................................................................................... 49 Biology ..................................................................................................... 49 Planariidae .................................................................................................... 49 Description ............................................................................................... 49 Biology ..................................................................................................... 49 Dugesiidae .................................................................................................... 50 Description ............................................................................................... 50 Biology ..................................................................................................... 50 Dendrocoelidae ............................................................................................ 50 Description ............................................................................................... 50 Biology ..................................................................................................... 50 Nematoda ..................................................................................................... 51 Description ............................................................................................... 51 Biology ..................................................................................................... 51 Nematomorpha
Recommended publications
  • Environmental Factors Influencing Odonata Communities of Three Mediterranean Rivers: Kebir-East, Seybouse, and Rhumel Wadis, Northeastern Algeria
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by I-Revues Revue d’Ecologie (Terre et Vie), Vol. 72 (3), 2017 : 314-329 ENVIRONMENTAL FACTORS INFLUENCING ODONATA COMMUNITIES OF THREE MEDITERRANEAN RIVERS: KEBIR-EAST, SEYBOUSE, AND RHUMEL WADIS, NORTHEASTERN ALGERIA 1,2 1,2,3 Amina YALLES SATHA & Boudjéma SAMRAOUI 1 Laboratoire de Conservation des Zones Humides, University of Guelma, Guelma, Algeria. E-mails: [email protected] & [email protected] 2 University of 08 mai 1945, Guelma, Algeria 3 Biology Department, University of Annaba, Annaba, Algeria RÉSUMÉ.— Facteurs environnementaux influençant les communautés d’Odonates de trois rivières méditerranéennes : les oueds Kebir-Est, Seybouse et Rumel, nord-est algérien.— Les Odonates sont une composante importante des peuplements des milieux lotiques et leur abondance et diversité renseignent sur l’intégrité écologique de ces hydrosystèmes. L’inventaire odonatologique de trois oueds majeurs algériens : Kebir- Est, Seybouse et Rhumel, a permis l’identification de 40 espèces. Nos résultats révèlent la présence de Calopteryx exul, endémique maghrébin, dans l’oued Seybouse et semblent confirmer l’extinction de la population type dans l’oued Rhumel où l’espèce avait été découverte au XIXe siècle. Nos résultats indiquent également l’expansion de plusieurs espèces: Coenagrion caerulescens, Orthetrum nitidinerve, Trithemis kirbyi et Urothemis edwardsii dont la population relictuelle est en danger critique d’extinction. La mesure de diverses variables physicochimiques (altitude, température, conductivité, etc.) nous a permis d’explorer une possible co-structure entre les jeux de données faunistiques et de variables environnementales. L’analyse des données indique que la richesse spécifique est, selon l’oued, variablement correlée à l’hydropériode, à la conductivité et à la température de l’eau, suggérant son utilité dans l’évaluation de l’intégrité écologique des cours d’eau méditerranéens.
    [Show full text]
  • 1 June 2021 Researchgate: Researchgate.Net/Profile
    DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication.
