Chemistry 4.0 Growth Through Innovation in a Transforming World Chemistry 4.0 | Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Chemistry 4.0 Growth Through Innovation in a Transforming World Chemistry 4.0 | Table of Contents Chemistry 4.0 Growth through innovation in a transforming world Chemistry 4.0 | Table of contents Table of contents A new development in the chemical industry: the era of Chemistry 4.0 06 Incremental innovations and disruptive changes in the chemical sector 08 The digital transformation of the chemical industry 11 The chemical industry’s key role in the circular economy 15 Mutual enhancement between digitalization and circular economy 19 Recommendations 23 Contact 28 03 Chemistry 4.0 | Foreword by the VCI President Dr. Kurt Bock, President, German Chemical Industry Association (VCI) 04 Chemistry 4.0 | Foreword by the VCI President Foreword by the VCI President Chemical and pharmaceutical com- Digitalizing the chemical industry today in order to take advantage of panies in Germany have shown time offers new opportunities as well as opportunities through transforma- and again that they can successfully risks. Research and development, tion tomorrow. From this foundation, master the tectonic shifts in our com- manufacturing, and business models we have derived recommendations petitive environment; examples in will be transformed. It is not easy aimed at the association and its the 150 year old history of industrial to separate myths from real risks member companies, as well as poli- chemistry are changes in raw mate- and opportunities, take appropriate cy-makers. If we all work together, we rials, relocation of growth centers measures, and gain a competitive will be able to expand the role of the to emerging economies, and the call advantage. This transformation offers chemical industry as an innovation to make business more sustainable, great opportunities for the highly center for Germany. which has been receiving broad pub- developed chemical industry in Ger- lic support recently. many in terms of enhancing its global I would like to express my special competitiveness. The chemical and thanks to the many experts, The key to our competitiveness is pharmaceutical industry’s innovative particularly from the member com- the innovative power held in our processes, products, and services panies, who took part in numerous companies: new and improved make a significant contribution to sus- workshops and contributed to this molecules, production and business tainable development of our society. study, as well as the medium-sized processes. In Europe, our sector has Our sector will continue to be a tradi- enterprises that responded to the been characterized by globalization, tional supplier of materials, while our online survey. specialization, and focusing on the role as a service provider will grow in core business since the 1980s. We importance at the same time. Their knowledge and their assess- have now reached the next level: ment of the industry’s future have Chemistry 4.0. Digitalization and Against this background, the VCI, its made this study possible at all. circular economy are the key cha- member companies, and Deloitte racteristics, and these two elements Consulting have examined which will fundamentally alter the way we developments will influence the work, as well as support sustainable chemical and pharma business up management. to 2030, and what we need to do 05 Chemistry 4.0 | A new development in the chemical industry: the era of Chemistry 4.0 A new development in the chemical industry: the era of Chemistry 4.0 The chemical and pharmaceutical icals that until now had often been Circular economies will gain in impor- industry (in the following: chemical covered by German exports. These tance, and digitalization will lead to industry) is an important driver for changes mean a further increase in extensive changes in all sectors. These innovation and growth in the German competitive intensity for the chemical two core topics are of central impor- economy. However, fulfilling this role sector in Germany, both in its Euro- tance to the trends in the chemical in the long term will require significant pean home market and in the export sector up to 2030 and beyond. efforts; like all industries in Germany, markets: in Europe, import pressure the chemical and pharma sector is on base chemicals and intermediate As part of these changes, a new phase faced with elementary strategic and products from resource-rich regions of development is beginning in the structural challenges. will go up, while in export markets, German chemical industry. Following competition with local providers and industrialization and coal chemistry On the one hand, demand for chemical other importers will intensify. (Chemistry 1.0), the emergence of products in Western Europe will grow petrochemistry (Chemistry 2.0), and only modestly in the decades ahead, On the other hand, a paradigm change increasing globalization and speciali- moving the focus toward markets in in demand structures and public zation (Chemistry 3.0), the industry is Asia, South America, and, eventually, preferences has been taking place for a entering a new phase with Chemistry Africa. Since international and local while. The desire to use resources in an 4.0, in which digitalization, circular competitors are expanding their pro- efficient and environmentally friendly economy, and sustainability play key duction capacities there, and additional way has noticeable effects on energy roles (see diagram). capacities in resource-rich regions are supply and consumption habits. The to be expected, the whole competitive trend toward the Sharing Economy environment in the chemical industry is illustrates this transformation. By about to face a transformation. In addi- developing strategies to serve changing tion, manufacturers in developing and customer requirements, companies resource-rich countries are expanding make an important contribution toward their scope to include specialty chem- reaching UN sustainability goals. 