Mouse Frem1 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Frem1 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Frem1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Frem1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Frem1 gene (NCBI Reference Sequence: NM_001198811 ; Ensembl: ENSMUSG00000059049 ) is located on Mouse chromosome 4. 37 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 37 (Transcript: ENSMUST00000107230). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Frem1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-91B7 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous mutation of this gene results in subepidermal blistering, cryptophthalmos, syndactyly, and renal agenesis. Exon 4 starts from about 5.34% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 2260 bp, and the size of intron 4 for 3'-loxP site insertion: 1755 bp. The size of effective cKO region: ~802 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 5 37 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Frem1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7302bp) | A(28.77% 2101) | C(21.02% 1535) | T(28.61% 2089) | G(21.6% 1577) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr4 - 83014366 83017365 3000 browser details YourSeq 96 200 662 3000 87.5% chr13 + 98962845 98963707 863 browser details YourSeq 91 205 505 3000 89.6% chrX - 84423691 84424020 330 browser details YourSeq 90 332 664 3000 93.3% chr4 + 142406488 142406832 345 browser details YourSeq 86 205 711 3000 87.8% chr1 + 164526443 164527171 729 browser details YourSeq 80 477 645 3000 84.5% chr10 - 42975779 42975955 177 browser details YourSeq 78 205 562 3000 69.8% chr7 + 127161103 127161440 338 browser details YourSeq 75 371 645 3000 72.8% chr18 - 11108830 11109077 248 browser details YourSeq 74 495 679 3000 72.1% chr4 - 104131013 104131200 188 browser details YourSeq 74 490 644 3000 80.0% chr6 + 88723719 88723916 198 browser details YourSeq 73 205 515 3000 92.9% chr7 - 65827314 65827635 322 browser details YourSeq 62 333 542 3000 75.0% chr4 + 146256228 146256356 129 browser details YourSeq 62 333 542 3000 75.0% chr4 + 145767343 145767471 129 browser details YourSeq 59 525 662 3000 76.8% chr14 - 73734408 73734545 138 browser details YourSeq 58 379 645 3000 81.1% chr16 - 92892842 92893104 263 browser details YourSeq 53 531 642 3000 74.8% chrX - 169463200 169463312 113 browser details YourSeq 52 461 568 3000 84.3% chr13 - 96888775 96888882 108 browser details YourSeq 50 459 545 3000 87.0% chr6 - 82663620 82663707 88 browser details YourSeq 47 699 779 3000 79.1% chr1 - 74831181 74831261 81 browser details YourSeq 47 371 542 3000 71.0% chr6 + 58592781 58592872 92 Note: The 3000 bp section upstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr4 - 83010564 83013563 3000 browser details YourSeq 287 1861 2363 3000 83.0% chr1 + 153778068 153778527 460 browser details YourSeq 249 1851 2327 3000 79.7% chr10 - 18822545 18822987 443 browser details YourSeq 232 1910 2374 3000 87.5% chr16 - 15403206 15403718 513 browser details YourSeq 232 1974 2367 3000 85.1% chr12 + 15069597 15070007 411 browser details YourSeq 220 1974 2357 3000 85.0% chr13 - 30951371 30951836 466 browser details YourSeq 214 1968 2373 3000 85.0% chr15 - 56054667 56055056 390 browser details YourSeq 214 1966 2362 3000 86.8% chr9 + 75467055 75467444 390 browser details YourSeq 184 2045 2363 3000 86.0% chr19 - 51815739 51816053 315 browser details YourSeq 180 1966 2374 3000 88.6% chr7 - 54678869 54679285 417 browser details YourSeq 175 2036 2373 3000 87.3% chr8 + 80665098 80665431 334 browser details YourSeq 158 2036 2374 3000 88.2% chr4 - 22717967 22718445 479 browser details YourSeq 149 819 1335 3000 82.3% chr14 + 76451542 76451934 393 