    [Show full text]
  • Tesis Doctoral Esther Soler Mo
    Facultat de Ciències Biològiques Institut Cavanilles de Biodiversitat i Biologia Evolutiva Programa de Doctorado de Biodiversidad y Biología Evolutiva ESTRUCTURA DE COMUNIDADES DE ODONATA EN SISTEMAS MEDITERRÁNEOS Tesis Doctoral Esther Soler Monzó Directores: Marcos Méndez Iglesias Joaquín Baixeras Almela Valencia, 2015 Marcos Méndez Iglesias, Profesor Titular de Universidad del Departamento de Biología y Geología de la Universidad Rey Juan Carlos, y Joaquín Baixeras Almela, Profesor Titular de Universidad del Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia CERTIFICAN: que el trabajo de investigación desarrollado en la memoria de tesis doctoral: “Estructura de comunidades de Odonata en sistemas mediterráneos”, es apto para ser presentado por Esther Soler Monzó ante el Tribunal que en su día se consigne, para aspirar al Grado de Doctor por la Universidad de Valencia. VºBº Director Tesis VºBº Director Tesis Dr. Marcos Méndez Iglesias Dr. Joaquín Baixeras Almela a Espe. Let the rain come down and wash away my tears Let it fill my soul and drown my tears Let it shatter the walls for a new sun A new day has come A new day has come. CÉLINE DION ποταμοῖς τοῖς αὐτοῖς ἐμβαίνομεν τε καὶ οὐκ ἐμβαίνομεν, εἶμεν τε καὶ οὐκ εἶμεν τε. En los mismos ríos entramos y no entramos, [pues] somos y no somos [los mismos]. HERÁCLITO, en Diels-Kranz, Die Fragmente Vorsokratiker, 22 B12. Agradecimientos Me ha costado mucho tiempo y esfuerzo llegar hasta aquí pero sin la ayuda de mucha gente no lo hubiese conseguido. Así que dedicarles un trocito de papel es lo mínimo que puedo hacer.
    [Show full text]
  • Dipterists Forum
    BULLETIN OF THE Dipterists Forum Bulletin No. 76 Autumn 2013 Affiliated to the British Entomological and Natural History Society Bulletin No. 76 Autumn 2013 ISSN 1358-5029 Editorial panel Bulletin Editor Darwyn Sumner Assistant Editor Judy Webb Dipterists Forum Officers Chairman Martin Drake Vice Chairman Stuart Ball Secretary John Kramer Meetings Treasurer Howard Bentley Please use the Booking Form included in this Bulletin or downloaded from our Membership Sec. John Showers website Field Meetings Sec. Roger Morris Field Meetings Indoor Meetings Sec. Duncan Sivell Roger Morris 7 Vine Street, Stamford, Lincolnshire PE9 1QE Publicity Officer Erica McAlister [email protected] Conservation Officer Rob Wolton Workshops & Indoor Meetings Organiser Duncan Sivell Ordinary Members Natural History Museum, Cromwell Road, London, SW7 5BD [email protected] Chris Spilling, Malcolm Smart, Mick Parker Nathan Medd, John Ismay, vacancy Bulletin contributions Unelected Members Please refer to guide notes in this Bulletin for details of how to contribute and send your material to both of the following: Dipterists Digest Editor Peter Chandler Dipterists Bulletin Editor Darwyn Sumner Secretary 122, Link Road, Anstey, Charnwood, Leicestershire LE7 7BX. John Kramer Tel. 0116 212 5075 31 Ash Tree Road, Oadby, Leicester, Leicestershire, LE2 5TE. [email protected] [email protected] Assistant Editor Treasurer Judy Webb Howard Bentley 2 Dorchester Court, Blenheim Road, Kidlington, Oxon. OX5 2JT. 37, Biddenden Close, Bearsted, Maidstone, Kent. ME15 8JP Tel. 01865 377487 Tel. 01622 739452 [email protected] [email protected] Conservation Dipterists Digest contributions Robert Wolton Locks Park Farm, Hatherleigh, Oakhampton, Devon EX20 3LZ Dipterists Digest Editor Tel.
    [Show full text]
  • Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
    Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids.
