Lasso Peptides from Actinobacteria - Chemical Diversity and Ecological Role Jimmy Mevaere

Total Page:16

File Type:pdf, Size:1020Kb

Lasso Peptides from Actinobacteria - Chemical Diversity and Ecological Role Jimmy Mevaere Lasso peptides from Actinobacteria - Chemical diversity and ecological role Jimmy Mevaere To cite this version: Jimmy Mevaere. Lasso peptides from Actinobacteria - Chemical diversity and ecological role. Biochemistry [q-bio.BM]. Université Pierre et Marie Curie - Paris VI, 2016. English. NNT : 2016PA066617. tel-01924455 HAL Id: tel-01924455 https://tel.archives-ouvertes.fr/tel-01924455 Submitted on 16 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie ED 227 : Sciences de la Nature et de l’Homme : écologie et évolution Unité Molécules de communication et Adaptation des Micro-organismes (MCAM) / Equipe Molécules de défense et de communication dans les écosystèmes microbiens (MDCEM) Lasso peptides from Actinobacteria Chemical diversity and ecological role Par Jimmy Mevaere Thèse de doctorat de biochimie et biologie moléculaire Présentée et soutenue publiquement le 14 novembre 2016 Devant un jury composé de : Véronique Monnet Directeur de recherche Rapporteur Jean-Luc Pernodet Directeur de recherche Rapporteur Jean-Michel Camadro Directeur de recherche Examinateur Marcelino T. Suzuki Professeur Examinateur Sergey B. Zotchev Professeur Examinateur Séverine Zirah Maître de conférences Directrice de thèse Yanyan Li Chargée de recherche Codirectrice de thèse Acknowledgements At first, I would like to thank Séverine Zirah and Yanyan Li, my PhD supervisor, and Prof. Sylvie Rebuffat for having entrusted me as a candidate for the PhD scholarship with my little knowledge of molecular microbiology and how to best achieve science. I must acknowledge them for their support and guidance. Thank you for giving me the opportunity to work in this unique place which is MNHN and MCAM research lab. I want to thanks the members and colleagues of the laboratory for the very useful helps they provided me during these three years and for the discussion: Didier, Bastien, Sebastien, Stéphane, Soizic, Caroline, Alain P, Carine, Christine, Michel, Isabelle, Arlette, Marie-lise, Alyssa, Jean, Amandine, Linda, Benjamin M, Alain B, Alexandre and Séverine A. Particular thanks go to Jean-baptiste Rioux who welcomed me so nicely and who teaches me the basis of molecular biology at the bench. I must acknowledge the work and the help of Haiyan Ma who preceded me and started the heterologous expression lasso peptides. I want to thanks Christophe Goulard who helped me a lot with the cultivation and the purification of those tricky lasso peptides while I was battling against Streptomyces sviceus morphologies. Many thanks to Adrienne for support, advice and discussion. Many thanks go to the student who came in Yanyan’s team, Hortense, Maylis, Saravanane, Andrea, Paul and Victor. I want to acknowledge the other student and post-doc from the lab, Mehdi, Agathe, Béatrice, Marine, Alison, Benjamin, Wei, Anaïs, Ambre, Margot, Anne, Frédéric, Mélanie, Johann, Sophie, Natacha and Clara. I must acknowledge Manon and Laura for their help in microbiology, Soraya for qPCR experiments, and Lionel and Arul for mass spectrometry experiments. Many thanks to Nora, Djena and Brice for their helps in administration matters. Finaly my thanks go to my friends and my family, in particular Ten, la Mére, le Frére, la Soeur, Clémence, Yves, Emmanuel, Bastien, Rémi, Erwan, Marion, Morgane, Matthieu, Ly, Christophe, Raphaël, Dara, Jérôme, Mickael, for their support (Wanna have a beer?), guidance (Don’t do PhD fool) and encouragement during the past three years, in particular through the most difficult phases of the project. I II Abbreviations ABC transporter ATP-binding cassette transporter ACN Acetonitrile ACP Acyl carrier protein ACT Actinorhodin AT Acyltransferase ATP Adenosine triphosphate BGC Biosynthetic gene cluster bp Base pair C Cytosine CDA Calcium-dependent antibiotics cDNA Complementary cDNA CoA Coenzyme A Dha 2,3-didehydroalanine DHB 2, 5-dihydroxybenzoic acid Dhb (Z)-2,3-didehydrobutyrine DMSO Dimethyl sulfoxide DNA Deoxyribonucleic acid Dnase Deoxyribonuclease dsDNA Double-stranded DNA DTT Dithiothreitol EDTA Ethylenediaminetetraacetic acid ESI Electrospray ionization FA Formic acid G Guanine GBAP Gelatinase biosynthesis-activating