Enea® Linux Release Information

Total Page:16

File Type:pdf, Size:1020Kb

Enea® Linux Release Information Enea® Linux Release Information Release Version 8.1 Profile Standard-8.1 Enea® Linux Release Information Enea® Linux Release Information: Release Version 8.1 Copyright Copyright © Enea Software AB 2019. This User Documentation consists of confidential information and is protected by Trade Secret Law. This notice of copyright does not indicate any actual or intended publication of this information. Except to the extent expressly stipulated in any software license agreement covering this User Documentation and/or corresponding software, no part of this User Documentation may be reproduced, transmitted, stored in a retrieval system, or translated, in any form or by any means, without the prior written permission of Enea Software AB. However, permission to print copies for personal use is hereby granted. Disclaimer The information in this User Documentation is subject to change without notice, and unless stipulated in any software license agreement covering this User Documentation and/or corresponding software, should not be construed as a commitment of Enea Software AB. Trademarks Enea®, Enea OSE®, and Polyhedra® are the registered trademarks of Enea AB and its subsidiaries. Enea OSE®ck, Enea OSE® Epsilon, Enea® Element, Enea® Optima, Enea® Linux, Enea® LINX, Enea® LWRT, Enea® Accelerator, Polyhedra® Flash DBMS, Polyhedra® Lite, Enea® dSPEED, Enea® NFV Access, Accelerating Network Convergence™, Device Software Optimized™, and Embedded for Leaders™ are unregistered trademarks of Enea AB or its subsidiaries. Any other company, product or service names mentioned in this document are the registered or unregistered trademarks of their respective owner. Acknowledgements and Open Source License Conditions Detailed information is found in the Open Source Report(s) provided with this Release. © Enea Software AB 2019 Profile Standard-8.1 ii Enea® Linux Release Information Table of Contents 1 - About This Release ...................................................................................................... 4 1.1 - Provided Contents ............................................................................................... 4 1.2 - Supported Host Environment ................................................................................. 6 1.3 - Supported Reference Boards with Parameters ........................................................... 6 1.4 - Provided Packages .............................................................................................. 7 1.5 - Provided Toolchains (SDK) .................................................................................. 7 1.6 - Provided Documentation ...................................................................................... 7 1.7 - Security Fixes .................................................................................................... 8 2 - Main Changes ............................................................................................................. 9 2.1 - New Functionality/Enhancements ........................................................................... 9 2.2 - Yocto updates .................................................................................................... 9 2.3 - Changes in the Set of Provided Package .................................................................. 9 2.3.1 - Added Packages ....................................................................................... 9 2.3.2 - Removed Packages .................................................................................. 12 2.3.3 - Changed Package Versions ....................................................................... 19 3 - Known Problems in this Release .................................................................................. 25 3.1 - Yocto Project ................................................................................................... 25 3.2 - Devtool ........................................................................................................... 25 3.3 - KGDB kernel debugging .................................................................................... 25 4 - Contacting Enea Support ............................................................................................ 26 4.1 - Request for Product Support ................................................................................ 26 4.2 - Support Issue Information ................................................................................... 27 4.3 - Software Updates .............................................................................................. 28 4.4 - Extended Support Services .................................................................................. 28 © Enea Software AB 2019 Profile Standard-8.1 iii Enea® Linux Release Information 1. About This Release 1. About This Release This release of Enea Linux 8.1 provides a publicly available Enea Linux distribution for a selected set of targets. This release is generated from the Yocto Project 2.7 distribution using the branch warrior. 