06 Chemistry 4.0 | A new development in the chemical industry: the era of Chemistry 4.0 Development from Chemistry 3.0 to Chemistry 4.0 Chemistry 3.0 Chemistry 4.0 lobalization Specialization Digitalization Circular Economy Globalization, the European internal market, Drivers for growing competition from gas-based chemistry, Digital revolution, sustainability, climate protection, transformation the influence of financial markets on corporate closing material cycles strategies, commodification Intensive use of data, recycling of carbon-containing Increasing use of renewable raw materials and Raw materials waste, H from renewable energies in combination natural gas 2 with CO2 used to produce base chemicals New synthesis and production processes through Technology biotechnology and gene technology, enlargement Digitalization of manufacturing processes of individual processes Close cooperation between basic research in Decentralization of R&D in customer markets, Research universities and application-oriented research in utilization of Big Data, oint development with companies customers Internationalization of trade and on-site Corporate production abroad, specialization and growth in More flexible cooperation as part of economic net- structure SMEs, consolidation through M&A, creation of works, digital business models, and consolidation chemical parks Expanding product range, specialty chemicals Expanding the spectrum of value creation: chemical oriented to specific customer requirements, new sector becomes a supplier of extensive and Products drugs, replacement of traditional materials with sustainable solutions for customers and the chemical products environment Environmental protection integrated into produc- With Chemie3 (ecology, economy, and social affairs), Environment, tion, increasing product safety through expanded sustainability becomes a comprehensive model and Health and Safety review of material properties, Responsible Care future concept for the industry 07 Chemistry 4.0 | Incremental innovations and disruptive changes in the chemical sector Incremental innovations and disruptive changes in the chemical sector As part of this study, a systematic continue to offer growth opportunities analysis identified 30 trends that will in future. be of key importance to the chemical industry in Germany until 2030. These The chemical sector in Germany is trends were analyzed with regard to well-positioned to master the chal- the underlying drivers, and assessed lenges of incremental change. A strong according to their probable impact industry network in Germany, the inno- (see diagram). vative power of the chemical industry, and especially well-developed, focused, The results show that many innova- and customer-oriented medium-sized tions in important customer industries enterprises are key success factors. of the chemical industry, e.g. in the au- As such, these incremental changes tomotive, construction, and packaging continue to offer the chemical sector industries, will likely happen gradually. opportunities for growth, although any Specific examples of such fields of competitive advantages gained erode innovation are lightweight construction faster and faster due to intensifying using plastics and composite materials competitive pressure. in the automotive industry, and more energy-efficient construction mate- rials. These incremental innovation processes are part of the business and success models that already exist in the chemical industry in Germany, and will 08 Chemistry 4.0 | Incremental innovations and disruptive changes in the chemical sector Trends in the chemical industry up to 2030 Societal politically driven Genome editing in Renewable energy – medical applications
Recommended publications
  • Determination of Lead Content in Pyrotechnics Used for Fireworks And
    Advances in Engineering Research (AER), volume 130 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017) Determination of lead content in pyrotechnics used for fireworks and firecrackers based on inductively coupled plasma optical emission spectrometric approach (ICP-OES) 1, a Wu Jun-yi 1Technical Center for Dangerous Goods Testing of Guangxi Entry-Exit Inspection and Quarantine Bureau, Beihai, Guangxi, China [email protected] Keywords: fireworks and firecrackers; pyrotechnics; lead content; determination; inductively coupled plasma optical emission spectrometric approach; ICP-OES. Abstract. Inductively coupled plasma optical emission spectrometric approach(ICP-OES) is used to determine the lead content in pyrotechnics used for fireworks and firecrackers. Element of lead is commonly found as impurity in chemical materials used for pyrotechnics in fireworks and firecrackers. Statistical analysis shows that lead content in pyrotechnics is below 5%.Concept of this method: considering the weight of the sample is 400mg,constant volume is 0.5L and the concentration of lead is below 40mg/L in sample solution, the determination scope of the method for the lead content would be between 5%.Further experiments proved that the fitting correlation coefficient of lead calibration curve is 0.9997 or higher, recovery is 92.53%‒115.63%.The allowable differential value is 0.4% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision. Introduction In China, fireworks and firecrackers are very important consumer recreational products in people’s everyday life since ancient times. Gorgeous colors produced by fireworks and firecrackers are even the leading role of foiling festal atmosphere in every grand holiday celebrations.
