Arc Protein Expression After Unilateral Intracranial Self-Stimulation of the Medial Forebrain Bundle Is Upregulated in Specific

Total Page:16

File Type:pdf, Size:1020Kb

Arc Protein Expression After Unilateral Intracranial Self-Stimulation of the Medial Forebrain Bundle Is Upregulated in Specific Kádár et al. BMC Neurosci (2018) 19:48 https://doi.org/10.1186/s12868-018-0449-5 BMC Neuroscience RESEARCH ARTICLE Open Access Arc protein expression after unilateral intracranial self‑stimulation of the medial forebrain bundle is upregulated in specifc nuclei of memory‑related areas Elisabet Kádár2,4* , Eva Vico Varela1,3 , Laura Aldavert‑Vera1 , Gemma Huguet2 , Ignacio Morgado‑Bernal1 and Pilar Segura‑Torres1 Abstract Background: Intracranial Self-Stimulation (ICSS) of the medial forebrain bundle (MFB) is a deep brain stimulation procedure, which has a powerful enhancement efect on explicit and implicit memory. However, the downstream synaptic plasticity events of MFB-ICSS in memory related areas have not been described thoroughly. This study complements previous work studying the efect of MFB-ICSS on the expression of the activity-regulated cytoskeleton- associated (Arc) protein, which has been widely established as a synaptic plasticity marker. We provide new integrated measurements from memory related regions and take possible regional hemispheric diferences into consideration. Results: Arc protein expression levels were analyzed 4.5 h after MFB-ICSS by immunohistochemistry in the hip‑ pocampus, habenula, and memory related amygdalar and thalamic nuclei, in both the ipsilateral and contralateral hemispheres to the stimulating electrode location. MFB-ICSS was performed using the same paradigm which has previously been shown to facilitate memory. Our fndings illustrate that MFB-ICSS upregulates the expression of Arc protein in the oriens and radiatum layers of ipsilateral CA1 and contralateral CA3 hippocampal regions; the hilus bilat‑ erally, the lateral amygdala and dorsolateral thalamic areas as well as the central medial thalamic nucleus. In contrast, the central amygdala, mediodorsal and paraventricular thalamic nuclei, and the habenular complex did not show changes in Arc expression after MFB-ICSS. Conclusions: Our results expand our knowledge of which specifc memory related areas MFB-ICSS activates and, motivates the defnition of three functionally separate groups according to their Arc-related synaptic plasticity response: (1) the hippocampus and dorsolateral thalamic area, (2) the central medial thalamic area and (3) the lateral amygdala. Keywords: Arc, Medial forebrain bundle, Intracranial self-stimulation, Memory, Hippocampus, Amygdala, Thalamus, Habenula *Correspondence: [email protected] 4 Department of Biology, Sciences Faculty, University of Girona, C/Mª Aurèlia Capmany 40, Camous Montilivi, 17003 Girona, Spain Full list of author information is available at the end of the article © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Kádár et al. BMC Neurosci (2018) 19:48 Page 2 of 13 Background amygdala-dependent active avoidance tasks, in which Deep brain stimulation (DBS), an electrical current ICSS reverses the memory defcit caused by aging [13, delivered through stereotactically implanted electrodes 14] and/or brain damage [15, 16]. into specifc areas of the brain, is a promising therapeu- Consistent with the broad efect of MFB-ICSS on dif- tic option for patients with neurological and psychiatric ferent types of learning tasks, c-Fos expression results diseases. To date, DBS has been successfully applied to suggest ICSS activates multiple regions related to dif- alleviate movement disorders, such as Parkinson’s dis- ferent memory systems, such as the amygdala, the dor- ease [1]. DBS is now being considered for use as a treat- sal striatum, the hippocampus and the prefrontal cortex ment for neurodegenerative disorders associated with [10, 17–19]. Additionally, MFB-ICSS induces diferential memory impairments such as Alzheimer’s disease [2]. time course mRNA expression of some synaptic plas- However, the mechanisms of action of how DBS afects ticity-related genes including Arc in the amygdala and memory are not yet fully known. the hippocampus [18, 19]. ICSS-treated rats showing a Studies with laboratory animals are required to facilitated spatial memory have also long-lasting struc- explore potential targets and to analyze the underlying tural changes including extended dendritic arboriza- cellular and molecular brain changes of DBS. Recent tion of pyramidal CA1 neurons [6]. Tus, based on the studies indicate that bilateral DBS of the fornix/hypo- fact that Arc protein is a well-known marker of synaptic thalamic area drives neural activity in the cortico-hip- plasticity events associated with the memory consolida- pocampal memory circuit with a signifcant reversal tion process [20] and is also involved in long-term spine of the impaired cortical glucose utilization observed enlargement [21], we initially set out