1.1 Provided Contents The current release contains documentation, prebuilt kernels and images, a bootloader and an SDK. The directories structure is detailed below: -- Documentation/ /* Enea Linux 8.1 documentation */ -- intel-corei7-64/ /* artifacts for the reference machine */ -- rpm/ /* rpm packages */ -- images/ -- enea-image-standard /* precompiled artifacts for the platform release image */ -- various artifacts (rootfs, kernel, config etc.) -- enea-image-standard-sdk /* precompiled artifacts for the development process. The image contains userspace tools and kernel configurations necessary for developing, debugging and profiling applications and kernel modules */ -- various artifacts -- esdk /* Extensible SDK related artifacts including SDK installer and manifest, self-extracting archive installing cross-compilation toolchain for the platform */ -- x86_64-buildtools-nativesdk-standalone-8.1.sh /* self-extracting archive installing additional tools for the host machine */ -- raspberrypi3-64/ /* artifacts for the reference machine */ -- rpm/ /* rpm packages */ -- images/ -- enea-image-standard /* precompiled artifacts for the platform release image */ -- various artifacts (rootfs, kernel, config etc.) -- enea-image-standard-sdk /* precompiled artifacts for the development process. The image contains userspace tools and kernel configurations necessary for developing, debugging and profiling applications and kernel modules */ -- various artifacts -- esdk /* Extensible SDK related artifacts including SDK installer and manifest, self-extracting archive installing cross-compilation toolchain for the platform */ -- x86_64-buildtools-nativesdk-standalone-8.1.sh /* self-extracting archive installing additional tools for the host machine */ -- qemuarm64/ /* artifacts for the reference machine */ -- rpm/ /* rpm packages */ -- images/ -- enea-image-standard /* precompiled artifacts for the platform release image */ -- various artifacts (rootfs, kernel, config etc.) -- qemuppc/ /* artifacts for the reference machine */ © Enea Software AB 2019 Profile Standard-8.1 4 Enea® Linux Release Information 1. About This Release -- rpm/ /* rpm packages */ -- images/ -- enea-image-standard /* precompiled artifacts for the platform release image */ -- various artifacts (rootfs, kernel, config etc.) -- qemux86-64/ /* artifacts for the reference machine */ -- rpm/ /* rpm packages */ -- images/ -- enea-image-standard /* precompiled artifacts for the platform release image */ -- various artifacts (rootfs, kernel, config etc.) The following set of artifacts is available: -- intel-corei7-64 -- bzImage /* kernel image */ -- bzImage-<target>.bin /* kernel image, same as above */ -- config-<target>.config /* kernel configuration file */ -- enea-image-standard-<target>.ext4 /* compressed EXT4 image of the rootfs */ -- enea-image-standard-<target>.tar.gz /* tar archive of the image */ -- modules-<target>.tgz /* external kernel modules */ -- raspberrypi3-64 -- Image /* kernel image */ -- Image-<target>.bin /* kernel image, same as above */ -- bcm*-rpi-3-b-*-<target>.dtb /* the device tree blob */ -- enea-image-standard-<target>.ext4 /* compressed EXT3 image of the rootfs */ -- enea-image-standard-<target>.tar.gz /* tar archive of the image */ -- modules-<target>.tgz /* external kernel modules */ -- qemuarm64 -- Image /* kernel image */ -- Image-<target>.bin /* kernel image, same as above */ -- enea-image-standard-<target>.qemuboot.conf /* kernel configuration file */ -- enea-image-standard-<target>.ext4 /* compressed EXT4 image of the rootfs */ -- enea-image-standard-<target>.tar.gz /* tar archive of the image */ -- modules-<target>.tgz /* external kernel modules */ -- qemuppc -- vmlinux /* kernel image */ -- vmlinux-<target>.bin /* kernel image, same as above */ -- enea-image-standard-<target>.qemuboot.conf /* kernel configuration file */ -- enea-image-standard-<target>.ext4 /* compressed EXT4 image of the rootfs */ -- enea-image-standard-<target>.tar.gz /* tar archive of the image */ © Enea Software AB 2019 Profile Standard-8.1 5 Enea® Linux Release Information 1. About This Release -- modules-<target>.tgz /* external kernel modules */ -- qemux86-64 -- bzImage /* kernel image */ -- bzImage-<target>.bin /* kernel image, same as above */ -- enea-image-standard-<target>.qemuboot.conf /* kernel configuration file */ -- enea-image-standard-<target>.ext4 /* compressed EXT4 image of the rootfs */ -- enea-image-standard-<target>.tar.gz /* tar archive of the
Recommended publications
  • Release Notes for X11R6.8.2 the X.Orgfoundation the Xfree86 Project, Inc
    Release Notes for X11R6.8.2 The X.OrgFoundation The XFree86 Project, Inc. 9February 2005 Abstract These release notes contains information about features and their status in the X.Org Foundation X11R6.8.2 release. It is based on the XFree86 4.4RC2 RELNOTES docu- ment published by The XFree86™ Project, Inc. Thereare significant updates and dif- ferences in the X.Orgrelease as noted below. 1. Introduction to the X11R6.8.2 Release The release numbering is based on the original MIT X numbering system. X11refers to the ver- sion of the network protocol that the X Window system is based on: Version 11was first released in 1988 and has been stable for 15 years, with only upwardcompatible additions to the coreX protocol, a recordofstability envied in computing. Formal releases of X started with X version 9 from MIT;the first commercial X products werebased on X version 10. The MIT X Consortium and its successors, the X Consortium, the Open Group X Project Team, and the X.OrgGroup released versions X11R3 through X11R6.6, beforethe founding of the X.OrgFoundation. Therewill be futuremaintenance releases in the X11R6.8.x series. However,efforts arewell underway to split the X distribution into its modular components to allow for easier maintenance and independent updates. We expect a transitional period while both X11R6.8 releases arebeing fielded and the modular release completed and deployed while both will be available as different consumers of X technology have different constraints on deployment. Wehave not yet decided how the modular X releases will be numbered. We encourage you to submit bug fixes and enhancements to bugzilla.freedesktop.orgusing the xorgproduct, and discussions on this server take place on <[email protected]>.