    [Show full text]
  • Innovation in the Japanese Chemical Industry, Which Supports World Electronics Industry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Innovation in the Japanese Chemical Industry, Which Supports World Electronics Industry So Hirano I. Introduction This article focuses on innovation by outlining the history of medium- sized chemical companies in Japan and analyzes the factors that resulted in their success1). Industrialized countries always face attempts to keep pace with the economic challenges of emerging countries, which have recently entered the industrialization phase, irrespective of era or region. The development of technology standards in emerging countries allows them to enter product areas that were initially monopolized by industrialized countries. Such competitive situations result in industrialized countries losing their competitive advantage to emerging countries, which often have lower labor and production costs. In the1980s, Japan demonstrated enormous competitive strength on an international level in the electronics industry. However, in recent years, with the emergence and growth of companies based in Taiwan, China, and Korea, the market share of Japan’s electron- ics companies have fallen into a slump. Sony’s FY2012 ending deficit balance was recorded at its worst. Similarly, Panasonic and Sharp recorded large-scale deficits for the same fiscal year. Evidently, the future of Japan’s electronic industry is in jeopardy. 1) The content of this paper is largely based on Kikkawa and Hirano (2011). ――97 成城・経済研究 第204号 (2014年3月) To ensure that the decline of specific industries does not cause the overall decline of the economy, industrialized countries face the necessity of perpetually fostering new pivotal industries. However, the development of these industries is rather difficult.
    [Show full text]
  • Digitalization in Chemical Distribution Download Brochure
    Digitalization in Chemical Distribution Winners & Losers f f Digitalization in Chemical Distribution | Winners & Losers The Chemical Industry moves in line with general industry trends 04 Operational Excellence 06 Profitable Growth 10 Commercial Excellence 16 Digital Trends 28 Why Deloitte 30 Your contact 34 03 The Chemical Industry moves in line with general industry trends Digitalization and Circular Economy are the Chemistry 4.0 issues Industry 1.0 2.0 3.0 4.0 Driver Mechanization Industrialization Automation Digitalization Time 1784 1870 1969 2012 Game Steam Engine, Conveyor Belt, Electronics, Big Data, Changer Water Power Electricity Computer Internet of Things Chemistry 1.0 2.0 3.0 4.0 Digitalization, Circular Driver Industrialization Substitution Globalization Economy Time 1865 1950 1980 2010 Synthetic Dyes,Fertilizers, Synthetic Fibres, Tailored Chemical Solutions, Hybrid materials, Products Soaps,Pharmaceuticals Plastics, Rubbers New Material Mixes spin electronics Large scale, Large scale, con-tinuous Scale economies, On purpose, Technology batch production production Gene Technology additive production Raw Sugar, cellulosics, Coal, tar, fat based Crude Oil Natural Gas, Renewables Materials C-cont. waste, CO2 Peer Vertically integrated, Internal and external Horizontal M&A, New eco-systems, Structure national companies Verbund structures global segment leaders Circular Economy 04 Source: VCI-Deloitte study on Digitalization & Circular economy (9/2017) Digitalization in Chemical Distribution | Winners & Losers Digitalization in Chemicals is the usage of data to boost „Operational Excellence“, „Profitable Growth“ and/or „Commercial Excellence“ Coman nternal Coman ternal erating normation echnolog echnolog Collect Analyze, interpret, Collect internal data network, visualize external data (ig data (Analytics Apply algorithms to take decisions and hsical initiate actions igital 1.
