I.MX Linux® Reference Manual

Total Page:16

File Type:pdf, Size:1020Kb

I.MX Linux® Reference Manual i.MX Linux® Reference Manual Document Number: IMXLXRM Rev. 1, 01/2017 i.MX Linux® Reference Manual, Rev. 1, 01/2017 2 NXP Semiconductors Contents Section number Title Page Chapter 1 About this Book 1.1 Audience....................................................................................................................................................................... 27 1.1.1 Conventions................................................................................................................................................... 27 1.1.2 Definitions, Acronyms, and Abbreviations....................................................................................................27 Chapter 2 Introduction 2.1 Overview.......................................................................................................................................................................31 2.1.1 Software Base................................................................................................................................................ 31 2.1.2 Features.......................................................................................................................................................... 31 Chapter 3 Machine-Specific Layer (MSL) 3.1 Introduction...................................................................................................................................................................37 3.2 Interrupts (Operation)................................................................................................................................................... 37 3.2.1 Interrupt Hardware Operation........................................................................................................................38 3.2.2 Interrupt Software Operation......................................................................................................................... 38 3.2.3 Interrupt Features........................................................................................................................................... 38 3.2.4 Interrupt Source Code Structure.................................................................................................................... 39 3.2.5 Interrupt Programming Interface................................................................................................................... 39 3.3 Timer.............................................................................................................................................................................40 3.3.1 Timer Software Operation............................................................................................................................. 40 3.3.2 Timer Features............................................................................................................................................... 40 3.3.3 Timer Source Code Structure.........................................................................................................................41 3.3.4 Timer Programming Interface........................................................................................................................41 3.4 Memory Map................................................................................................................................................................ 41 3.4.1 Memory Map Hardware Operation................................................................................................................41 3.4.2 Memory Map Software Operation................................................................................................................. 41 3.4.3 Memory Map Features................................................................................................................................... 41 i.MX Linux® Reference Manual, Rev. 1, 01/2017 NXP Semiconductors 3 Section number Title Page 3.4.4 Memory Map Source Code Structure............................................................................................................ 42 3.5 IOMUX.........................................................................................................................................................................42 3.5.1 IOMUX Hardware Operation........................................................................................................................ 43 3.5.2 IOMUX Software Operation..........................................................................................................................43 3.5.3 IOMUX Features............................................................................................................................................43 3.5.4 IOMUX Source Code Structure.....................................................................................................................44 3.5.5 IOMUX Programming Interface....................................................................................................................44 3.5.6 IOMUX Control Through GPIO Module...................................................................................................... 44 3.5.6.1 GPIO Hardware Operation...........................................................................................................45 3.5.6.1.1 Muxing Control...........................................................................................................45 3.5.6.1.2 PULLUP Control........................................................................................................ 45 3.5.6.2 GPIO Software Operation (general)............................................................................................ 45 3.5.6.3 GPIO Implementation.................................................................................................................. 45 3.6 General Purpose Input/Output(GPIO).......................................................................................................................... 46 3.6.1 GPIO Software Operation..............................................................................................................................46 3.6.1.1 API for GPIO............................................................................................................................... 46 3.6.2 GPIO Features................................................................................................................................................47 3.6.3 GPIO Module Source Code Structure............................................................................................................47 3.6.4 GPIO Programming Interface 2..................................................................................................................... 47 Chapter 4 Smart Direct Memory Access (SDMA) API 4.1 Overview.......................................................................................................................................................................49 4.1.1 Hardware Operation.......................................................................................................................................49 4.1.2 Software Operation........................................................................................................................................ 49 4.1.3 Source Code Structure................................................................................................................................... 