    [Show full text]
  • GNU/Linux AI & Alife HOWTO
    GNU/Linux AI & Alife HOWTO GNU/Linux AI & Alife HOWTO Table of Contents GNU/Linux AI & Alife HOWTO......................................................................................................................1 by John Eikenberry..................................................................................................................................1 1. Introduction..........................................................................................................................................1 2. Symbolic Systems (GOFAI)................................................................................................................1 3. Connectionism.....................................................................................................................................1 4. Evolutionary Computing......................................................................................................................1 5. Alife & Complex Systems...................................................................................................................1 6. Agents & Robotics...............................................................................................................................1 7. Statistical & Machine Learning...........................................................................................................2 8. Missing & Dead...................................................................................................................................2 1. Introduction.........................................................................................................................................2
    [Show full text]
  • Mdns/Dns-Sd Tutorial
    MDNS/DNS-SD TUTORIAL In this tutorial, we will describe how to use mDNS/DNS-SD on Raspberry Pi. mDNS/DNS-SD is a protocol for service discovery in a local area network. It is standardized under RFCs 6762 [1] and 6763[2]. The protocol is also known by the Bonjour trademark by Apple, or Zeroconf. On Linux, it is implemented in the avahi package. [1] http://tools.ietf.org/html/rfc6762 [2] http://tools.ietf.org/html/rfc6763 About mDNS/DNS-SD There are several freely available implementations of mDNS/DNS-SD: 1. avahi – Linux implementation (http://www.avahi.org/) 2. jmDNS – Java implementation (http://jmdns.sourceforge.net/) 3. Bonjour – MAC OS (installed by default) 4. Bonjour – Windows (https://support.apple.com/kb/DL999?locale=en_US) During this course, we will use only avahi. However, any of the aforementioned implementations are compatible. Avahi installation avahi is available as a package for Raspbian. Install it with: sudo apt-get install avahi-deamon avahi-utils Avahi usage avahi-daemon is the main process that takes care of proper operation of the protocol. It takes care of any configuration of the interfaces and network messaging. A user can control the deamon with command line utilities, or via D-Bus. In this document, we will describe the former option. For the latter one, please see http://www.avahi.org/wiki/Bindings. Publishing services avahi-publish-service is the command for publishing services. The syntax is: avahi-publish-service SERVICE-NAME _APPLICATION- PROTOCOL._TRANPOSRT-PROTOCOL PORT “DESCRIPTION” --sub SUBPROTOCOL For instance, the command: avahi-publish-service light _coap._udp 5683 “/mylight” --sub _floor1._sub._coap._udp will publish a service named ‘light’, which uses the CoAP protocol over UDP on port 5683.