to determine the in patients with Alzheimer’s disease [3, 4]. Further efect of MFB-ICSS has on Arc protein levels in the dif- experiments in rats have established that forniceal DBS ferent sub-regions of the hippocampus and in the retro- (F-DBS) induces increased hippocampal expression splenial cortex. We observed that after 4.5 h of unilateral of c-Fos protein, some neurotrophic factors such as MFB-ICSS, Arc protein levels increased signifcantly in BDNF, and other synaptic plasticity markers [5], which the CA1 and DG hippocampal subfelds ipsilateral to the are prominent molecular correlates of memory con- stimulated hemisphere [22] but at this time contralateral solidation. Tese results are consistent with fndings regions were not analyzed. We also observed that MFB- from our group which reveal a memory improvement ICSS increased Arc expression in the granular retrosple- after stimulating the medial forebrain bundle (MFB), nial cortex (RSC), a hippocampus-related region involved the most important pathway of the brain reward sys- in long-lasting memory storage [23]. Tis study showed a tem, which passes through the lateral hypothalamus possible lateralization of the ICSS efects on Arc protein (LH). Activation of brain areas belonging to the reward levels since changes were only observed in the ipsilateral, system generates positive reinforcement, and actions but not the contralateral hemisphere. that are positively reinforced are more likely to be Te current study provides new integrated data of repeated than those that do not. Intracranial self-stim- the synaptic plasticity efects of the memory enhanc- ulation (ICSS) is a DBS procedure in which subjects ing MFB-ICSS treatment on additional regions related self-administer electrical stimulation to brain reward to diferent memory systems and analyzes hemisphere areas by performing an instrumental response, such as diferences. Arc protein expression was examined by pressing a lever in a Skinner box. Te use of ICSS in immunohistochemistry in both ipsilateral and contralat- animals allows us to unequivocally ensure that stimula- eral hemispheres 4.5 h after MFB-ICSS in each subject. tion activates the reward system in a functional man- Te studied areas include (1) the hippocampal subfelds, ner. In a similar way to F-DBS, ICSS of the LH has a involved in spatial memory encoding and consolida- reliable enhancing efect on hippocampus-dependent tion; (2) amygdalar nuclei involved in implicit emotional explicit memory [6–8]. However, while F-DBS afects memory, including the associative lateral amygdala (LA) fornix fbers, ICSS of the LH activates the MFB. Due and the central nucleus (Ce), responsible for the auto- to the extensive network of the MFB connects, this nomic components of emotions [24]; (3) higher order causes a widespread state of arousal and simultaneous thalamic nuclei, such as the central medial (CM) and activation of many areas, some of which are associated paraventricular (PV) nuclei related to memory through with diferent memory systems [9]. Tis could explain its role in regulation of arousal or attentional levels [25], the wide therapeutic efects that MFB-ICSS appears to and the mediodorsal (MD) and dorsolateral (DL) nuclei, have in relation to diferent memory types. In addition considered to be relays to the hippocampus, amygdala to explicit memory, MFB-ICSS also improves perfor- and/or associative cortices, as well as being involved in mance in implicit memory tasks [10–12]. Most notable learning and executive functions [26, 27]; and fnally (4) are the efects on emotional memory as measured by the medial and the lateral habenula (MHb and LHb), Kádár et al. BMC Neurosci (2018) 19:48 Page 3 of 13 involved in reward, emotional behavior and cognitive consisted of sinusoidal wave currents, of 0.3 s in duration functions [28], which could also be implicated in the cir- and 50 Hz in frequency, with an intensity ranging from cuit in which MFB-ICSS afects memory via the inactiva- 50 and 250µA. Te procedure included the reinforce- tion of structures that project to it [29, 30]. ment of successive approximations to both the lever and Our fndings show that the memory systems engaged to the required action (lever press) by the animal, while by MFB-ICSS include the hilus, the oriens and radiatum attempting to fnd the minimum current intensity that layers of CA1 and CA3 hippocampal areas, the LA, DL gave a stable response of 250 lever presses in 5 min, and and CM thalamic nuclei, in accordance with the idea that self-stimulation until 500 reinforcements were reached. separate neural systems could operate in parallel to sup- Establishment of the optimal intensity (OI) for each ani- port the efects of ICSS on memory. In addition, a dif- mal was performed in the corresponding ICSS treatment ferential hemispheric Arc dependent-synaptic plasticity session as described in Segura-Torres et al. 1988 [32]. response to the MFB-ICSS treatment was observed in some of the analyzed regions.