    [Show full text]
  • Alternative Feedstocks in Chemicals Manufacturing
    Alternative Feedstocks in Chemicals Manufacturing Joanna McFarlane and Sharon Robinson Green Chemistry and Green Engineering Conference American Chemical Society Washington DC June 27, 2006 High Feedstock Prices Negatively Impact the Chemical Industry • The high cost of natural gas has eliminated the competitive advantage for U.S. chemical production • As fuel prices rise, chemical manufacturers are shutting down domestic production and moving plants to Asia & Middle East − 50% of methanol, 45% of ammonia, and 15% of ethylene capacities have been shut down in U.S. since 2000 − U.S. import of fertilizers increased to 45% from 10% in 1990 − In 2005 8,400 jobs were lost in the chemical industry − Industry went from an 80-yr trade surplus ($20B in 1995) to trade deficits beginning in 2002 Sources: Guide to the Business of Chemistry 2005 Chemicals IOF Annual Report 2004 June 27, 2006 Energy Independence Issue: Industrial Use of Petroleum & Natural Gas 30 25 20 15 Quads/yr 10 Petroleum 5 Natural Gas Feedstock Energy Usage 0 4% of Total U.S. Energy Consumption 3% of Total U.S. Natural Gas Consumption Petrochem Ind Other Industry Electric June 27, 2006 Residential Commercial Transportation Alternative Feedstock Options for Producing Large-Volume Chemicals • Coal – gasification and liquefaction • Biomass – thermochemical, biological processes, pyrolysis • Methane – stranded, unconventional, and hydrates • Unconventional petroleum – oil shale, tar sands, heavy oil • Novel pathways – CO2/H2O, methane, hydrogen to hydrocarbons June 27, 2006 Selected
    [Show full text]
  • 2021 Chemical Industry Outlook Download the Report
    Chemicals 2021 chemical industry outlook 2021 chemical industry outlook Entering a period of profound transition The COVID-19 pandemic has had an unprecedented companies end up neglecting long-term opportunities, impact on the US economy and the chemical industry, including investing in innovation, emerging applications, which experienced a significant demand decline over and adopting new business models that generate the past eight months. While the industry was already sustained growth. facing cyclical pressures such as overcapacity, pricing pressures, and trade uncertainty before 2020, many A critical aspect of dealing with this disruption in 2021 postpandemic changes have a structural or disruptive could be understanding customer behaviors that are character. But chemical companies in the United States temporary versus permanent, as recovery will likely be have responded to the crisis by focusing on operational uneven across end markets and geographies. Companies efficiency, asset optimization, and cost management. can address this uncertainty by revisiting their product portfolio and conducting robust scenario planning that As the industry moves into 2021, the changed economic, includes the unknowns. social, environmental, and political expectations are expected to play an even more important role in shaping its future. To succeed in this shifting industry landscape, chemical companies should consider implementing a series of targeted, strategic initiatives across major functional areas such as R&D and technology. But too much focus on the short term could mean that About the study: Deloitte postelection survey To understand the outlook and perspectives of organizations across the energy, resources, and industrials industries, Deloitte fielded a survey of more than 350 US executives and other senior leaders in November 2020 following the 2020 US presidential election.
    [Show full text]
  • Determination of Arsenic Content in Pyrotechnics Used for Fireworks And
    Advances in Engineering Research (AER), volume 130 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017) Determination of arsenic content in pyrotechnics used for fireworks and firecrackers based on inductively coupled plasma optical emission spectrometric approach (ICP-OES) 1, a Wu Jun-yi 1Technical Center for Dangerous Goods Testing of Guangxi Entry-Exit Inspection and Quarantine Bureau, Beihai, Guangxi, China [email protected] Keywords: fireworks and firecrackers; pyrotechnics; arsenic content; determination; inductively coupled plasma optical emission spectrometric approach; ICP-OES. Abstract. Inductively coupled plasma optical emission spectrometric approach(ICP-OES) is used to determine the arsenic content in pyrotechnics used for fireworks and firecrackers. Element of arsenic is commonly found as impurity in chemical materials used for pyrotechnics in fireworks and firecrackers. Statistical analysis shows that arsenic content in pyrotechnics is below 2%.Concept of this method: considering the weight of the sample is 400mg,constant volume is 250mL and the concentration of arsenic is below 40mg/L in sample solution, the determination scope of the method for the arsenic content would be below 2%.Further experiments proved that the fitting correlation coefficient of arsenic calibration curve is 0.995 or higher, recovery is 89.33%-94.95%.The allowable differential value is 0.5% between two single tests under repeatable conditions. This method can completely satisfy the requirements of the fireworks and firecrackers industry with high accuracy and good precision. Introduction In China, fireworks and firecrackers are very important consumer recreational products in people’s everyday life since ancient times. Gorgeous colors produced by fireworks and firecrackers are even the leading role of foiling festal atmosphere in every grand holiday celebrations.