    [Show full text]
  • Dragonf Lies and Damself Lies of Europe
    Dragonf lies and Damself lies of Europe A scientific approach to the identification of European Odonata without capture A simple yet detailed guide suitable both for beginners and more expert readers who wish to improve their knowledge of the order Odonata. This book contains images and photographs of all the European species having a stable population, with chapters about their anatomy, biology, behaviour, distribution range and period of flight, plus basic information about the vagrants with only a few sightings reported. On the whole, 143 reported species and over lies of Europe lies and Damself Dragonf 600 photographs are included. Published by WBA Project Srl CARLO GALLIANI, ROBERTO SCHERINI, ALIDA PIGLIA © 2017 Verona - Italy WBA Books ISSN 1973-7815 ISBN 97888903323-6-4 Supporting Institutions CONTENTS Preface 5 © WBA Project - Verona (Italy) Odonates: an introduction to the order 6 WBA HANDBOOKS 7 Dragonflies and Damselflies of Europe Systematics 7 ISSN 1973-7815 Anatomy of Odonates 9 ISBN 97888903323-6-4 Biology 14 Editorial Board: Ludivina Barrientos-Lozano, Ciudad Victoria (Mexico), Achille Casale, Sassari Mating and oviposition 23 (Italy), Mauro Daccordi, Verona (Italy), Pier Mauro Giachino, Torino (Italy), Laura Guidolin, Oviposition 34 Padova (Italy), Roy Kleukers, Leiden (Holland), Bruno Massa, Palermo (Italy), Giovanni Onore, Quito (Ecuador), Giuseppe Bartolomeo Osella, l’Aquila (Italy), Stewart B. Peck, Ottawa (Cana- Predators and preys 41 da), Fidel Alejandro Roig, Mendoza (Argentina), Jose Maria Salgado Costas, Leon (Spain), Fabio Pathogens and parasites 45 Stoch, Roma (Italy), Mauro Tretiach, Trieste (Italy), Dante Vailati, Brescia (Italy). Dichromism, androchromy and secondary homochromy 47 Editor-in-chief: Pier Mauro Giachino Particular situations in the daily life of a dragonfly 48 Managing Editor: Gianfranco Caoduro Warming up the wings 50 Translation: Alida Piglia Text revision: Michael L.
    [Show full text]
  • A Review of the Status of Larger Brachycera Flies of Great Britain
    Natural England Commissioned Report NECR192 A review of the status of Larger Brachycera flies of Great Britain Acroceridae, Asilidae, Athericidae Bombyliidae, Rhagionidae, Scenopinidae, Stratiomyidae, Tabanidae, Therevidae, Xylomyidae. Species Status No.29 First published 30th August 2017 www.gov.uk/natural -england Foreword Natural England commission a range of reports from external contractors to provide evidence and advice to assist us in delivering our duties. The views in this report are those of the authors and do not necessarily represent those of Natural England. Background Making good decisions to conserve species This report should be cited as: should primarily be based upon an objective process of determining the degree of threat to DRAKE, C.M. 2017. A review of the status of the survival of a species. The recognised Larger Brachycera flies of Great Britain - international approach to undertaking this is by Species Status No.29. Natural England assigning the species to one of the IUCN threat Commissioned Reports, Number192. categories. This report was commissioned to update the threat status of Larger Brachycera flies last undertaken in 1991, using a more modern IUCN methodology for assessing threat. Reviews for other invertebrate groups will follow. Natural England Project Manager - David Heaver, Senior Invertebrate Specialist [email protected] Contractor - C.M Drake Keywords - Larger Brachycera flies, invertebrates, red list, IUCN, status reviews, IUCN threat categories, GB rarity status Further information This report can be downloaded from the Natural England website: www.gov.uk/government/organisations/natural-england. For information on Natural England publications contact the Natural England Enquiry Service on 0300 060 3900 or e-mail [email protected].
