Barbados Sharks and Rays

Total Page:16

File Type:pdf, Size:1020Kb

Barbados Sharks and Rays First dorsal–fin origin well behind pectoral–fin Interdorsal ridge free rear tip present Long free rear tip Whale shark Guinea (Barbados) Silky shark Rhincodon typus Shortfin mako Smooth skin (Barbados) Max. Total Length: 3.3 m (11 ft) CITES: App. II Max. Total Length: 16.0 m (52 ft 6 in) Lion (Barbados) Max. Total Length: 4.0 m (13 ft 2 in) Carcharhinus falciformis Isurus oxyrinchus Oceanic white tip shark Sharks are worth more alive than dead, All fin (Barbados) It is believed that the shortfin mako is especially in the Caribbean! Carcharhinus longimanus the fastest shark in the ocean. CITES: App. II First dorsal–fin origin over pectoral–fin Interdorsal ridge inner margin present Long, broadly rounded pectoral fins with white tips Max. Total Length: 4.0 m (13 ft 2 in) Anterior margin of head Scalloped hammerhead broadly arched with a median indentation Sphyrna lewini CITES: App. II Blue shark Blue peter (Barbados) Max. Total Length: 4.0 m (13 ft 2 in) Caribbean reef shark Prionace glauca Reef shark (Barbados) Max. Total Length: 3.0 m (9 ft 10 in) Carcharhinus perezii Sharks maintain balance in the marine ecosystem. Max. Total Length: 4.3 m (14 ft 1 in) Great hammerhead Tiger shark Sphyrna mokarran Anterior margin of head nearly Zambezee (Barbados) Max. Total Length: 5.5 m (18 ft 1 in) Snout bluntly CITES: App. II straight in adults rounded and short No interdorsal Galeocerdo cuvier ridge Max. Total Length: 6.1 m (20 ft) Bull shark (Barbados) Max. Total Length: 3.5 m (11 ft 6 in) Smooth hammerhead Bull shark Anterior margin of head Carcharhinus leucas broadly arched with no Sphyrna zygaena Cuban dogfish median indentation CITES: App. II Spur shark (Barbados) Max. Total Length: 1.1 m (3 ft 8 in) Squalus cubensis Max. Total Length: 4.0 m (13 ft 2 in) Manta rays Nurse shark Manta spp. Max. Total Length: 4.3 m (14 ft 1 in) Trade in those species listed Ginglymostoma cirratum under CITES* Appendix II CITES: App. II should be controlled and monitored to ensure Some of the other common shark species utilization compatible with found in Barbados include: the longfin Spotted eagle ray Southern stingray their survival. mako (bastard) (Isurus paucus), the common Max. Disc Width: 7.0 m (22 ft 12 in) C O P A C O Aetobatus narinari Dasyatis americana thresher (fox tail)(Alopias vulpinus) and the *Convention on International Trade in lemon shark (Negaprion brevirostris). Western Central Atlantic Max. Disc Width: 2.3 m (7 ft 6 in) Max. Disc Width: 1.5 m (4 ft 11 in) Endangered Species of Wild Fauna and Flora Fishery Commission Job nr. BC383e/1/01.16 nr. Job Colour illustrations and graphic design by Emanuela D’Antoni (FAO) For more information, contact: The Barbados Fisheries Division tel. (246) 426–3745 © FAO 2015.