    [Show full text]
  • Chemical Sector Profile
    Chemical Sector Profile The U.S. Chemical Sector converts raw materials into more than 70,000 diverse products essential to modern life and distributes those products to more than 750,000 end users throughout the Nation. Several hundred thousand U.S. chemical facilities—ranging from petrochemical manufacturers to chemical distributors—use, manufacture, store, transport, or deliver chemicals along a complex, global supply chain. End users include critical infrastructure sectors, making the uninterrupted production and transportation of chemicals essential for national and economic security. Impact on U.S. Economy The U.S. chemical industry is responsible for more than a quarter of the U.S. GDP, supports the production of almost all commercial and household goods, and is essential to economic growth. Generation of U.S. Employment From research and development to manufacturing, the U.S. chemical industry employs nearly 800,000 people, while creating jobs in the many other industries it touches. Contribution to U.S. Exports The business of chemistry is America’s largest exporting sector, supplying an eighth of the world’s chemical needs. Components of the Chemical Sector The U.S. Chemical Sector is made up of five distinct components: agricultural chemicals, basic chemicals, specialty chemicals, consumer products, and pharmaceuticals. Each component supports a specific and integral part of America’s chemical needs. The Chemical Sector: Integral to Everyday Life Nearly all goods in use every day in the U.S. are manufactured using Chemical Sector products. These goods are found in homes, offices, drug stores, and farms across the Nation. Page 1: American Chemistry Council (ACC), Elements of the Business of Chemistry, 2017; DHS, Chemical SSP, 2015; National Association of Chemical Distributors (NACD), 2019, NACD Responsible Distribution.
    [Show full text]
  • Business Transformation in the Chemical Industry Are You Ready?
    Business Transformation in the Chemical Industry Are you ready? Business Transformation in the Chemical Industry | Are you ready? The chemical industry – proud of the past 04 The chemical industry going forward – mind the gap 06 Business transformation in the chemical industry 12 Deloitte – The partner for a successful business transformation 17 Contact 18 03 The chemical industry – proud of the past Today's chemical industry is a €3,347bn and grow in excess of 4.5 percent p.a., market with growth rates exceeding 5 well ahead of its supplier and customer percent per annum, a value 1.8 times that industries. Consequently, we are seeing of Germany's GDP as well as considerable increasing investment in global chemical profitability and stability. It has created capacity and new process technology to more value for shareholders, employees transform natural resources directly into and customers than most other industries. chemicals, avoiding the stagnating refinery value chain step. And it has the unique ability to transform natural resources into formulated products Unlike high tech and other industries and materials that provide better solutions, witnessing above-average growth, the differentiation and innovation to both cus- chemical industry has also been enjoying tomers and consumers. considerable profitability due to high entry barriers such as physical dependencies Better solutions create additional growth (pipelines, economies of scope, transport by substituting other materials, such as and storage access), favorable access to glass,
    [Show full text]
  • Fact Sheet: 40 Common Minerals and Their Uses
    40 Common Minerals and Their Uses Aluminum Beryllium The most abundant metal element in Earth’s Used in the nuclear industry and to make light, crust. Aluminum originates as an oxide called but strong alloys used by the aircraft industry. alumina. Bauxite ore is the main source of Beryllium salts are used in fluorescent lamps, aluminum and is imported from Jamaica, Brazil, X-ray tubes and as a deoxidizer in bronze metal- Guinea, Guyana, etc. It’s used in transportation lurgy. It is used in computers, telecommunication (automobiles), packaging, building/construction, and electronics products, aerospace and de- electrical, machinery and other applications. The fense applications, appliances, automotive and U.S. was 49 percent import reliant for aluminum consumer electronics, and medical applications. in 2020. The U.S. was 17 percent import reliant. Antimony Chromite A native element, antimony metal is extracted The U.S. consumes about 5 percent of world from stibnite ore and other minerals. It is used chromite ore production in various forms of im- as a hardening alloy for lead, especially storage ported materials, such as chromite ore, chromite batteries and cable sheaths. It’s also used in chemicals, chromium ferroalloys, chromium bearing metal, type metal, solder, collapsible metal and stainless steel. It’s used as an alloy in tubes and foil, sheet and pipes and semiconduc- stainless and heat resisting steel products. It’s tor technology. Antimony is used as a flame re- also used in chemical and metallurgical indus- tardant, in fireworks and in antimony salts, which tries (chrome fixtures, etc.). Superalloys require are used in the rubber, chemical and textile chromium.