    [Show full text]
  • Introduction to Tizen Mobile & Wearable Profile
    Introduction to Tizen Mobile & Wearable Profile Taesoo Jun, Ph.D. @Software Center Samsung Electronics Tizen Overview Tizen... • Is W3C standard-based • Has strong industry support • Is open source project • Covers multiple profiles for mobile for TV Common & Profile-Specific Compliance Rules for printer for wearable • Releasing Profiles • Preparing Profiles for PC • Potential Profiles for camera for IVI 3 Release History Oct. ‘14 Nov. ‘13 2.3 July ‘13 2.2.1 Multi-profile, May ‘13 2.2 Minor Update New Native Feb. ‘13 2.1 Commercial - App. installation in Framework SD card 2.0 Hybrid Ready w/ - Mobile/ Wearable Add-on SDK profile Web/Native, Enhanced UX Apr. ‘12 Web/Native - OpenCL & WebCL - New native - H/W Menu & Back Framework Enhanced - In app purchase subsystem 1.0 key - Native API Security and - UI Customizer Web-centric - Unified SDK for Web Performance Platform & native - WebKit2 - Highest HTML5 Optimization - Tizen Device Web - Hybrid Web/Native API app. - Web UI framework - Systemd Linux kernel Linux kernel Linux kernel 2.6.36 3.0 w/ 3.4 features (e.g., CMA/IOMMU, eMMC 4.5, V4L2) 3.4 4 Tizen Mobile Profile Architecture Overview • Kernel: Linux kernel + device drivers • Native Subsystem: core functionalities for Tizen platform • Web Framework: web environment above Native subsystem • API • Native API: direct access to core functions in mobile profile • Web API: web-style(i.e., JS, markup) access to W3C standard and device functions Web Web Applications API Web Framework Native Native Applications API Native Subsystem Kernel Manufacturer
    [Show full text]
  • Flexible Lustre Management
    Flexible Lustre management Making less work for Admins ORNL is managed by UT-Battelle for the US Department of Energy How do we know Lustre condition today • Polling proc / sysfs files – The knocking on the door model – Parse stats, rpc info, etc for performance deviations. • Constant collection of debug logs – Heavy parsing for common problems. • The death of a node – Have to examine kdumps and /or lustre dump Origins of a new approach • Requirements for Linux kernel integration. – No more proc usage – Migration to sysfs and debugfs – Used to configure your file system. – Started in lustre 2.9 and still on going. • Two ways to configure your file system. – On MGS server run lctl conf_param … • Directly accessed proc seq_files. – On MSG server run lctl set_param –P • Originally used an upcall to lctl for configuration • Introduced in Lustre 2.4 but was broken until lustre 2.12 (LU-7004) – Configuring file system works transparently before and after sysfs migration. Changes introduced with sysfs / debugfs migration • sysfs has a one item per file rule. • Complex proc files moved to debugfs • Moving to debugfs introduced permission problems – Only debugging files should be their. – Both debugfs and procfs have scaling issues. • Moving to sysfs introduced the ability to send uevents – Item of most interest from LUG 2018 Linux Lustre client talk. – Both lctl conf_param and lctl set_param –P use this approach • lctl conf_param can set sysfs attributes without uevents. See class_modify_config() – We get life cycle events for free – udev is now involved. What do we get by using udev ? • Under the hood – uevents are collect by systemd and then processed by udev rules – /etc/udev/rules.d/99-lustre.rules – SUBSYSTEM=="lustre", ACTION=="change", ENV{PARAM}=="?*", RUN+="/usr/sbin/lctl set_param '$env{PARAM}=$env{SETTING}’” • You can create your own udev rule – http://reactivated.net/writing_udev_rules.html – /lib/udev/rules.d/* for examples – Add udev_log="debug” to /etc/udev.conf if you have problems • Using systemd for long task.
    [Show full text]
  • Reducing Power Consumption in Mobile Devices by Using a Kernel
    IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. Z, NO. B, AUGUST 2017 1 Reducing Event Latency and Power Consumption in Mobile Devices by Using a Kernel-Level Display Server Stephen Marz, Member, IEEE and Brad Vander Zanden and Wei Gao, Member, IEEE E-mail: [email protected], [email protected], [email protected] Abstract—Mobile devices differ from desktop computers in that they have a limited power source, a battery, and they tend to spend more CPU time on the graphical user interface (GUI). These two facts force us to consider different software approaches in the mobile device kernel that can conserve battery life and reduce latency, which is the duration of time between the inception of an event and the reaction to the event. One area to consider is a software package called the display server. The display server is middleware that handles all GUI activities between an application and the operating system, such as event handling and drawing to the screen. In both desktop and mobile devices, the display server is located in the application layer. However, the kernel layer contains most of the information needed for handling events and drawing graphics, which forces the application-level display server to make a series of system calls in order to coordinate events and to draw graphics. These calls interrupt the CPU which can increase both latency and power consumption, and also require the kernel to maintain event queues that duplicate event queues in the display server. A further drawback of placing the display server in the application layer is that the display server contains most of the information required to efficiently schedule the application and this information is not communicated to existing kernels, meaning that GUI-oriented applications are scheduled less efficiently than they might be, which further increases power consumption.