Recommended publications
  • Chapter 11 the Biology and Ecology of the Oceanic Whitetip Shark, Carcharhinus Longimanus
    Chapter 11 The Biology and Ecology of the Oceanic Whitetip Shark, Carcharhinus longimanus Ramón Bonfi l, Shelley Clarke and Hideki Nakano Abstract The oceanic whitetip shark (Carcharhinus longimanus) is a common circumtropical preda- tor and is taken as bycatch in many oceanic fi sheries. This summary of its life history, dis- tribution and abundance, and fi shery-related information is supplemented with unpublished data taken during Japanese tuna research operations in the Pacifi c Ocean. Oceanic whitetips are moderately slow-growing sharks that do not appear to have differential growth rates by sex, and individuals in the Atlantic and Pacifi c Oceans seem to grow at similar rates. They reach sexual maturity at approximately 170–200 cm total length (TL), or 4–7 years of age, and have a 9- to 12-month embryonic development period. Pupping and nursery areas are thought to exist in the central Pacifi c, between 0ºN and 15ºN. According to two demographic metrics, the resilience of C. longimanus to fi shery exploitation is similar to that of blue and shortfi n mako sharks. Nevertheless, reported oceanic whitetip shark catches in several major longline fi sheries represent only a small fraction of total shark catches, and studies in the Northwest Atlantic and Gulf of Mexico suggest that this species has suffered signifi cant declines in abundance. Stock assessment has been severely hampered by the lack of species-specifi c catch data in most fi sheries, but recent implementation of species-based reporting by the International Commission for the Conservation of Atlantic Tunas (ICCAT) and some of its member countries will provide better data for quantitative assessment.
    [Show full text]
  • Sharks for the Aquarium and Considerations for Their Selection1 Alexis L
    FA179 Sharks for the Aquarium and Considerations for Their Selection1 Alexis L. Morris, Elisa J. Livengood, and Frank A. Chapman2 Introduction The Lore of the Shark Sharks are magnificent animals and an exciting group Though it has been some 35 years since the shark in Steven of fishes. As a group, sharks, rays, and skates belong to Spielberg’s Jaws bit into its first unsuspecting ocean swim- the biological taxonomic class called Chondrichthyes, or mer and despite the fact that the risk of shark-bite is very cartilaginous fishes (elasmobranchs). The entire supporting small, fear of sharks still makes some people afraid to swim structure of these fish is composed primarily of cartilage in the ocean. (The chance of being struck by lightning is rather than bone. There are some 400 described species of greater than the chance of shark attack.) The most en- sharks, which come in all different sizes from the 40-foot- grained shark image that comes to a person’s mind is a giant long whale shark (Rhincodon typus) to the 2-foot-long conical snout lined with multiple rows of teeth efficient at marble catshark (Atelomycterus macleayi). tearing, chomping, or crushing prey, and those lifeless and staring eyes. The very adaptations that make sharks such Although sharks have been kept in public aquariums successful predators also make some people unnecessarily since the 1860s, advances in marine aquarium systems frightened of them. This is unfortunate, since sharks are technology and increased understanding of shark biology interesting creatures and much more than ill-perceived and husbandry now allow hobbyists to maintain and enjoy mindless eating machines.
    [Show full text]
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • Insights Into Insular Isolation of the Bull Shark, Carcharhinus Leucas (Müller and Henle, 1839), in Fijian Waters
    Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 12-14-2020 Insights Into Insular Isolation of the Bull Shark, Carcharhinus leucas (Müller and Henle, 1839), in Fijian Waters Kerstin B J Glaus Sharon A. Appleyard Brian Stockwell Juerg M. Brunnschweiler Mahmood S. Shivji See next page for additional authors Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Biology Commons Authors Kerstin B J Glaus, Sharon A. Appleyard, Brian Stockwell, Juerg M. Brunnschweiler, Mahmood S. Shivji, Eric Clua, Amandine D. Marie, and Ciro Rico fmars-07-586015 December 14, 2020 Time: 11:37 # 1 ORIGINAL RESEARCH published: 14 December 2020 doi: 10.3389/fmars.2020.586015 Insights Into Insular Isolation of the Bull Shark, Carcharhinus leucas (Müller and Henle, 1839), in Fijian Waters Kerstin B. J. Glaus1*, Sharon A. Appleyard2†, Brian Stockwell1†, Juerg M. Brunnschweiler3, Mahmood Shivji4, Eric Clua5, Amandine D. Marie1,6 and Ciro Rico1,7 1 School of Marine Studies, Faculty of Science, Technology and Environment, The University of the South Pacific, Suva, Fiji, 2 CSIRO National Research Collections Australia, Australian National Fish Collection, Hobart, TAS, Australia, 3 Independent Researcher, Zurich, Switzerland, 4 Save Our Seas Foundation Shark Research Center, Nova Southeastern University, Fort Lauderdale, FL, United States, 5 PSL Research University, Labex CORAIL, CRIOBE USR 3278 CNRS-EPHE-UPVD, Université de Perpignan, Perpignan, France, 6 ESE, Ecology and Ecosystems Health, Agrocampus Ouest, INRAE, Rennes, France, 7 Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas, Puerto Real, Edited by: Spain Lorenzo Zane, University of Padua, Italy Reviewed by: The bull shark (Carcharhinus leucas) is a large, mobile, circumglobally distributed Ka Yan Ma, high trophic level predator that inhabits a variety of remote islands and continental Sun Yat-sen University, China Simo Njabulo Maduna, coastal habitats, including freshwater environments.