browser details YourSeq 147 817 991 3000 93.4% chr6 - 125395581 125395754 174 browser details YourSeq 145 814 991 3000 92.4% chr1 - 44764444 44764621 178 browser details YourSeq 144 818 992 3000 92.9% chr2 - 120561430 120561632 203 browser details YourSeq 143 819 993 3000 90.6% chr11 - 106209866 106210030 165 browser details YourSeq 143 817 988 3000 90.7% chr14 + 74393333 74393497 165 browser details YourSeq 141 819 999 3000 88.5% chr1 - 85101380 85101552 173 browser details YourSeq 139 819 988 3000 90.8% chr16 - 18569444 18569610 167 Note: The 3000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Frem1 Fras1 related extracellular matrix protein 1 [ Mus musculus (house mouse) ] Gene ID: 329872, updated on 12-Aug-2019 Gene summary Official Symbol Frem1 provided by MGI Official Full Name Fras1 related extracellular matrix protein 1 provided by MGI Primary source MGI:MGI:2670972 See related Ensembl:ENSMUSG00000059049 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as heb; crf11; eyes2; qbrick; BC037594; D430009N09; D630008K06; eye<m02Jus> Expression Broad expression in limb E14.5 (RPKM 2.7), CNS E11.5 (RPKM 2.1) and 19 other tissues See more Orthologs human all Genomic context Location: 4; 4 C3 See Frem1 in Genome Data Viewer Exon count: 41 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 4 NC_000070.6 (82897920..83052506, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 4 NC_000070.5 (82543831..82667006, complement) Chromosome 4 - NC_000070.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 8 transcripts Gene: Frem1 ENSMUSG00000059049 Description Fras1 related extracellular matrix protein 1 [Source:MGI Symbol;Acc:MGI:2670972] Gene Synonyms QBRICK, crf11, eye, eyes2, heb Location Chromosome 4: 82,897,920-83,052,339 reverse strand. GRCm38:CM000997.2 About this gene This gene has 8 transcripts (splice variants), 201 orthologues, 7 paralogues, is a member of 1 Ensembl protein family and is associated with 49 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Frem1- ENSMUST00000107230.7 9690 2172aa ENSMUSP00000102849.1 Protein coding CCDS57281 A2ADN1 TSL:5 202 Q684R7 GENCODE basic APPRIS ALT2 Frem1- ENSMUST00000071708.11 9307 2191aa ENSMUSP00000071627.5 Protein coding CCDS38791 Q684R7 TSL:1 201 GENCODE basic APPRIS P3 Frem1- ENSMUST00000170248.8 9527 2173aa ENSMUSP00000125809.2 Protein coding - E9Q5Z7 TSL:5 208 GENCODE basic APPRIS ALT2 Frem1- ENSMUST00000127886.1 3574 415aa ENSMUSP00000122467.1 Protein coding - F7D5I3 CDS 5' 203 incomplete TSL:1 Frem1- ENSMUST00000130889.1 1252 No - Retained - - TSL:1 204 protein intron Frem1- ENSMUST00000141841.1 632 No - Retained - - TSL:5 207 protein intron Frem1- ENSMUST00000131102.1 3891 No - lncRNA - - TSL:5 205 protein Frem1- ENSMUST00000133610.1 634 No - lncRNA - - TSL:1 206 protein Page 6 of 8 https://www.alphaknockout.com 174.42 kb Forward strand 82.90Mb 82.95Mb 83.00Mb 83.05Mb Contigs AL670958.4 > Genes (Comprehensive set... < Frem1-208protein coding < Frem1-201protein coding < Frem1-202protein coding < Frem1-206lncRNA < Frem1-207retained intron < Frem1-205lncRNA < Frem1-204retained intron < Frem1-203protein coding Regulatory Build 82.90Mb 82.95Mb 83.00Mb 83.05Mb Reverse strand 174.42 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding Ensembl protein coding Non-Protein Coding RNA gene processed transcript Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000107230 < Frem1-202protein coding Reverse strand 154.41 kb ENSMUSP00000102... Low complexity (Seg) Cleavage site (Sign... Superfamily C-type lectin fold CalX-like domain superfamily SMART C-type lectin-like Pfam PF16184 Na-Ca exchanger/integrin-beta4 C-type lectin-like PROSITE profiles CSPG repeat C-type lectin-like PANTHER PTHR45739 PTHR45739:SF7 Gene3D CalX-like domain superfamily C-type lectin-like/link domain superfamily CDD cd00037 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend stop gained missense variant splice region variant synonymous variant Scale bar 0 200 400 600 800 1000 1200 1400 1600 1800 2172 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Duplication 9P and Their Implication to Phenotype