50 4.1.4 Programming Interface.................................................................................................................................. 51 4.1.5 Usage Example.............................................................................................................................................. 51 Chapter 5 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA) i.MX Linux® Reference Manual, Rev. 1, 01/2017 4 NXP Semiconductors Section number Title Page 5.1 Overview.......................................................................................................................................................................53 5.1.1 Hardware Operation.......................................................................................................................................53 5.1.2 Software Operation........................................................................................................................................ 54 5.1.3 Source Code Structure................................................................................................................................... 54 5.1.4 Menu Configuration Options......................................................................................................................... 55 5.1.5 Programming Interface.................................................................................................................................. 55 5.1.6 Usage Example.............................................................................................................................................. 55 Chapter 6 Image Processing Unit (IPU) Drivers 6.1 Introduction...................................................................................................................................................................57 6.1.1 Hardware Operation.......................................................................................................................................58
Recommended publications
  • Practice Test Version 1.8 LPI 117-101: Practice Exam QUESTION NO: 1 CORRECT TEXT
    LPI 117-101 117-101 LPI 101 General Linux, Part I Practice Test Version 1.8 LPI 117-101: Practice Exam QUESTION NO: 1 CORRECT TEXT You suspect that a new ethernet card might be conflicting with another device. Which file should you check within the /proc tree to learn which IRQs are being used by which kernel drives? Answer: interrupts QUESTION NO: 2 How many SCSI ids for peripherals can SCSI-1 support? A. 5 B. 6 C. 7 D. 8 Answer: C Explanation: SCSI-1 support total 7 peripherals. There are several different types of SCSI devices. The original SCSI specification is commonly referred to as SCSI-1. The newer specification, SCSI-2, offers increased speed and performance, as well as new commands. Fast SCSI increases throughput to more than 10MB per second. Fast-Wide SCSI provides a wider data path and throughput of up to 40MB per second and up to 15 devices. There there are Ultra-SCSI and Ultra-Wide-SCSI QUESTION NO: 3 You need to install a fax server. Which type of fax/modem should you install to insure Linux compatibility? Test-King.com A. External Serial Fax/modem B. External USB Fax/modem C. Internal ISA Fax/modem D. Internal PCI Fax/modem Answer: A QUESTION NO: 4 You are running Linux 2.0.36 and you need to add a USB mouse to your system. Which of the following statements is true? "Welcome to Certification's Main Event" - www.test-king.com 2 LPI 117-101: Practice Exam A. You need to rebuild the kernel.
    [Show full text]
  • Flexible Lustre Management
    Flexible Lustre management Making less work for Admins ORNL is managed by UT-Battelle for the US Department of Energy How do we know Lustre condition today • Polling proc / sysfs files – The knocking on the door model – Parse stats, rpc info, etc for performance deviations. • Constant collection of debug logs – Heavy parsing for common problems. • The death of a node – Have to examine kdumps and /or lustre dump Origins of a new approach • Requirements for Linux kernel integration. – No more proc usage – Migration to sysfs and debugfs – Used to configure your file system. – Started in lustre 2.9 and still on going. • Two ways to configure your file system. – On MGS server run lctl conf_param … • Directly accessed proc seq_files. – On MSG server run lctl set_param –P • Originally used an upcall to lctl for configuration • Introduced in Lustre 2.4 but was broken until lustre 2.12 (LU-7004) – Configuring file system works transparently before and after sysfs migration. Changes introduced with sysfs / debugfs migration • sysfs has a one item per file rule. • Complex proc files moved to debugfs • Moving to debugfs introduced permission problems – Only debugging files should be their. – Both debugfs and procfs have scaling issues. • Moving to sysfs introduced the ability to send uevents – Item of most interest from LUG 2018 Linux Lustre client talk. – Both lctl conf_param and lctl set_param –P use this approach • lctl conf_param can set sysfs attributes without uevents. See class_modify_config() – We get life cycle events for free – udev is now involved. What do we get by using udev ? • Under the hood – uevents are collect by systemd and then processed by udev rules – /etc/udev/rules.d/99-lustre.rules – SUBSYSTEM=="lustre", ACTION=="change", ENV{PARAM}=="?*", RUN+="/usr/sbin/lctl set_param '$env{PARAM}=$env{SETTING}’” • You can create your own udev rule – http://reactivated.net/writing_udev_rules.html – /lib/udev/rules.d/* for examples – Add udev_log="debug” to /etc/udev.conf if you have problems • Using systemd for long task.
    [Show full text]
  • Reducing Power Consumption in Mobile Devices by Using a Kernel
    IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. Z, NO. B, AUGUST 2017 1 Reducing Event Latency and Power Consumption in Mobile Devices by Using a Kernel-Level Display Server Stephen Marz, Member, IEEE and Brad Vander Zanden and Wei Gao, Member, IEEE E-mail: [email protected], [email protected], [email protected] Abstract—Mobile devices differ from desktop computers in that they have a limited power source, a battery, and they tend to spend more CPU time on the graphical user interface (GUI). These two facts force us to consider different software approaches in the mobile device kernel that can conserve battery life and reduce latency, which is the duration of time between the inception of an event and the reaction to the event. One area to consider is a software package called the display server. The display server is middleware that handles all GUI activities between an application and the operating system, such as event handling and drawing to the screen. In both desktop and mobile devices, the display server is located in the application layer. However, the kernel layer contains most of the information needed for handling events and drawing graphics, which forces the application-level display server to make a series of system calls in order to coordinate events and to draw graphics. These calls interrupt the CPU which can increase both latency and power consumption, and also require the kernel to maintain event queues that duplicate event queues in the display server. A further drawback of placing the display server in the application layer is that the display server contains most of the information required to efficiently schedule the application and this information is not communicated to existing kernels, meaning that GUI-oriented applications are scheduled less efficiently than they might be, which further increases power consumption.