pheromone GlcNAc N-acetylglucosamine HCCA α-cyano-4-hydroxycinnamic acid HK Histidine kinase HPLC High-performance liquid chromatography HTH helix-turn-helix KS β-ketoacyl synthase Lan meso-lanthionine III LC-MS Liquid chromatography-mass spectrometry LP Lasso peptide MeLan 3-methyllanthionine MIC Minimal inhibitory concentration Mw Molecular weight NGS Next-generation sequencing NMR Nuclear magnetic resonance NRP Non-ribosomal peptide NRPS Non-ribosomal peptide synthase OCS One-component system OD Optical density PCR Polymerase chain reaction PKS Polyketide synthase PTM Post-translational modification qPCR Real-time quantitative polymerase chain reaction QS Quorum sensing Q-tof Quadrupole-time of flight RED Undecylprodigiosin RiPP Ribosomally synthesized and post-translationally modified peptide RNA Ribonucleic acid Rnase Ribonuclease rpm Revolutions per minute RR Response regulator rRNA Ribosomal ribonucleic acid RT-PCR Reverse transcription polymerase chain reaction SAM S-adenosylmethionine-dependent methyltransferase SARP Streptomyces antibiotic regulatory protein SDS Sodium dodecyl sulfate SEM Scanning electron microscopy SET SDS, EDTA, Tris buffer ssDNA Single-stranded DNA TCS Two-component system TE trishydroxyméthylaminométhane-EDTA Tm Melting temperature IV Table of contents Acknowledgements _________________________________________________________ I Abbreviations ____________________________________________________________ III Table of contents __________________________________________________________ V Figures __________________________________________________________________ IX Tables ___________________________________________________________________ XI List of Annexes _________________________________________________________ XIII Introduction ______________________________________________________________ 15 Literature review __________________________________________________________ 17 I. Microbial natural product discovery in the genomics era _____________________ 17 I.1. Diversity of microbial specialized metabolites _________________________ 17 I.2. From genes to molecules __________________________________________ 23 I.3. Streptomyces, a prolific metabolite producer ___________________________ 24 I.3.a. The life cycle of Streptomyces __________________________________ 26 I.3.b. Regulation of specialized metabolite biosynthesis in Streptomyces ______ 27 I.3.b.i Pathway-specific regulators __________________________________ 29 I.3.b.ii Pleiotropic regulators _______________________________________ 31 II. Ribosomally synthesized and post-translationally modified peptides ___________ 32 II.1. Diversity _______________________________________________________ 32 II.2. Lanthipeptides __________________________________________________ 34 II.2.a. Structure ___________________________________________________ 34 II.2.b. Biosynthesis ________________________________________________ 34 II.2.c. Classification ________________________________________________ 36 II.2.d. Biological activities __________________________________________ 36 II.3. Thiopeptides ____________________________________________________ 37 II.3.a. Structure ___________________________________________________ 37 II.3.b. Biosynthesis ________________________________________________ 37 II.3.c. Classification ________________________________________________ 38 II.3.d. Biological activities __________________________________________ 38 II.4. Lasso peptides __________________________________________________ 40 II.4.a. Diversity ___________________________________________________ 40 II.4.b. Discovery __________________________________________________ 45 II.4.c. Biosynthesis ________________________________________________ 47 II.4.c.i Gene cluster organization ____________________________________ 47 II.4.c.ii Maturation process _________________________________________ 49 II.4.c.iii Additional modifications ____________________________________ 50 II.4.d. Biological activities __________________________________________ 54 II.4.e. Bioengineering using lasso peptides ______________________________ 55 III. Ecological role of RiPPs ______________________________________________ 56 IV. Objectives of the thesis _______________________________________________ 60 Materials and methods _____________________________________________________ 63 I. Chemicals and biological materials _____________________________________ 63 V II. General DNA and microbiology methods_________________________________ 63 II.1. Purification of plasmids and cosmids ________________________________ 63 II.2. Isolation of genomic DNA _________________________________________ 64 II.3. General Polymerase Chain Reaction methods (PCR) ____________________ 64 II.4. Agarose gel electrophoresis ________________________________________ 65 II.5. General cloning procedure _________________________________________