    Guilherme et al. BMC Medical Genetics (2014) 15:142 DOI 10.1186/s12881-014-0142-1 RESEARCH ARTICLE Open Access Duplication 9p and their implication to phenotype Roberta Santos Guilherme1, Vera Ayres Meloni1, Ana Beatriz Alvarez Perez1, Ana Luiza Pilla1, Marco Antonio Paula de Ramos1, Anelisa Gollo Dantas1, Sylvia Satomi Takeno1, Leslie Domenici Kulikowski2 and Maria Isabel Melaragno1* Abstract Background: Trisomy 9p is one of the most common partial trisomies found in newborns. We report the clinical features and cytogenomic findings in five patients with different chromosome rearrangements resulting in complete 9p duplication, three of them involving 9p centromere alterations. Methods: The rearrangements in the patients were characterized by G-banding, SNP-array and fluorescent in situ hybridization (FISH) with different probes. Results: Two patients presented de novo dicentric chromosomes: der(9;15)t(9;15)(p11.2;p13) and der(9;21)t(9;21) (p13.1;p13.1). One patient presented two concomitant rearranged chromosomes: a der(12)t(9;12)(q21.13;p13.33) and an psu i(9)(p10) which showed FISH centromeric signal smaller than in the normal chromosome 9. Besides the duplication 9p24.3p13.1, array revealed a 7.3 Mb deletion in 9q13q21.13 in this patient. The break in the psu i(9) (p10) probably occurred in the centromere resulting in a smaller centromere and with part of the 9q translocated to the distal 12p with the deletion 9q occurring during this rearrangement. Two patients, brother and sister, present 9p duplication concomitant to 18p deletion due to an inherited der(18)t(9;18)(p11.2;p11.31)mat.
    [Show full text]
  • FREM1 Sirna (M): Sc-75060
    SANTA CRUZ BIOTECHNOLOGY, INC. FREM1 siRNA (m): sc-75060 BACKGROUND PRODUCT FREM1 (FRAS1 related extracellular matrix 1), also known as QBRICK or FREM1 siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed C9orf154, is a 2,179 amino acid protein that contains one C-type lectin to knock down gene expression. Each vial contains 3.3 nmol of lyophilized domain, one Calx-b domain and 12 CSPG repeats. Localized to the basement siRNA, sufficient for a 10 µM solution once resuspended using protocol membrane of embryonic epidermal cells and secreted into extracellular space, below. Suitable for 50-100 transfections. Also see FREM1 shRNA FREM1 functions as an extracellular matrix protein that is essential for epider- Plasmid (m): sc-75060-SH and FREM1 shRNA (m) Lentiviral Particles: mal adhesion during embryogenesis and may also participate in epidermal sc-75060-V as alternate gene silencing products. differentiation. FREM1 exists as multiple alternatively spliced isoforms and is For independent verification of FREM1 (m) gene silencing results, we also encoded by a gene which maps to human chromosome 9p22.3. Chromosome 9 provide the individual siRNA duplex components. Each is available as contains 145 million base pairs and comprises 4% of the human genome, 3.3 nmol of lyophilized siRNA. These include: sc-75060A, sc-75060B and encoding nearly 900 genes. Hereditary hemorrhagic telangiectasia, which is sc-75060C. characterized by harmful vascular defects, and familial dysautonomia, are both associated with chromosome 9. Notably, chromosome 9 encompasses STORAGE AND RESUSPENSION the largest interferon family gene cluster. Store lyophilized siRNA duplex at -20° C with desiccant.