    [Show full text]
  • Implementation of an Orthogonally Persistent L4 -Kernel Based System
    Implementation of an Orthogonally Persistent L4 -Kernel Based System Christian Ceelen ÐÒÖºÙ º Supervisor: Cand. Scient. Espen Skoglund Universitat¨ Karlsruhe 15th February 2002 2 3 Abstract Orthogonal persistent systems open up possibilities for a wide number of appli- cations. Even more, it is a very natural concept for the storage of information, since objects and information persists until the end of their lifetime. Most current commercial non-persistent systems have only an explicit storage model. Thus, an application has to care for the persistent storage of data itself. This has to be done by transforming the data structures into something that can be stored within a file. Furthermore the file has to be opened, written to and saved explicitly; a source of overhead for programmers. Moreover the programmer also has to estimate the life-time of all valuable data. Including the conversion and recovery of data, the amount of code needed to store data explicitly could easily take up a third or half of the actual programming work. In order to support a convenient system environment, persistent storage could be handled implicitly by the operating system. The operating system has to store for each task an image of the user memory and all kernel internal data like page- tables, mapping structures, file descriptors and so on. This approach is very de- manding and very error-prone for current monolithic systems. Therefore we pro- pose a -kernel based system instead. The proposed work should provide an implementation base for further persistent systems by supplying the necessary mechanisms to build persistent applications on top of the -kernel.
    [Show full text]
  • Github: a Case Study of Linux/BSD Perceptions from Microsoft's
    1 FLOSS != GitHub: A Case Study of Linux/BSD Perceptions from Microsoft’s Acquisition of GitHub Raula Gaikovina Kula∗, Hideki Hata∗, Kenichi Matsumoto∗ ∗Nara Institute of Science and Technology, Japan {raula-k, hata, matumoto}@is.naist.jp Abstract—In 2018, the software industry giants Microsoft made has had its share of disagreements with Microsoft [6], [7], a move into the Open Source world by completing the acquisition [8], [9], the only reported negative opinion of free software of mega Open Source platform, GitHub. This acquisition was not community has different attitudes towards GitHub is the idea without controversy, as it is well-known that the free software communities includes not only the ability to use software freely, of ‘forking’ so far, as it it is considered as a danger to FLOSS but also the libre nature in Open Source Software. In this study, development [10]. our aim is to explore these perceptions in FLOSS developers. We In this paper, we report on how external events such as conducted a survey that covered traditional FLOSS source Linux, acquisition of the open source platform by a closed source and BSD communities and received 246 developer responses. organization triggers a FLOSS developers such the Linux/ The results of the survey confirm that the free community did trigger some communities to move away from GitHub and raised BSD Free Software communities. discussions into free and open software on the GitHub platform. The study reminds us that although GitHub is influential and II. TARGET SUBJECTS AND SURVEY DESIGN trendy, it does not representative all FLOSS communities.
    [Show full text]
  • Intel FPGA Programmable Acceleration Card N3000
    Intel® Acceleration Stack User Guide Intel FPGA Programmable Acceleration Card N3000 Updated for Intel® Acceleration Stack for Intel® Xeon® CPU with FPGAs: 1.1 Subscribe UG-20244 | 2021.06.14 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. About this Document...................................................................................................... 4 1.1. Acronym List ........................................................................................................5 2. System Requirements..................................................................................................... 7 2.1. Cooling Requirements............................................................................................ 7 3. Hardware Installation................................................................................................... 11 3.1. Installing the Intel FPGA PAC N3000.......................................................................11 4. Installing the OPAE Software........................................................................................16 4.1. Install Additional Packages.................................................................................... 17 4.2. Install the Release Package................................................................................... 17 4.2.1. Remove Previous OPAE Packages............................................................... 18 4.2.2. Install the Acceleration Stack for Runtime..................................................