Recommended publications
  • Structure-Based Virtual Screening of Hypothetical Inhibitors of the Enzyme Longiborneol Synthase—A Potential Target to Reduce Fusarium Head Blight Disease
    J Mol Model (2016) 22: 163 DOI 10.1007/s00894-016-3021-1 ORIGINAL PAPER Structure-based virtual screening of hypothetical inhibitors of the enzyme longiborneol synthase—a potential target to reduce Fusarium head blight disease E. Bresso1 & V. L ero ux 2 & M. Urban3 & K. E. Hammond-Kosack3 & B. Maigret2 & N. F. Martins1 Received: 17 December 2015 /Accepted: 27 May 2016 /Published online: 21 June 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract Fusarium head blight (FHB) is one of the most compounds from a library of 15,000 drug-like compounds. destructive diseases of wheat and other cereals worldwide. These putative inhibitors of longiborneol synthase provide a During infection, the Fusarium fungi produce mycotoxins that sound starting point for further studies involving molecular represent a high risk to human and animal health. Developing modeling coupled to biochemical experiments. This process small-molecule inhibitors to specifically reduce mycotoxin could eventually lead to the development of novel approaches levels would be highly beneficial since current treatments to reduce mycotoxin contamination in harvested grain. unspecifically target the Fusarium pathogen. Culmorin pos- sesses a well-known important synergistically virulence role Keywords Fusarium mycotoxins . Culmorin . Inhibitors . among mycotoxins, and longiborneol synthase appears to be a Homology modeling . Molecular dynamics . Ensemble key enzyme for its synthesis, thus making longiborneol syn- docking thase a particularly interesting target. This study aims to dis- cover potent and less toxic agrochemicals against FHB. These compounds would hamper culmorin synthesis by inhibiting Introduction longiborneol synthase. In order to select starting molecules for further investigation, we have conducted a structure- Fusarium head blight (FHB), caused by Fusarium based virtual screening investigation.
    [Show full text]
  • Actinobacteria in Algerian Saharan Soil and Description Sixteen New
    Revue ElWahat pour les Recherches et les Etudes Vol.7n°2 (2014) : 61 – 78 Revue ElWahat pour les recherches et les Etudes : 61 – 78 ISSN : 1112 -7163 Vol.7n°2 (2014) http://elwahat.univ-ghardaia.dz Diversity of Actinobacteria in Algerian Saharan soil and description of sixteen new taxa Bouras Noureddine 1,2 , Meklat Atika 1, Boubetra Dalila 1, Saker Rafika 1, Boudjelal Farida 1, Aouiche Adel 1, Lamari Lynda 1, Zitouni Abdelghani 1, Schumann Peter 3, Spröer Cathrin 3, Klenk Hans -Peter 3 and Sabaou Nasserdine 1 1- Affiliation: Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Alger, Algeria; [email protected] 2- Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaïa, BP 455, Ghardaïa 47000, Algeria; 3- Leibniz Institute DSMZ - Germ an Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany. Abstract _ The goal of this study was to investigate the biodiversity of actinobacteria in Algerian Saharan soils by using a polyphasic taxonomic approach based on the phenotypic and molecular studies (16S rRNA gene sequence analysis and DNA-DNA hybridization ). A total of 323 strains of actinobacteria were isolated from different soil samples, by a dilution agar plating method, using selective isolation media without or with 15-20% of NaCl (for halophilic strains). The morphological and chemotaxonomic characteristics (diaminopimelic acid isomers, whole-cell sugars, menaquinones, cellular fatty acids and diagnostic phospholipids) of the strains were consistent with those of members of the genus Saccharothrix , Nocardiopsis , Actinopolyspora , Streptomonospora , Saccharopolyspora , Actinoalloteichus , Actinokineospora and Prauserella .