    [Show full text]
  • Linux Sound Subsystem Documentation Release 4.13.0-Rc4+
    Linux Sound Subsystem Documentation Release 4.13.0-rc4+ The kernel development community Sep 05, 2017 CONTENTS 1 ALSA Kernel API Documentation 1 1.1 The ALSA Driver API ............................................ 1 1.2 Writing an ALSA Driver ........................................... 89 2 Designs and Implementations 145 2.1 Standard ALSA Control Names ...................................... 145 2.2 ALSA PCM channel-mapping API ..................................... 147 2.3 ALSA Compress-Offload API ........................................ 149 2.4 ALSA PCM Timestamping ......................................... 152 2.5 ALSA Jack Controls ............................................. 155 2.6 Tracepoints in ALSA ............................................ 156 2.7 Proc Files of ALSA Drivers ......................................... 158 2.8 Notes on Power-Saving Mode ....................................... 161 2.9 Notes on Kernel OSS-Emulation ..................................... 161 2.10 OSS Sequencer Emulation on ALSA ................................... 165 3 ALSA SoC Layer 171 3.1 ALSA SoC Layer Overview ......................................... 171 3.2 ASoC Codec Class Driver ......................................... 172 3.3 ASoC Digital Audio Interface (DAI) .................................... 174 3.4 Dynamic Audio Power Management for Portable Devices ...................... 175 3.5 ASoC Platform Driver ............................................ 180 3.6 ASoC Machine Driver ............................................ 181 3.7 Audio Pops
    [Show full text]
  • Linux Software User's Manual
    New Generation Systems (NGS) Linux Software User’s Manual Version 1.0, September 2019 www.moxa.com/product © 2019 Moxa Inc. All rights reserved. New Generation Systems (NGS) Linux Software User’s Manual The software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement. Copyright Notice © 2019 Moxa Inc. All rights reserved. Trademarks The MOXA logo is a registered trademark of Moxa Inc. All other trademarks or registered marks in this manual belong to their respective manufacturers. Disclaimer Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa. Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time. Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use. This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication. Technical Support Contact Information www.moxa.com/support Moxa Americas Moxa China (Shanghai office) Toll-free: 1-888-669-2872 Toll-free: 800-820-5036 Tel: +1-714-528-6777 Tel: +86-21-5258-9955 Fax: +1-714-528-6778 Fax: +86-21-5258-5505 Moxa Europe Moxa Asia-Pacific Tel: +49-89-3 70 03 99-0 Tel: +886-2-8919-1230 Fax: +49-89-3 70 03 99-99 Fax: +886-2-8919-1231 Moxa India Tel: +91-80-4172-9088 Fax: +91-80-4132-1045 Table of Contents 1.
    [Show full text]
  • FIPS 140-2 Non-Proprietary Security Policy Oracle Linux 7 Kernel Crypto
    FIPS 140-2 Non-Proprietary Security Policy Oracle Linux 7 Kernel Crypto API Cryptographic Module FIPS 140-2 Level 1 Validation Software Version: R7-2.0.0 Date: December 7, 2018 Document Version 1.1 ©Oracle Corporation This document may be reproduced whole and intact including the Copyright notice. Title: Oracle Linux 7 Kernel Crypto API Cryptographic Module Security Policy December 07, 2018 Author: Atsec Information Security Contributing Authors: Oracle Linux Engineering Oracle Security Evaluations – Global Product Security Oracle Corporation World Headquarters 500 Oracle Parkway Redwood Shores, CA 94065 U.S.A. Worldwide Inquiries: Phone: +1.650.506.7000 Fax: +1.650.506.7200 oracle.com Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. Oracle specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or indirectly by this document. This document may reproduced or distributed whole and intact including this copyright notice. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Oracle Linux 7 Kernel Crypto API Cryptographic
    [Show full text]
  • Optical Character Recognition - a Combined ANN/HMM Approach
    Optical Character Recognition - A Combined ANN/HMM Approach Dissertation submitted to the Department of Computer Science Technical University of Kaiserslautern for the fulfillment of the requirements for the doctoral degree Doctor of Engineering (Dr.