    [Show full text]
  • First Evidence of Multiple Paternity in the Bull Shark (Carcharhinus Leucas) Agathe Pirog, Sébastien Jaquemet, Marc Soria, Hélène Magalon
    First evidence of multiple paternity in the bull shark (Carcharhinus leucas) Agathe Pirog, Sébastien Jaquemet, Marc Soria, Hélène Magalon To cite this version: Agathe Pirog, Sébastien Jaquemet, Marc Soria, Hélène Magalon. First evidence of multiple paternity in the bull shark (Carcharhinus leucas). Marine and Freshwater Research, CSIRO Publishing, 2015, 10.1071/mf15255. hal-01253775 HAL Id: hal-01253775 https://hal.archives-ouvertes.fr/hal-01253775 Submitted on 4 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. First evidence of multiple paternity in the bull shark (Carcharhinus leucas) Agathe PirogA, Se´bastien JaquemetA,B, Marc SoriaC and He´le`ne MagalonA,B,D AUniversite´ de La Re´union, UMR 9220 ENTROPIE (Universite´ de La Re´union/IRD/CNRS), 15 Avenue Rene´ Cassin, CS 92003, F-97744 Saint Denis Cedex 09, La Re´union, France. BLaboratory of Excellence CORAIL, 58, Avenue Paul Alduy, F-66860 Perpignan Cedex, France. CIRD Re´union, UMR 248 MARBEC, CS 41095 2 rue Joseph Wetzell, F-97492 Sainte-Clotilde, La Re´union, France. DCorresponding author. Email: [email protected] Abstract. The present study assessed the occurrence of multiple paternity in four litters of bull shark Carcharhinus leucas (n ¼ 5, 8, 9 and 11 embryos) sampled at Reunion Island in the Western Indian Ocean.
    [Show full text]
  • 1 a Petition to List the Oceanic Whitetip Shark
    A Petition to List the Oceanic Whitetip Shark (Carcharhinus longimanus) as an Endangered, or Alternatively as a Threatened, Species Pursuant to the Endangered Species Act and for the Concurrent Designation of Critical Habitat Oceanic whitetip shark (used with permission from Andy Murch/Elasmodiver.com). Submitted to the U.S. Secretary of Commerce acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service September 21, 2015 By: Defenders of Wildlife1 535 16th Street, Suite 310 Denver, CO 80202 Phone: (720) 943-0471 (720) 942-0457 [email protected] [email protected] 1 Defenders of Wildlife would like to thank Courtney McVean, a law student at the University of Denver, Sturm college of Law, for her substantial research and work preparing this Petition. 1 TABLE OF CONTENTS I. INTRODUCTION ............................................................................................................................... 4 II. GOVERNING PROVISIONS OF THE ENDANGERED SPECIES ACT ............................................. 5 A. Species and Distinct Population Segments ....................................................................... 5 B. Significant Portion of the Species’ Range ......................................................................... 6 C. Listing Factors ....................................................................................................................... 7 D. 90-Day and 12-Month Findings ........................................................................................