    [Show full text]
  • Characterization of a Cytochrome P450 Monooxygenase Gene Involved in the Biosynthesis of Geosmin in Penicillium Expansum
    Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 10812 To link to this article : DOI : 10.5897/AJMR11.1361 URL : http://academicjournals.org/journal/AJMR/article- abstract/841ECBA21771 To cite this version : Siddique, Muhammad Hussnain and Liboz, Thierry and Bacha, Nafees and Puel, Olivier and Mathieu, Florence and Lebrihi, Ahmed Characterization of a cytochrome P450 monooxygenase gene involved in the biosynthesis of geosmin in Penicillium expansum. (2012) African Journal of Microbiology Research, vol. 6 (n° 19). pp. 4122-4127. ISSN 1996-0808 Any correspondance concerning this service should be sent to the repository administrator: [email protected] Characterization of a cytochrome P450 monooxygenase gene involved in the biosynthesis of geosmin in Penicillium expansum Muhammad Hussnain Siddique1,2, Thierry Liboz1,2, Nafees Bacha3, Olivier Puel4, Florence Mathieu1,2 and Ahmed Lebrihi1,2,5* 1Université de Toulouse, INPT-UPS, Laboratoire de Génie Chimique, avenue de l’Agrobiopole, 31326 Castanet-Tolosan Cedex, France. 2Le Centre national de la recherche scientifique (CNRS), Laboratoire de Génie Chimique, 31030 Toulouse, France. 3Centre of Biotechnology and Microbiology, University of Peshawar, Pakistan. 4Institut National de la Recherche Agronomique (INRA), Laboratoire de Pharmacologie Toxicologie, 31931 Toulouse, France. 5Université Moulay Ismail, Marjane 2, BP 298, Meknes, Morocco. Geosmin is a terpenoid, an earthy-smelling substance associated with off-flavors in water and wine. The biosynthesis of geosmin is well characterized in bacteria, but little is known about its production in eukaryotes, especially in filamentous fungi.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces Spp
    microorganisms Article Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. 1, 2, 3 1 Zhenlong Cheng y, Sean McCann y, Nicoletta Faraone , Jody-Ann Clarke , E. Abbie Hudson 2, Kevin Cloonan 2, N. Kirk Hillier 2,* and Kapil Tahlan 1,* 1 Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; [email protected] (Z.C.); [email protected] (J.-A.C.) 2 Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; [email protected] (S.M.); [email protected] (E.A.H.); [email protected] (K.C.) 3 Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada; [email protected] * Correspondence: [email protected] (N.K.H.); [email protected] (K.T.) These authors contributed equally. y Received: 13 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp.