    [Show full text]
  • Overview of the Anyphaenids (Araneae, Anyphaeninae, Anyphaenidae) Spider Fauna from the Chocó Forest of Ecuador, with the Description of Thirteen New Species
    European Journal of Taxonomy 255: 1–50 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2016.255 www.europeanjournaloftaxonomy.eu 2016 · Dupérré N. & Tapia E. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:0E8DA4DC-FF4C-436E-94FB-CB89F6416C6E Overview of the Anyphaenids (Araneae, Anyphaeninae, Anyphaenidae) spider fauna from the Chocó forest of Ecuador, with the description of thirteen new species Nadine DUPÉRRÉ 1,* & Elicio TAPIA 2 1 Research Associate, Fundación OTONGA, Calle Rither y Bolivia, Quito, Ecuador, and Research Associate, American Museum of Natural History, New York, NY, U.S.A. 2 Researcher, Centro Jambatu de Investigación y Conservación de Anfibios, Geovanny Farina 566, San Rafael, Ecuador. * Corresponding author: [email protected] 2 Email: [email protected] 1 urn:lsid:zoobank.org:author:F15E1FF2-2DF5-479A-AD10-8076CE96E911 2 urn:lsid:zoobank.org:author:E842405B-5E5B-43AB-8BCD-586657AD5CFC Abstract. The spider diversity of the family Anyphaenidae in premontane, low evergreen montane and cloud forest from the Chocó region of Ecuador is examined. A total of 287 adult specimens were collected and 19 morphospecies were identified based on male specimens. Thirteen new species are described and one new genus is proposed. Five new species are described in the genus Katissa Brescovit, 1997: Katissa kurusiki sp. nov., K. puyu sp. nov., K. tamya sp. nov., K. yaya sp. nov. and K. guyasamini sp. nov. The new genus Shuyushka gen. nov. is proposed and includes three species: Shuyushka achachay gen. et sp. nov., S. moscai gen. et sp. nov. and S.
    [Show full text]
  • Survey Guidance
    Dragonfly Survey Guidance The following document provides advice for recorders wanting to carry out more in depth dragonfly surveys, for example, to assist in Priority Site Assessment, or for site monitoring and conservation purposes. This level of surveying requires continued recording into the medium-long term, an appropriate level of commitment is needed. Weather conditions Dragonfly activity is highly dependent on environmental conditions; therefore, surveys should be carried out during sunny, calm and dry weather conditions. Recorders looking to carry out yearly comparisons should consider recording weather conditions as this may account for some variations in records. Timing The main Dragonfly flight period is between May and September. Surveying species diversity: Different species have different flight periods. Thus, at least 3 site visits should be made, spread out through the Dragonfly flight season, in order to encounter as many different Dragonfly species as possible. Surveying an important species: If the survey project has a target species then at least 3 site visits should be carried out within its flight period in order to ascertain its maximum abundance. Standardisation Before launching into recording carry out a preliminary site visit to plan how you are going to carry out the survey. It is important that the survey route and method are identical during each visit as variations will influence the results. It is therefore recommended that recorders map their survey site and route, and take notes to guide themselves, and others, during subsequent visits. Equipment Binoculars, a camera or net may be needed to identify the more difficult species. Remember to note what equipment to use.
    [Show full text]
  • Agriotypus Armatus Curtis, 1832, a Parasitoid of Silo Pallipes Fabricius, 1781: the first Record for the Balkan Peninsula K
    Knowledge and Management of Aquatic Ecosystems (2014) 414, 05 http://www.kmae-journal.org c ONEMA, 2014 DOI: 10.1051/kmae/2014016 Agriotypus armatus Curtis, 1832, a parasitoid of Silo pallipes Fabricius, 1781: the first record for the Balkan Peninsula K. Bjelanovic´ (1),I.Živic´ (1),,A.Petrovic´ (1), J. Djordjevic´ (2),Z.Markovic´ (3), V. Ž ik ic´ (4) Received January 12, 2014 Revised March 25, 2014 Accepted March 27, 2014 ABSTRACT Key-words: Among the diverse order of Hymenoptera, aquatic species are of special Agriotypus, interest. During macrozoobenthos sampling in the rivers of Serbia in 2003 parasitoid, and during the period 2011−2012, pupae of Silo pallipes Fabricius, 1781 Serbia, were recorded which were parasitized by an ichneumonid wasp Agrioty- distribution, pus armatus Curtis, 1832, this being the first record of it for the Balkan ecological Peninsula. A total of 217 A. armatus specimens were collected at 29 local- parameters ities situated along 16 watercourses of Serbia. All four parasitoid stages (egg, larva, pupa and resting adult) were recorded. The identity of the par- asitoid was confirmed using standard molecular methods. This study also focuses on the ecology of the parasitoid and its host. The widespread dis- tribution of A. armatus in Europe suggests the presence of this species in other Balkan countries, but this has not yet been confirmed due to a lack of surveys and/or the constantly increasing pollution of freshwaters. RÉSUMÉ Agriotypus armatus Curtis 1832, un parasitoïde de Silo pallipes Fabricius, 1781 : premier enregistrement dans la péninsule des Balkans Mots-clés : Parmi l’ordre diversifié des hyménoptères, les espèces aquatiques sont d’un inté- Agriotypus, rêt particulier.