    [Show full text]
  • © Iccat, 2007
    A5 By-catch Species APPENDIX 5: BY-CATCH SPECIES A.5 By-catch species By-catch is the unintentional/incidental capture of non-target species during fishing operations. Different types of fisheries have different types and levels of by-catch, depending on the gear used, the time, area and depth fished, etc. Article IV of the Convention states: "the Commission shall be responsible for the study of the population of tuna and tuna-like fishes (the Scombriformes with the exception of Trichiuridae and Gempylidae and the genus Scomber) and such other species of fishes exploited in tuna fishing in the Convention area as are not under investigation by another international fishery organization". The following is a list of by-catch species recorded as being ever caught by any major tuna fishery in the Atlantic/Mediterranean. Note that the lists are qualitative and are not indicative of quantity or mortality. Thus, the presence of a species in the lists does not imply that it is caught in significant quantities, or that individuals that are caught necessarily die. Skates and rays Scientific names Common name Code LL GILL PS BB HARP TRAP OTHER Dasyatis centroura Roughtail stingray RDC X Dasyatis violacea Pelagic stingray PLS X X X X Manta birostris Manta ray RMB X X X Mobula hypostoma RMH X Mobula lucasana X Mobula mobular Devil ray RMM X X X X X Myliobatis aquila Common eagle ray MYL X X Pteuromylaeus bovinus Bull ray MPO X X Raja fullonica Shagreen ray RJF X Raja straeleni Spotted skate RFL X Rhinoptera spp Cownose ray X Torpedo nobiliana Torpedo
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Florida's Fintastic Sharks and Rays Lesson and Activity Packet
    Florida's Fintastic Sharks and Rays An at-home lesson for grades 3-5 Produced by: This educational workbook was produced through the support of the Indian River Lagoon National Estuary Program. 1 What are sharks and rays? Believe it or not, they’re a type of fish! When you think “fish,” you probably picture a trout or tuna, but fishes come in all shapes and sizes. All fishes share the following key characteristics that classify them into this group: Fishes have the simplest of vertebrate hearts with only two chambers- one atrium and one ventricle. The spine in a fish runs down the middle of its back just like ours, making fish vertebrates. All fishes have skeletons, but not all fish skeletons are made out of bones. Some fishes have skeletons made out of cartilage, just like your nose and ears. Fishes are cold-blooded. Cold-blooded animals use their environment to warm up or cool down. Fins help fish swim. Fins come in pairs, like pectoral and pelvic fins or are singular, like caudal or anal fins. Later in this packet, we will look at the different types of fins that fishes have and some of the unique ways they are used. 2 Placoid Ctenoid Ganoid Cycloid Hard protective scales cover the skin of many fish species. Scales can act as “fingerprints” to help identify some fish species. There are several different scale types found in bony fishes, including cycloid (round), ganoid (rectangular or diamond), and ctenoid (scalloped). Cartilaginous fishes have dermal denticles (Placoid) that resemble tiny teeth on their skin.
    [Show full text]
  • Tiger Shark (Galeocerdo Cuvier) on the East Coast of Australia
    The biology and ecology of the tiger shark (Galeocerdo cuvier) on the east coast of Australia. Bonnie Jane Holmes BSc (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2015 School of Biological Sciences ABSTRACT The tiger shark (Galeocerdo cuvier) (Péron and Lesueur 1822) is the largest of the carcharhinids, with a circumglobal distribution in both tropical and warm temperate coastal and pelagic waters. In the western Pacific, G. cuvier movements are wide-ranging, encompassing the east coast of Australia and south Pacific Islands. Throughout the region, G. cuvier is exposed to a range of commercial, recreational, artisanal and illegal foreign fishery impacts, as both a target and by-product species. Listed as ‘near threatened’ on the International Union for Conservation of Nature (IUCN) Red List, suitable long term species-specific catch, catch rate and biological data are seldom available for large shark species like G. cuvier, particularly where historical commercial fishery logbook reporting has been poor. Shark control programs targeting large sharks along Australia’s east coast have been in operation for over 60 years, using relatively standardised fishing gear in nearshore waters all year round, with historical catch and effort data recorded by shark contractors. Historical catch, catch rate and biological data collected through the Queensland Shark Control Program (QSCP) since 1993 were investigated, which revealed significant declines (p < 0.05) in catch rates of G. cuvier at some tropical and all sub-tropical locations along the Queensland coast. Significant temporal declines in the average size of G. cuvier also occurred at four of the nine locations analysed (p < 0.05), which could be indicative of fishing reducing abundance in these areas.