    [Show full text]
  • Gum Naval Stores: Turpentine and Rosin from Pine Resin
    - z NON-WOOD FORESTFOREST PRODUCTSPRODUCTS ~-> 2 Gum naval stores:stores: turpentine and rosinrosin from pinepine resinresin Food and Agriculture Organization of the Unaed Nations N\O\ON- -WOODWOOD FOREST FOREST PRODUCTSPRODUCTS 22 Gum navalnaval stores:stores: turpentine• and rosinrosin from pinepine resinresin J.J.W.J.J.W. Coppen andand G.A.G.A. HoneHone Mi(Mf' NANATURALTURAL RESRESOURCESOURCES INSTITUTEIN STITUTE FFOODOOD ANDAN D AGRICULTUREAGRIC ULTURE ORGANIZATIONORGANIZATION OFOF THETH E UNITEDUNITED NATIONSNATIONS Rome,Rome, 19951995 The designationsdesignations employedemployed andand thethe presentationpresentation of of materialmaterial inin thisthis publication do not imply the expression of any opinionopinion whatsoever onon thethe partpart ofof thethe FoodFood andand AgricultureAgriculture OrganizationOrganization ofof thethe UnitedUnited Nations concernconcerninging thethe legal status of any countrycountry,, territory, city or areaareaorofits or of its auauthorities,thorities, orconcerningor concerning the delimitationdelirnitation of itsits frontiers or boundaries.boundaries. M-37M-37 IISBNSBN 92-5-103684-5 AAllll rights reserved.reserved. No part of this publication may be reproduced, stored in a retrretrievalieval systemsystem,, oror transmitted inin any form or byby anyany means,means, electronic,electronic, mechanimechanicai,cal, photocphotocopyingopying oror otherwise, withoutwithout thethe prior permission ofof the copyright owner. AppApplicationslications forfor such permission,permission, with a statementstatement
    [Show full text]
  • Chemical Engineering
    PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE OILS Thesis Submitted In partial fulfillment for the degree of DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING BY SAROJ KUMAR PADHI Under the esteemed guidance of DR. RAGHUBANSH KUMAR SINGH DEPARTMENT OF CHEMICAL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, ROURKELA-769008 ORISSA, INDIA. APRIL, 2010 CERTIFICATE This is to certify that the work presented in the Thesis, entitled “Preparation and Characterization of Biodiesel from Non-Edible oils” being submitted to National Institute of Technology , Rourkela ,in fulfillment of the requirement for the award of Degree of Doctor of Philosophy(Ph.D.),is an authentic work carried out under our supervision and guidance. To the best of our knowledge, the content of this Thesis does not form a basis for the award of any previous Degree to any one else. Dr.M.R.Panigrahi Dr. R. K. Singh Co Supervisor Supervisor Dept. of Chemical Engineering National Institute of Technology, Rourkela – 769008 , Orissa India Dedicated To MY BELOVED PARENTS ACKNOWLEDGEMENT With all reverence I take the opportunity to express my deep sense of gratitude and wholehearted indebtedness to my respected guide, Dr. R. K. Singh, Department of Chemical Engineering, National Institute of Technology, Rourkela . From the day of conception of this project his active involvement and motivating guidance on day-to-day basis has made it possible for me to complete this challenging work in time. Constant appraisal of working techniques was one of the key support with I do not want to miss to Acknowledge as far as Dr. Singh is concerned. It was he who expressed faith in me and tolerated my shortcomings with all benevolence and made this work a cherishing treatise with engineering science.
    [Show full text]
  • Gum Resin Pinewoods of France, Spain and United States in the 19 Th and 20 Th Centuries
    Juan Luis Delgado. Industrialization and landscape: gum resin pinewoods of France, Spain and United States in the 19 th and 20 th centuries. Estudios Rurales, Vol 6, N° 11, ISSN 2250-4001, CEAR-UNQ, Buenos Aires, segundo semestre de 2016, pp., 48-69 Industrialization and landscape: gum resin pinewoods of France, Spain and United States in the 19 th and 20 th centuries Abstract Gum resin as natural resource has a long history. In regard to landscape transformation has been quite decisive in numerous pinewoods, however, it is barely known outside places of production and consumption. In the last two centuries the demand of its main by-products, spirit of turpentine and rosin, grew exponentially while chemical industries such as paint and varnish, paper, rubber, soap, etcetera, were increasing its production. Considering that was necessary to keep the forest standing in order to get the gum resin I am going to compare the situation of pinewoods in France, Spain and United States, to show the consequences in the landscape of this industrial activity in different contexts and backgrounds. The most important cause in pinewoods transformation into «organic machines» was forestry, and politics; nevertheless, its application depended upon regional and national trajectories. The case of gum resin pinewoods is a good example of how industrialization had to deal with nature to obtain organic chemical products, studying intensely the mechanisms of the forest and the pine with the economical and ecological idea that preserve them was the aim, and so, transforming them into a crop of pines with its socio-environmental consequences.
    [Show full text]