    [Show full text]
  • Bromeliads As Biodiversity Amplifiers and Habitat Segregation of Spider Communities in a Neotropical Rainforest
    2010. The Journal of Arachnology 38:270–279 Bromeliads as biodiversity amplifiers and habitat segregation of spider communities in a Neotropical rainforest Thiago Gonc¸alves-Souza1, Antonio D. Brescovit2, Denise de C. Rossa-Feres1,andGustavo Q. Romero1,3: 1Departamento de Zoologia e Botaˆnica, IBILCE, Universidade Estadual Paulista, UNESP, Rua Cristo´va˜o Colombo 2265, CEP 15054- 000, Sa˜o Jose´ do Rio Preto, SP, Brazil; 2Instituto Butanta˜, Laborato´rio de Artro´podes Pec¸onhentos, Avenida Vital Brazil 1500, CEP 05503-900, Sa˜o Paulo, SP, Brazil Abstract. Although bromeliads can be important in the organization of invertebrate communities in Neotropical forests, few studies support this assumption. Bromeliads possess a three-dimensional architecture and rosette grouped leaves that provide associated animals with a good place for foraging, reproduction and egg laying, as well as shelter against desiccation and natural enemies. We collected spiders from an area of the Atlantic Rainforest, southeastern Brazil, through manual inspection in bromeliads, beating trays in herbaceous+shrubby vegetation and pitfall traps in the soil, to test if: 1) species subsets that make up the Neotropical forest spider community are compartmentalized into different habitat types (i.e., bromeliads, vegetation and ground), and 2) bromeliads are important elements that structure spider communities because they generate different patterns of abundance distributions and species composition, and thus amplify spider beta diversity. Subsets of spider species were compartmentalized into three habitat types. The presence of bromeliads represented 41% of the increase in total spider richness, and contributed most to explaining the high beta diversity values among habitats. Patterns of abundance distribution of the spider community differed among habitats.
    [Show full text]
  • Calyptratae: Diptera)
    BUILDING THE TREE OF LIFE: RECONSTRUCTING THE EVOLUTION OF A RECENT AND MEGADIVERSE BRANCH (CALYPTRATAE: DIPTERA) SUJATHA NARAYANAN KUTTY (B.Tech) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2008 The great tragedy of Science - the slaying of a beautiful hypothesis by an ugly fact. - Thomas H. Huxley ii ACKNOWLEDGEMENTS We don't accomplish anything in this world alone... and whatever happens is the result of the whole tapestry of one's life and all the weavings of individual threads from one to another that creates something - Sandra Day O'Connor. The completion of this project would have been impossible without help from so many different quarters and the few lines of gratitude and acknowledgements written out in this section would do no justice to the actual amount of support and encouragement that I have received and that has contributed to making this study a successful endeavor. I am indebted to Prof. Meier for motivating me to embark on my PhD (at a very confusing point for me) and giving me a chance to explore a field that was quite novel to me. I express my sincere gratitude to him for all the guidance, timely advice, pep talks, and support through all the stages of this project and for always being patient while dealing with my ignorance. He has also been very understanding during all my non- academic distractions in the last two years. Thanks Prof.- your motivation and inspiration in the five years of my graduate study has given me the confidence to push the boundaries of my own capabilities.
    [Show full text]