-Ing.) by Sheikh Faisal Rashid Dean: Prof. Dr. Klaus Schneider Thesis supervisors: Prof. Dr. Thomas Breuel, TU Kaiserslautern Prof. Dr. Andreas Dengel, TU Kaiserslautern Chair of supervisory committee: Prof. Dr. Karsten Berns, TU Kaiserslautern Kaiserslautern, 11 July, 2014 D 386 Abstract Optical character recognition (OCR) of machine printed text is ubiquitously considered as a solved problem. However, error free OCR of degraded (broken and merged) and noisy text is still challenging for modern OCR systems. OCR of degraded text with high accuracy is very important due to many applications in business, industry and large scale document digitization projects. This thesis presents a new OCR method for degraded text recognition by introducing a combined ANN/HMM OCR approach. The approach provides significantly better performance in comparison with state-of-the-art HMM based OCR methods and existing open source OCR systems. In addition, the thesis introduces novel applications of ANNs and HMMs for document image preprocessing and recognition of low resolution text. Furthermore, the thesis provides psychophysical experiments to determine the effect of letter permutation in visual word recognition of Latin and Cursive script languages. HMMs and ANNs are widely employed pattern recognition paradigms and have been used in numerous pattern classification problems. This work presents a simple and novel method for combining the HMMs and ANNs in application to segmentation free OCR of degraded text. HMMs and ANNs are powerful pattern recognition strategies and their combination is interesting to improve current state-of-the-art research in OCR.
    [Show full text]
  • The GNOME Census: Who Writes GNOME?
    The GNOME Census: Who writes GNOME? Dave Neary & Vanessa David, Neary Consulting © Neary Consulting 2010: Some rights reserved Table of Contents Introduction.........................................................................................3 What is GNOME?.............................................................................3 Project governance...........................................................................3 Why survey GNOME?.......................................................................4 Scope and methodology...................................................................5 Tools and Observations on Data Quality..........................................7 Results and analysis...........................................................................10 GNOME Project size.......................................................................10 The Long Tail..................................................................................11 Effects of commercialisation..........................................................14 Who does the work?.......................................................................15 Who maintains GNOME?................................................................17 Conclusions........................................................................................22 References.........................................................................................24 Appendix 1: Modules included in survey...........................................25 2 Introduction What
    [Show full text]
  • State of Linux Audio in 2009 Linux Plumbers Conference 2009
    State of Linux Audio in 2009 Linux Plumbers Conference 2009 Lennart Poettering [email protected] September 2009 Lennart Poettering State of Linux Audio in 2009 Who Am I? Software Engineer at Red Hat, Inc. Developer of PulseAudio, Avahi and a few other Free Software projects http://0pointer.de/lennart/ [email protected] IRC: mezcalero Lennart Poettering State of Linux Audio in 2009 Perspective Lennart Poettering State of Linux Audio in 2009 So, what happened since last LPC? Lennart Poettering State of Linux Audio in 2009 RIP: EsounD is officially gone. Lennart Poettering State of Linux Audio in 2009 (at least on Fedora) RIP: OSS is officially gone. Lennart Poettering State of Linux Audio in 2009 RIP: OSS is officially gone. (at least on Fedora) Lennart Poettering State of Linux Audio in 2009 Audio API Guide http://0pointer.de/blog/projects/guide-to-sound-apis Lennart Poettering State of Linux Audio in 2009 We also make use of high-resolution timers on the desktop by default. We now use realtime scheduling on the desktop by default. Lennart Poettering State of Linux Audio in 2009 We now use realtime scheduling on the desktop by default. We also make use of high-resolution timers on the desktop by default. Lennart Poettering State of Linux Audio in 2009 2s Buffers Lennart Poettering State of Linux Audio in 2009 Mixer abstraction? Due to user-friendliness, i18n, meta data (icons, ...) We moved a couple of things into the audio server: Timer-based audio scheduling; mixing; flat volume/volume range and granularity extension; integration of volume sliders; mixer abstraction; monitoring Lennart Poettering State of Linux Audio in 2009 We moved a couple of things into the audio server: Timer-based audio scheduling; mixing; flat volume/volume range and granularity extension; integration of volume sliders; mixer abstraction; monitoring Mixer abstraction? Due to user-friendliness, i18n, meta data (icons, ...) Lennart Poettering State of Linux Audio in 2009 udev integration: meta data, by-path/by-id/..
    [Show full text]