Recommended publications
  • The Connexions of the Amygdala
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method.
    [Show full text]
  • The Effects of Habenular and Medial Forebrain Bundle Lesions on Sexual Behavior in Female Rats'
    The effects of habenular and medial forebrain bundle lesions on sexual behavior in female rats' CHARLES H. RODGERS:?, DEPARTMENT OF PHYSIOLOGY, STANFORD UNIVERSITY O. THOMAS LAW, DEPARTMENT OF PSYCHOLOGY, CLAREMONT GRADUATE SCHOOL A comparison was made of the effects of habenular and subsequent to the experiencing trials, the preoperative medial forebrain bundle lesions on female rat sexual behavior tests were initiated. Each S received one 15 min. trial as measured by the lordosis-to-mount ratio, and by the fe­ while nonreceptive and one 15 min. trial while receptive. male's avoidance of sexual contact. Results show that Receptivity was induced as described above. destruction of the habenulae causes a decreased lordosis Lesions were produced by monopolar stainless steel response, and a greater avoidance of male sexual contacts. electrodes, insulated except for .008 in. at the tip, under Medial forebrain bundle lesions had a less pronounced effect the following conditions: (1) Habenula (Hab)-2 rnA on the female's behavior. anodal current for 10 sec.; (2) Medial forebrain bundle (MFB)-2 rnA anodal current for 15 sec. Coordinates Few studies have reported the effects of subcortical for the target areas were obtained fromdeGroot(1959). destruction on copulatory behavior in the female rat. Copulatory tests were conducted in a cylindrical It is accepted that circumscribed destruction of the mating arena made of clear Plexiglas 18 in. high x anterior hypothalamus causes female rats to become 20 in. in diameter, supported on a table surfaced with anovulatory and behaviorally nonreceptive (Flerko, 1/2-in. hardware cloth. A mirror, fixed at an angle 1963).
    [Show full text]
  • Effect of Bilateral 6-Hydroxydopamine Lesions of the Medial Forebrain Bundle on Reaction Time A.D
    Effect of Bilateral 6-Hydroxydopamine Lesions of the Medial Forebrain Bundle on Reaction Time A.D. Smith, Ph.D., M. Amalric, Ph.D., G.F. Koob, Ph.D., and M.J. Zigmond, Ph.D. Overt symptoms of Parkinson’s disease do not manifest week testing period and akinetic deficits expressed by an themselves until there is a substantial loss of the increase in delayed responding. In addition, larger DA dopaminergic nigrostriatal projection. However, as depletions (у95%) profoundly altered motor control with neuroprotective strategies are developed, it will be essential decreases in percent correct responses, increases in delayed to detect the disease in its preclinical phase. Performance on responses and increases in reaction time. These results conditioned reaction time tasks is known to be impaired by suggest that reaction time may be a relatively sensitive extensive 6-hydroxydopamine-induced lesions of the measure of preclinical or subtle deficits, although it might nigrostriatal dopamine pathway. However, the effect of be even more useful in quantitating the severity of depletion smaller lesions on a reaction time task has not been once overt deficits or symptoms appear and has the systematically assessed. We, therefore, used this test to advantage of measuring such deficits over time to follow examine behavioral deficits as a function of striatal recovery of function. Furthermore since reaction time dopamine loss. When injected at doses that produced deficits required extensive loss of dopamine, these results striatal DA depletion Ͻ50%, 6-hydroxydopamine infused are consistent with a predominant role of extrasynaptic in the medial forebrain bundle produced no reliable dopamine in the mediation of relatively skilled motor tasks.