    [Show full text]
  • A Proposed Mouse Mutant Resequencing Initiative a Recommendation to Augment the Positional Cloning of Mouse Muta
    A Proposed Mouse Mutant Resequencing Initiative A recommendation to augment the positional cloning of mouse mutations by resequencing of genetically­defined critical regions at Genome Centers. The long­term goal of the human genome project (HGP) is to define and understand the functions of all human genes and their relationships to health and disease. The HGP has revolutionized genetic research, having yielded complete genome sequences, comprehensive polymorphic genetic marker sets, and other molecular reagents for humans, mice and many other experimental organisms. This has greatly simplified positional cloning of disease genes and genetic mapping of simple and complex traits. Concurrent efforts have identified thousands of expressed genes, and coupled with high­throughput gene expression and protein analysis technologies, we are in the powerful position of knowing the sequence identity of most genes, their expression patterns, the chromatin states around genes, and networks of interacting proteins. While these data are valuable for deducing or suggesting the roles of genes in development and disease, the in vivo functions of most mammalian genes remain unknown. And their characterization remains a formidable challenge. With the advent of RNAi technologies, it has been possible to qualitatively assay large sets of genes for particular functions in simple animals such as C. elegans. In mammals, such technologies are being applied to cultured cells, but this approach will not address genes that function in developmental processes or differentiated tissues for which there is no in vitro model. The task of elucidating the in vivo function of human genes in disease and development relies heavily upon utilization of the mouse, in which mutations can be created in various ways.
    [Show full text]
  • FREM1 Blocking Peptide (CDBP5460) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    FREM1 blocking peptide (CDBP5460) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description This gene encodes a basement membrane protein that may play a role in craniofacial and renal development. Mutations in this gene have been associated with bifid nose with or without anorectal and renal anomalies. Alternatively spliced transcript variants encoding different isoforms have been described. PubMed ID 19940113 describes one such variant that initiates transcription within a distinct, internal exon; the resulting shorter isoform (named Toll- like/interleukin-1 receptor regulator, TILRR) is suggested to be a co-receptor of the interleukin 1 receptor family and may regulate receptor function and Toll-like receptor/interleukin 1 receptor signal transduction, contributing to the control of inflammatory response activation. [provided by RefSeq, Apr 2011] Immunogen 15 amino acids near the carboxy terminus of human FRAM1. Nature Synthetic Expression System N/A Species Reactivity Mouse, human Conjugate Unconjugated Applications Used as a blocking peptide in immunoblotting applications. Procedure None Format Liquid Concentration 200 μg/mL Size 0.05mg Preservative None Storage -20°C ANTIGEN GENE INFORMATION Gene Name FREM1 FRAS1 related extracellular matrix 1 [ Homo sapiens (human) ] Official Symbol FREM1 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Synonyms FREM1; FRAS1 related extracellular matrix 1; BNAR; MOTA; TILRR; TRIGNO2; C9orf143; C9orf145; C9orf154; FRAS1-related extracellular matrix protein 1; extracellular matrix protein QBRICK Entrez Gene ID 158326 mRNA Refseq NM_001177704 Protein Refseq NP_001171175 UniProt ID Q5H8C1 Function carbohydrate binding; metal ion binding 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 2 © Creative Diagnostics All Rights Reserved.
    [Show full text]
  • SARS-Cov-2 3Clpro Whole Human Proteome Cleavage
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.24.265645; this version posted December 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 SARS-CoV-2 3CLpro whole human proteome cleavage prediction and 2 enrichment/depletion analysis 3 Lucas Prescott 4 Correspondence: [email protected] 5 Keywords: SARS-CoV-2, COVID-19, coronavirus, protease, proteomics, 3CLpro, machine learning, neural 6 networks 7 8 Abstract 9 A novel coronavirus (SARS-CoV-2) has devastated the globe as a pandemic that has killed more 10 than 1,600,000 people. Widespread vaccination is still uncertain, so many scientific efforts have been 11 directed toward discovering antiviral treatments. Many drugs are being investigated to inhibit the 12 coronavirus main protease, 3CLpro, from cleaving its viral polyprotein, but few publications have 13 addressed this protease’s interactions with the host proteome or their probable contribution to 14 virulence. Too few host protein cleavages have been experimentally verified to fully understand 15 3CLpro’s global effects on relevant cellular pathways and tissues. Here, I set out to determine this 16 protease’s targets and corresponding potential drug targets. Using a neural network trained on 17 cleavages from 388 coronavirus proteomes with a Matthews correlation coefficient of 0.983, I predict 18 that a large proportion of the human proteome is vulnerable to 3CLpro, with 4,460 out of approximately 19 20,000 human proteins containing at least one putative cleavage site.