    [Show full text]
  • Discovery of Cryptic Compounds from Streptomyces Lavendulae FRI-5 Using an Engineered Microbial Host (異種発現系の活用による放線菌休眠化合物の覚醒と同定)
    Discovery of cryptic compounds from Streptomyces Title lavendulae FRI-5 using an engineered microbial host Author(s) Pait, Ivy Grace Citation Issue Date Text Version ETD URL https://doi.org/10.18910/69537 DOI 10.18910/69537 rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University Doctoral Dissertation Discovery of cryptic compounds from Streptomyces lavendulae FRI-5 using an engineered microbial host (異種発現系の活用による放線菌休眠化合物の覚醒と同定) Ivy Grace Umadhay Pait January 2018 Division of Advanced Science and Biotechnology Graduate School of Engineering, Osaka University Contents Chapter 1 General Introduction 1.1 The role of microbial natural products in drug discovery 1 1.2 Bioactivities and biosynthesis of polyketides and nonribosomal peptides 3 1.2.1 The assembly-line enzymology of polyketides 3 1.2.2 The biosynthetic logic of nonribosomal peptide compounds 7 1.3 Streptomyces, the proven resource for therapeutics 9 1.3.1 Life cycle of Streptomyces 10 1.3.2 Regulation of secondary metabolite production in Streptomyces 11 1.4 Genome mining and reviving interest in microbial secondary metabolites 14 1.4.1 Decline in natural product research 14 1.4.2 Bacterial genome mining for new natural products 16 1.4.3 Streptomyces genome as the richest bacterial resource for cryptic BGCs 17 1.4.4 Approaches for triggering the production of cryptic metabolites 19 1.4.4.1 Altering chemical and physical conditions 19 1.4.4.2 Genetic modification/Molecular approaches 21 1.5 Heterologous expression in a genome-minimized
    [Show full text]
  • Physarum Polycephalum) by SPME
    Analysis of the volatiles in the headspace above the plasmodium and sporangia of the slime mould (Physarum polycephalum) by SPME- GCMS Huda al Kateb1 and Ben de Lacy Costello1 1Institute for biosensing technology, University of the West of England, Bristol, BS161QY, UK E-mail: [email protected] Abstract Solid phase micro-extraction (SPME) coupled with Gas Chromatography Mass Spectrometry (GC-MS) was used to extract and analyse the volatiles in the headspace above the plasmodial and sporulating stages of the slime mould Physarum Polycephalum. In total 115 compounds were identified from across a broad range of chemical classes. Although more (87) volatile organic compounds (VOCs) were identified when using a higher incubation temperature of 75oC, a large number of compounds (79) were still identified at the lower extraction temperature of 30oC and where the plasmodial stage was living. Far fewer compounds were extracted after sporulation at the two extraction temperatures. There were some marked differences between the VOCs identified in the plasmodial stage and after sporulation. In particular the nitrogen containing compounds acetonitrile, pyrrole, 2, 5-dimethyl-pyrazine and trimethyl pyrazine seemed to be associated with the sporulating stage. There were many compounds associated predominantly with the plasmodial stage including a number of furans and alkanes. Interestingly, a number of known fungal metabolites were identified including 1-octen-3- ol, 3-octanone, 1-octen-3-one, 3-octanol. In addition known metabolites of cyanobacteria and actinobacteria in particular geosmin was identified in the headspace. Volatile metabolites that had previously been identified as having a positive chemotactic response to the plasmodial stage of P.
    [Show full text]
  • Molecular Identification and Applied Genetics of Propionibacteria
    Research Collection Doctoral Thesis Molecular identification and applied genetics of propionibacteria Author(s): Dasen, Gottfried Heinrich Publication Date: 1998 Permanent Link: https://doi.org/10.3929/ethz-a-002055677 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH «*3 Diss. ETHNr. 12981 Molecular Identification and Applied Genetics of Propionibacteria A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH (ETHZ) for the degree of Doctor of Technical Sciences presented by Gottfried Heinrich Dasen Dipl. Lm.-Ing. ETH born June 25,1966 citizen of Dübendorf ZH and Täuffelen BE accepted on the recommendation of Prof. Dr. Michael Teuber, examiner Prof. Dr. Alexander von Graevenitz, co-examiner Dr. Leo Meile, co-examiner Zürich, 1998 Herzlichen Dank an: Meine Mutter, fur ihr Verständnis, ihren Glauben an mich und ihre Unterstützung im Laufe meiner gesamten Ausbildung. Herrn Prof. Dr. M. Teuber für die Vergabe der Arbeit und die grosse Autonomie die er mir bei deren Verwirklichung gewährt hat. Herrn Dr. Leo Meile für die vielen Stunden, die ich in seinem Büro verbracht habe und in denen er mich immer wieder motiviert hat, mir seine fachlichen Kompetenz zur Verfügung stellte und mich zu weiteren Versuchen angeregt hat. Herrn Prof. Dr. A. von Graevenitz für seine Bereitwilligkeit zur Übernahme des Korreferates und für seine kritische Bearbeitung dieser Arbeit. Den jetzigen und ehemaligen „G-Stock Leuten" für Ihre Kollegialität, fürs tolle Arbeitsklima, für den gegenseitigen Gedankenaustausch und noch für unzählige andere Dinge.