    [Show full text]
  • Afferent Connections to the Striatum and the Nucleus Accumbens
    THE JOURNAL OF COMPARATIVE NEUROLOGY 378:16–49 (1997) Basal Ganglia Organization in Amphibians: Afferent Connections to the Striatum and the Nucleus Accumbens OSCAR MARI´N,1 AGUSTI´N GONZA´ LEZ,1* AND WILHELMUS J.A.J. SMEETS2 1Departamento de Biologı´a Celular, Facultad de Biologı´a, Universidad Complutense, Madrid, Spain 2 Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences and Department of Anatomy and Embryology, Vrije Universiteit, Amsterdam, The Netherlands ABSTRACT As part of a research program to determine if the organization of basal ganglia (BG) of amphibians is homologous to that of amniotes, the afferent connections of the BG in the anurans Xenopus laevis and Rana perezi and the urodele Pleurodeles waltl were investigated with sensitive tract-tracing techniques. Hodological evidence is presented that supports a division of the amphibian BG into a nucleus accumbens and a striatum. Both structures have inputs in common from the olfactory bulb, medial pallium, striatopallial transition area, preoptic area, ventral thalamus, ventral hypothalamic nucleus, posterior tubercle, several mesencephalic and rhombencephalic reticular nuclei, locus coeruleus, raphe, and the nucleus of the solitary tract. Several nuclei that project to both subdivisions of the BG, however, show a clear preference for either the striatum (lateral amygdala, parabrachial nucleus) or the nucleus accumbens (medial amygdala, ventral midbrain tegmentum). In addition, the anterior entopeduncular nucleus, central thalamic nucleus, anterior and posteroventral divisions of the lateral thalamic nucleus, and torus semicircularis project exclusively to the striatum, whereas the anterior thalamic nucleus, anteroventral, and anterodorsal tegmental nuclei provide inputs solely to the nucleus accumbens. Apart from this subdivision of the basal forebrain, the results of the present study have revealed more elaborate patterns of afferent projections to the BG of amphibians than previously thought.
    [Show full text]
  • Forebrain Origins and Terminations of the Medial Forebrain Bundle Metabolically Activated by Rewarding Stimulation Or by Reward- Blocking Doses of Pimozide’
    0270.6474/85/0505-1246$02.00/O The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 5, No. 5, pp. 1246-1261 Printed in U.S.A. May 1985 Forebrain Origins and Terminations of the Medial Forebrain Bundle Metabolically Activated by Rewarding Stimulation or by Reward- blocking Doses of Pimozide’ C. R. GALLISTEL,* Y. GOMITA,3 ELNA YADIN,4 AND KENNETH A. CAMPBELL5 Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Abstract iological investigation as a likely substrate for the rewarding effect of MFB stimulation. They also suggest that dopami- Using [14C]-2-deoxyglucose autoradiography, we deter- nergic projection systems may not form part of the reward mined which forebrain and diencephalic areas showed met- pathway itself. abolic alterations in response to unilateral electrical stimu- lation of the posterior medial forebrain bundle at parameters Behavioral experiments, using methods for determining quantita- chosen to produce a just-submaximal rewarding effect. At tive properties of the neural substrate, have led to the conclusion these parameters, only a few areas were activated. There that the directly stimulated substrate for electrical self-stimulation of was no detectable activation anterior or dorsal to the genu the medial forebrain bundle (MFB) is comprised in substantial part of the corpus callosum. Just anterior to the anterior commis- of long, thin myelinated axons descending from forebrain nuclei to sure, there was strong activation of the vertical limb of the the anterior ventral tegmentum (C. Bielajew and P. Shizgal, manu- diagonal band of Broca, with a focus in the nucleus of the script submitted for publication; Gallistel et al., 1981).