    [Show full text]
  • Microarray Analysis of Iris Gene Expression in Mice with Mutations Influencing Pigmentation
    Glaucoma Microarray Analysis of Iris Gene Expression in Mice with Mutations Influencing Pigmentation Colleen M. Trantow,1 Tryphena L. Cuffy,2 John H. Fingert,2,3 Markus H. Kuehn,2,3 and Michael G. Anderson1,2,3 PURPOSE. Several ocular diseases involve the iris, notably includ- lak syndrome, Chediak-Higashi syndrome, Horner’s syndrome, ing oculocutaneous albinism, pigment dispersion syndrome, Waardenburg syndrome, and Fuchs’ heterochromic iridocycli- and exfoliation syndrome. To screen for candidate genes that tis. In addition, other ocular diseases, such as pigment disper- may contribute to the pathogenesis of these diseases, genome- sion syndrome and exfoliation syndrome, involve disease-re- wide iris gene expression patterns were comparatively ana- lated morphologic changes to the pigmented tissues of the iris. lyzed from mouse models of these conditions. Each of these diseases involves strong hereditary links, but METHODS. Iris samples from albino mice with a Tyr mutation, much remains unknown concerning the underlying genetic pigment dispersion–prone mice with Tyrp1 and Gpnmb mu- pathways. In this study, we focused on three of these condi- tations, and mice resembling exfoliation syndrome with a Lyst tions: albinism, pigment dispersion syndrome, and exfoliation mutation were compared with samples from wild-type mice. syndrome. All mice were strain (C57BL/6J), age (60 days old), and sex In oculocutaneous albinism (OCA), there is reduced or (female) matched. Microarrays were used to compare tran- absent pigmentation of the skin, hair, and eyes. Decreased scriptional profiles, and differentially expressed transcripts melanin in the eyes can give rise to several ocular abnormali- were described by functional annotation clustering using ties, including foveal hypoplasia and decreased visual acuity; DAVID Bioinformatics Resources.
    [Show full text]
  • Evidence for Additional FREM1 Heterogeneity in Manitoba Oculotrichoanal Syndrome
    Molecular Vision 2012; 18:1301-1311 <http://www.molvis.org/molvis/v18/a137> © 2012 Molecular Vision Received 17 April 2012 | Accepted 24 May 2012 | Published 30 May 2012 Evidence for additional FREM1 heterogeneity in Manitoba oculotrichoanal syndrome Robertino Karlo Mateo,1 Royce Johnson,2 Ordan J. Lehmann1,2 1Department of Medical Genetics, University of Alberta, Edmonton, Canada; 2Department of Ophthalmology, University of Alberta, Edmonton, Canada Purpose: Manitoba Oculotrichoanal (MOTA) syndrome is an autosomal recessive disorder present in First Nations families that is characterized by ocular (cryptophthalmos), facial, and genital anomalies. At the commencement of this study, its genetic basis was undefined. Methods: Homozygosity analysis was employed to map the causative locus using DNA samples from four probands of Cree ancestry. After single nucleotide polymorphism (SNP) genotyping, data were analyzed and exported to PLINK to identify regions identical by descent (IBD) and common to the probands. Candidate genes within and adjacent to the IBD interval were sequenced to identify pathogenic variants, with analyses of potential deletions or duplications undertaken using the B-allele frequency and log2 ratio of SNP signal intensity. Results: Although no shared IBD region >1 Mb was evident on preliminary analysis, adjusting the criteria to permit the detection of smaller homozygous IBD regions revealed one 330 Kb segment on chromosome 9p22.3 present in all 4 probands. This interval comprising 152 SNPs, lies 16 Kb downstream of FRAS1-related extracellular matrix protein 1 (FREM1), and no copy number variations were detected either in the IBD region or FREM1. Subsequent sequencing of both genes in the IBD region, followed by FREM1, did not reveal any mutations.