    [Show full text]
  • Diet of the Bull Shark, Carcharhinus Leucas, and the Tiger Shark, Galeocerdo Cuvier, in the Eastern Pacific Ocean
    Turkish Journal of Zoology Turk J Zool (2017) 41: 1111-1117 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1610-31 Diet of the bull shark, Carcharhinus leucas, and the tiger shark, Galeocerdo cuvier, in the eastern Pacific Ocean 1 1 1 Colombo ESTUPIÑÁN-MONTAÑO , José Félix ESTUPIÑÁN-ORTIZ , Luis Germán CEDEÑO-FIGUEROA , 2, 3 Felipe GALVÁN-MAGAÑA * , Carlos Julio POLO-SILVA 1 Fundación Alium Pacific, Santiago de Cali, Colombia 2 Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Mexico 3 Programa de Biología Marina, Facultad de Ciencias Naturales e Ingeniería, Universidad Jorge Tadeo Lozano, Santa Marta, Colombia Received: 19.10.2016 Accepted/Published Online: 15.08.2017 Final Version: 21.11.2017 Abstract: This study presents information on the diet of two shark species, Carcharhinus leucas and Galeocerdo cuvier, that inhabit the southeastern Pacific Ocean. The stomachs were collected from October 2003 to July 2005 in Ecuador. Stomachs of 41 C. leucas and six G. cuvier were analyzed. According to the index of relative importance (%IRI), the most important prey for C. leucas were fishes: family Ophichthidae (13.41%), Tylosurus pacificus (9.79%), Katsuwonus pelamis (4.54%), and fish remains (44.81%). G. cuvier, for its part, consumed squids: Ancistrocheirus lesueuri (45.14%), Pholidoteuthis boschmaii (7.81%), and Octopoteuthis spp. (5.17%), as well as turtles: Caretta caretta (9.7%), Lepidochelys cf. kempii (5%), and turtle remains (16.5%). The results show thatC. leucas (trophic level, ITR; 4.32 ± 0.13) and G. cuvier (ITR; 4.26 ± 0.09) are tertiary consumers, occupying high positions in the food chain, but also are generalist predators that feed on a variety of prey.
    [Show full text]
  • White-Tip Reef Shark (Triaenodon Obesus) Michelle S
    White-tip Reef Shark (Triaenodon obesus) Michelle S. Tishler Common Name There are several common names for the Triaenodon obesus, which usually describes the “white tips” on their dorsal and caudal fins. Common names include: White-tip Reef Shark, Blunthead Shark, Light-Tip Shark and Reef Whitetip. Names in Spanish Cazón, Cazón Coralero Trompacorta and Tintorera Punta Aleta Blanca. Taxonomy Domain Eukarya Kingdom Anamalia Phylum Chordata Class Chondrichthyes Order Carcharhiniformes Family Carcharhinidae Genus Triaenodon Species obesus Nearest relatives Sharks are cartilaginous fishes in the class Chondrichthyes with skates, rays and other sharks. Within the family Carcharhinidae (requiem sharks), the White-tip Reef Shark is related to the Galapagos Shark, Bull Shark, Oceanic Whitetip, Tiger Shark and Blue Sharks. The White-tip Reef Shark does not share their genus name with any other organism. Island They are found amongst the reefs surrounding most or all of the Galapagos Islands. Geographic range White-tip Sharks range geographically from Costa Rica, Ecuador, Galapagos, Cocos, South Africa, Red Sea, Pakistan and etc. to primarily residing in the Indo-West Pacific region. (Red region indicates distribution of White-tip Reef Shark) Habitat Description As described in their name, White-tip Reef Sharks live amongst coral reefs with a home range of a couple square miles. They are also found in sandy patches and deeper waters. During the day these sharks tend to rest on the seabed or within caves and crevices. Physical description White-tip Reef sharks are named after the white tip on the dorsal (first and sometimes second) fins, and caudal fin lobes.
    [Show full text]