    [Show full text]
  • Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_900114035Cyc: Amycolatopsis sacchari DSM 44468 Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Microbial Extremophiles in Aspect of Limits of Life. Elena V. ~Ikuta
    Source of Acquisition NASA Marshall Space Flight Centel Microbial extremophiles in aspect of limits of life. Elena V. ~ikuta',Richard B. ~oover*,and Jane an^.^ IT LF " '-~ationalSpace Sciences and Technology CenterINASA, VP-62, 320 Sparkman Dr., Astrobiology Laboratory, Huntsville, AL 35805, USA. 3- Noblis, 3 150 Fairview Park Drive South, Falls Church, VA 22042, USA. Introduction. During Earth's evolution accompanied by geophysical and climatic changes a number of ecosystems have been formed. These ecosystems differ by the broad variety of physicochemical and biological factors composing our environment. Traditionally, pH and salinity are considered as geochemical extremes, as opposed to the temperature, pressure and radiation that are referred to as physical extremes (Van den Burg, 2003). Life inhabits all possible places on Earth interacting with the environment and within itself (cross species relations). In nature it is very rare when an ecotope is inhabited by a single species. As a rule, most ecosystems contain the functionally related and evolutionarily adjusted communities (consortia and populations). In contrast to the multicellular structure of eukaryotes (tissues, organs, systems of organs, whole organism), the highest organized form of prokaryotic life in nature is the benthic colonization in biofilms and microbial mats. In these complex structures all microbial cells of different species are distributed in space and time according to their functions and to physicochemical gradients that allow more effective system support, self- protection, and energy distribution. In vitro, of course, the most primitive organized structure for bacterial and archaeal cultures is the colony, the size, shape, color, consistency, and other characteristics of which could carry varies specifics on species or subspecies levels.
    [Show full text]
  • Put a Bow on It: Knotted Antibiotics Take Center Stage
    antibiotics Review Put a Bow on It: Knotted Antibiotics Take Center Stage Stephanie Tan , Gaelen Moore and Justin Nodwell * Department of Biochemistry, MaRS Discovery District, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada * Correspondence: [email protected]; Tel.: +1-416-946-8890 Received: 18 July 2019; Accepted: 9 August 2019; Published: 11 August 2019 Abstract: Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large class of natural products produced across all domains of life. The lasso peptides, a subclass of RiPPs with a lasso-like structure, are structurally and functionally unique compared to other known peptide antibiotics in that the linear peptide is literally “tied in a knot” during its post-translational maturation. This underexplored class of peptides brings chemical diversity and unique modes of action to the antibiotic space. To date, eight different lasso peptides have been shown to target three known molecular machines: RNA polymerase, the lipid II precursor in peptidoglycan biosynthesis, and the ClpC1 subunit of the Clp protease involved in protein homeostasis. Here, we discuss the current knowledge on lasso peptide biosynthesis as well as their antibiotic activity, molecular targets, and mechanisms of action. Keywords: lasso peptides; ribosomally synthesized post translationally modified peptide (RiPP); antibiotic; target; mechanism of action 1. Introduction The natural products known as secondary or specialized metabolites are the source of thousands of antibiotics and other drugs that are critical for current medical practice. The majority of these compounds originated from the Actinobacteria, especially the streptomycetes, as well as lower fungi. The numbers of compounds produced by each species ranges from less than five in most cases to as many as 50 in the Actinobacteria and fungi.
    [Show full text]