    [Show full text]
  • Comparative Study of Organoids from Patient-Derived Normal and Tumor Colon and Rectal Tissue
    cancers Article Comparative Study of Organoids from Patient-Derived Normal and Tumor Colon and Rectal Tissue Alba Costales-Carrera 1,2,3 , Asunción Fernández-Barral 1,2,3 , Pilar Bustamante-Madrid 1,2,3 , Orlando Domínguez 4 , Laura Guerra-Pastrián 2,5 , Ramón Cantero 2,6 , Luis del Peso 1,7, 8 1,2,3, 1,2,3, , Aurora Burgos , Antonio Barbáchano y and Alberto Muñoz * y 1 Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; [email protected] (A.C.-C.); [email protected] (A.F.-B.); [email protected] (P.B.-M.); [email protected] (L.d.P.); [email protected] (A.B.) 2 Instituto de Investigación del Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain; [email protected] (L.G.-P.); [email protected] (R.C.) 3 Centro de Investigaciones Biomédicas en Red-Cáncer (CIBERONC), 28029 Madrid, Spain 4 Unidad de Genómica, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain; [email protected] 5 Departamento de Patología, Hospital Universitario La Paz, 28029 Madrid, Spain 6 Unidad Colorrectal, Departamento de Cirugía, Hospital Universitario La Paz, 28029 Madrid, Spain 7 Centro de Investigaciones Biomédicas en Red-Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain 8 Unidad de Endoscopia, Departamento de Digestivo, Hospital Universitario La Paz, 28029 Madrid, Spain; [email protected] * Correspondence: [email protected] These authors contributed equally as Co-Last. y Received: 24 July 2020; Accepted: 13 August 2020; Published: 15 August 2020 Abstract: Colon and rectal tumors, often referred to as colorectal cancer, show different gene expression patterns in studies that analyze whole tissue biopsies containing a mix of tumor and non-tumor cells.
    [Show full text]
  • Supplemental Information
    Supplementary Information Genome-wide association analyses of risk tolerance and risky behaviors in over one million individuals identify hundreds of loci and shared genetic influences Correspondence to: [email protected] or [email protected] TABLE OF CONTENTS 1 STUDY OVERVIEW ............................................................................................................. 4 1.1 STUDY MOTIVATION ........................................................................................................... 4 1.2 PHENOTYPE DEFINITIONS .................................................................................................... 4 2 GWAS, QUALITY CONTROL AND META-ANALYSIS ............................................. 10 2.1 OVERVIEW OF PRIMARY GWAS ....................................................................................... 10 2.2 GENOTYPING AND IMPUTATION ........................................................................................ 11 2.3 ASSOCIATION ANALYSES .................................................................................................. 11 2.4 MAIN REFERENCE PANEL .................................................................................................. 12 2.5 QUALITY CONTROL OF ALLELE-FREQUENCY DIFFERENCES BETWEEN THE UK BIOBANK GENOTYPING ARRAYS ................................................................................................................. 14 2.6 DESCRIPTION OF MAJOR STEPS IN QUALITY-CONTROL (QC) ANALYSES ...........................
    [Show full text]
  • Heterozygous Mutations of FREM1 Are Associated with an Increased Risk of Isolated Metopic Craniosynostosis in Humans and Mice
    Heterozygous Mutations of FREM1 Are Associated with an Increased Risk of Isolated Metopic Craniosynostosis in Humans and Mice Lisenka E. L. M. Vissers1., Timothy C. Cox2,3., A. Murat Maga2., Kieran M. Short4, Fenny Wiradjaja4, Irene M. Janssen1, Fernanda Jehee5, Debora Bertola5, Jia Liu6, Garima Yagnik6, Kiyotoshi Sekiguchi7, Daiji Kiyozumi7, Hans van Bokhoven1,8, Carlo Marcelis1, Michael L. Cunningham2, Peter J. Anderson9, Simeon A. Boyadjiev6, Maria Rita Passos-Bueno5, Joris A. Veltman1, Ian Smyth3,4, Michael F. Buckley1,10, Tony Roscioli1,11* 1 Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 2 Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America, 3 Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia, 4 Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia, 5 Centro de Estudos do Genoma Humano, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Brasil, 6 Section of Genetics, Department of Pediatrics, University of California Davis, Sacramento, California, United States of America, 7 Institute for Protein Research, Osaka University, Osaka, Japan, 8 Donders Institute for Brain, Imaging, and Cognition, Nijmegen, The Netherlands, 9 Australian Craniofacial Unit, Women and Children’s Hospital, Adelaide, Australia, 10 Department of Haematology and Genetics, South- Eastern Area Laboratory Services, Prince of Wales and Sydney Children’s Hospitals, Randwick, Australia, 11 Sydney South West Genetic Service, Royal Prince Alfred Hospital, Sydney University, Sydney, Australia Abstract The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly.
    [Show full text]