    [Show full text]
  • Hedonic Tone Is Associated with Left Supero-Lateral Medial Forebrain Bundle Microstructure
    Psychological Medicine (2015), 45, 865–874. © Cambridge University Press 2014 ORIGINAL ARTICLE doi:10.1017/S0033291714001949 Hedonic tone is associated with left supero-lateral medial forebrain bundle microstructure T. Bracht1,2*, A. N. Doidge1,2, P. A. Keedwell2 and D. K. Jones1,2 1 Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK 2 Neuroscience, Mental Health Research Institute, Cardiff University, Cardiff, UK Background. The medial forebrain bundle (MFB) is an important pathway of the reward system. Two branches have been described using diffusion magnetic resonance imaging (MRI)-based tractography: the infero-medial MFB (imMFB) and the supero-lateral MFB (slMFB). Previous studies point to white-matter microstructural alterations of the slMFB in major depressive disorder (MDD) during acute episodes. To extend this finding, this study investigates whether white-matter microstructure is also altered in MDD patients that are in remission. Further, we explore associa- tions between diffusion MRI-based metrics of white-matter microstructure of imMFB, slMFB and hedonic tone, the abil- ity to derive pleasure. Method. Eighteen remitted depressed (RD) and 22 never depressed (ND) participants underwent high angular resol- ution diffusion-weighted imaging (HARDI) scans. To reconstruct the two pathways of the MFB (imMFB and slMFB) we used the damped Richardson–Lucy (dRL) algorithm. Mean fractional anisotropy (FA) was sampled along the tracts. Results. Mean FA of imMFB, slMFB and a comparison tract (the middle cerebellar peduncle) did not differ between ND and RD participants. Hedonic capacity correlated negatively with mean FA of the left slMFB, explaining 21% of the variance. Conclusions.
    [Show full text]
  • The Habenular Nuclei: a Conserved Asymmetric Relay Station in the Vertebrate Brain
    The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bianco, Isaac H. and Stephen W. Wilson. 2009. The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1519): 1005-1020. Published Version doi://10.1098/rstb.2008.0213 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10886852 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Phil. Trans. R. Soc. B (2009) 364, 1005–1020 doi:10.1098/rstb.2008.0213 Published online 4 December 2008 Review The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain Isaac H. Bianco1,2,* and Stephen W. Wilson1,* 1Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK 2Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA The dorsal diencephalon, or epithalamus, contains the bilaterally paired habenular nuclei and the pineal complex. The habenulae form part of the dorsal diencephalic conduction (DDC) system, a highly conserved pathway found in all vertebrates. In this review, we shall describe the neuroanatomy of the DDC, consider its physiology and behavioural involvement, and discuss examples of neural asymmetries within both habenular circuitry and the pineal complex.
    [Show full text]
  • Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics
    REVIEW ARTICLE Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics E.H. Middlebrooks, R.A. Domingo, T. Vivas-Buitrago, L. Okromelidze, T. Tsuboi, J.K. Wong, R.S. Eisinger, L. Almeida, M.R. Burns, A. Horn, R.J. Uitti, R.E. Wharen Jr, V.M. Holanda, and S.S. Grewal ABSTRACT SUMMARY: Deep brain stimulation is an established therapy for multiple brain disorders, with rapidly expanding potential indi- cations. Neuroimaging has advanced the field of deep brain stimulation through improvements in delineation of anatomy, and, more recently, application of brain connectomics. Older lesion-derived, localizationist theories of these conditions have evolved to newer, network-based “circuitopathies,” aided by the ability to directly assess these brain circuits in vivo through the use of advanced neuroimaging techniques, such as diffusion tractography and fMRI. In this review, we use a combination of ultra-high-field MR imaging and diffusion tractography to highlight relevant anatomy for the currently approved indications for deep brain stimulation in the United States: essential tremor, Parkinson disease, drug-resistant epilepsy, dystonia, and obsessive-compulsive disorder. We also review the literature regarding the use of fMRI and diffusion tractography in under- standing the role of deep brain stimulation in these disorders, as well as their potential use in both surgical targeting and de- vice programming. ABBREVIATIONS: AL ¼ ansa lenticularis; ALIC ¼ anterior limb of the internal capsule; ANT ¼
    [Show full text]
  • Frontal White Matter Architecture Predicts Efficacy of Deep Brain
    Coenen et al. Translational Psychiatry (2019) 9:197 https://doi.org/10.1038/s41398-019-0540-4 Translational Psychiatry ARTICLE Open Access Frontal white matter architecture predicts efficacy of deep brain stimulation in major depression Volker A. Coenen 1,2,3,4,5,ThomasE.Schlaepfer 2,4,6,7, Bettina Bewernick7,8, Hannah Kilian2,6, Christoph P. Kaller2,4,9, Horst Urbach2,9,10,MengLi1,2,11 and Marco Reisert1,2 Abstract Major depression is a frequent and severe disorder, with a combination of psycho- and pharmacotherapy most patients can be treated. However, ~20% of all patients suffering from major depressive disorder remain treatment resistant; a subgroup might be treated with deep brain stimulation (DBS). We present two trials of DBS to the superolateral medial forebrain bundle (slMFB DBS; FORESEE I and II). The goal was to identify informed features that allow to predict treatment response. Data from N = 24 patients were analyzed. Preoperative imaging including anatomical sequences (T1 and T2) and diffusion tensor imaging (DTI) magnetic resonance imaging sequences were used together with postoperative helical CT scans (for DBS electrode position). Pathway activation modeling (PAM) as well as preoperative structural imaging and morphometry was used to understand the response behavior of patients (MADRS). A left fronto-polar and partly orbitofrontal region was identified that showed increased volume in preoperative anatomical scans. Further statistical analysis shows that the volume of this “HUB-region” is predictive for later MADRS response from DBS. The HUB region connects to typical fiber pathways that have been addressed before 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; in therapeutic DBS in major depression.
    [Show full text]
  • Download English-US Transcript (PDF)
    MITOCW | MIT9_14S14_lec12.mp3 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To make a donation or view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at [email protected]. PROFESSOR: All right. Listen, I didn't much like the way things went in the last class. And the reason, it's because of the way I had planned it. By having a quiz not on the chapter we're covering in a day, you're always going to spend your time reviewing for the quiz, and you're not going to read-- or at least, you won't all read the chapter for today. So it's not a very good way to do it. I asked you to read chapter 12, I believe, for today. You all should do that if you want to get the maximum out of the class. So this is what I would like to change. There's a number-- I talked to some of the students, and I talked to Caitlin. I would like to have a quiz every class, but only one, occasionally two questions. One idea would be to have one fairly easy question on the new chapter, just to make sure you've read it and get you to read it. But I also could have a question on the previous class that you should be able to answer if you've come to the class and gone over the slides afterwards that I post online.
    [Show full text]
  • The Habenular Nuclei: a Conserved Asymmetric Relay Station in the Vertebrate Brain
    The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bianco, Isaac H. and Stephen W. Wilson. 2009. The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1519): 1005-1020. Published Version doi://10.1098/rstb.2008.0213 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10886852 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Phil. Trans. R. Soc. B (2009) 364, 1005–1020 doi:10.1098/rstb.2008.0213 Published online 4 December 2008 Review The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain Isaac H. Bianco1,2,* and Stephen W. Wilson1,* 1Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK 2Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA The dorsal diencephalon, or epithalamus, contains the bilaterally paired habenular nuclei and the pineal complex. The habenulae form part of the dorsal diencephalic conduction (DDC) system, a highly conserved pathway found in all vertebrates. In this review, we shall describe the neuroanatomy of the DDC, consider its physiology and behavioural involvement, and discuss examples of neural asymmetries within both habenular circuitry and the pineal complex.
    [Show full text]
  • The Dorsal Diencephalic Conduction System in Reward Processing: Spotlight on the Anatomy and Functions of the Habenular Complex
    Behavioural Brain Research 348 (2018) 115–126 Contents lists available at ScienceDirect Behavioural Brain Research journal homepage: www.elsevier.com/locate/bbr The dorsal diencephalic conduction system in reward processing: Spotlight T on the anatomy and functions of the habenular complex Marc Fakhoury Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3C3J7, Canada ARTICLE INFO ABSTRACT Keywords: The dorsal diencephalic conduction system (DDC) is a highly conserved pathway in vertebrates that provides a Aversion route for the neural information to flow from forebrain to midbrain structures. It contains the bilaterally paired Dopamine habenular nuclei along with two fiber tracts, the stria medullaris and the fasciculus retroflexus. The habenula is Dorsal diencephalic conduction system the principal player in mediating the dialogue between forebrain and midbrain regions, and functional ab- Habenula normalities in this structure have often been attributed to pathologies like mood disorders and substance use Reward disorder. Following Matsumoto and Hikosaka seminal work on the lateral habenula as a source of negative Serotonin reward signals, the last decade has witnessed a great surge of interest in the role of the DDC in reward-related processes. However, despite significant progress in research, much work remains to unfold the behavioral functions of this intriguing, yet complex, pathway. This review describes the current state of knowledge on the DDC with respect to its anatomy, connectivity, and functions in reward and aversion processes. 1. Introduction the habenula, and the fasciculus retroflexus (FR). It constitutes a rostro- caudal conduction system that merges with the MFB at its rostral and The discovery by Olds and Milner that electrical stimulation of caudal poles.
    [Show full text]