    [Show full text]
  • Networking with Wicked in SUSE® Linux Enterprise 12
    Networking with Wicked in SUSE® Linux Enterprise 12 Something Wicked This Way Comes Guide www.suse.com Solution Guide Server Server Solution Guide Networking with Wicked in SUSE Linux Enterprise 12 Wicked QuickStart Guide Abstract: Introduced with SUSE® Linux Enterprise 12, Wicked is the new network management tool for Linux, largely replacing the sysconfig package to manage the ever-more-complicated network configurations. Wicked provides network configuration as a service, enabling you to change your configuration dynamically. This paper covers the basics of Wicked with an emphasis on Recently, new technologies have accelerated the trend toward providing correlations between how things were done previ- complexity. Virtualization requires on-demand provisioning of ously and how they need to be done now. resources, including networks. Converged networks that mix data and storage traffic on a shared link require a tighter integra- Introduction tion between stacks that were previously mostly independent. When S.u.S.E.1 first introduced its Linux distribution, network- ing requirements were relatively simple and static. Over time Today, more than 20 years after the first SUSE distribution, net- networking evolved to become far more complex and dynamic. work configurations are very difficult to manage properly, let For example, automatic address configuration protocols such as alone easily (see Figure 1). DHCP or IPv6 auto-configuration entered the picture along with a plethora of new classes of network devices. Modern Network Landscape While this evolution was happening, the concepts behind man- aging a Linux system’s network configuration didn’t change much. The basic idea of storing a configuration in some files and applying it at system boot up using a collection of scripts and system programs was pretty much the same.
    [Show full text]
  • O'reilly Linux Kernel in a Nutshell.Pdf
    ,title.4229 Page i Friday, December 1, 2006 9:52 AM LINUX KERNEL IN A NUTSHELL ,title.4229 Page ii Friday, December 1, 2006 9:52 AM Other Linux resources from O’Reilly Related titles Building Embedded Linux Running Linux Systems Understanding Linux Linux Device Drivers Network Internals Linux in a Nutshell Understanding the Linux Linux Pocket Guide Kernel Linux Books linux.oreilly.com is a complete catalog of O’Reilly’s Resource Center books on Linux and Unix and related technologies, in- cluding sample chapters and code examples. Conferences O’Reilly brings diverse innovators together to nurture the ideas that spark revolutionary industries. We spe- cialize in documenting the latest tools and systems, translating the innovator’s knowledge into useful skills for those in the trenches. Visit conferences.oreilly.com for our upcoming events. Safari Bookshelf (safari.oreilly.com) is the premier on- line reference library for programmers and IT professionals. Conduct searches across more than 1,000 books. Subscribers can zero in on answers to time-critical questions in a matter of seconds. Read the books on your Bookshelf from cover to cover or sim- ply flip to the page you need. Try it today for free. ,title.4229 Page iii Friday, December 1, 2006 9:52 AM LINUX KERNEL IN A NUTSHELL Greg Kroah-Hartman Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo ,LKNSTOC.fm.8428 Page v Friday, December 1, 2006 9:55 AM Chapter 1 Table of Contents Preface . ix Part I. Building the Kernel 1. Introduction . 3 Using This Book 4 2. Requirements for Building and Using the Kernel .
    [Show full text]
  • Chapter 1. Origins of Mac OS X
    1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years.
    [Show full text]
  • Antix Xfce Recommended Specs
    Antix Xfce Recommended Specs Upbeat Leigh still disburden: twill and worthful Todd idolatrizes quite deuced but immobilizing her rabato attitudinizedcogently. Which her Kingstonfranc so centennially plasticizes so that pratingly Odin flashes that Oscar very assimilatesanticlockwise. her Algonquin? Denatured Pascale Menu is placed at the bottom of paperwork left panel and is difficult to browse. But i use out penetration testing machines as a lightweight linux distributions with the initial icons. Hence, and go with soft lower score in warmth of aesthetics. Linux on dedoimedo had the installation of useful alternative antix xfce recommended specs as this? Any recommendations from different pinboard question: the unique focus styles in antix xfce recommended specs of. Not recommended for! Colorful background round landscape scenes do we exist will this lightweight Linux distro. Dvd or gui, and specs as both are retired so, and a minimal resources? Please confirm your research because of recommended to name the xfce desktop file explorer will change the far right click to everything you could give you enjoy your linux live lite can see our antix xfce recommended specs and. It being uploaded file would not recommended to open multiple windows right people won, antix xfce recommended specs and specs and interested in! Based on the Debian stable, MX Linux has topped the distrowatch. Dedoimedo a usb. If you can be installed on this i have downloaded iso image, antix xfce recommended specs and specs as long way more adding ppas to setup further, it ever since. The xfce as a plain, antix can get some other than the inclusion, and specs to try the.
    [Show full text]
  • BSD UNIX Toolbox 1000+ Commands for Freebsd, Openbsd
    76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iii BSD UNIX® TOOLBOX 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD®Power Users Christopher Negus François Caen 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page ii 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page i BSD UNIX® TOOLBOX 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page ii 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iii BSD UNIX® TOOLBOX 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD®Power Users Christopher Negus François Caen 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iv BSD UNIX® Toolbox: 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD® Power Users Published by Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN: 978-0-470-37603-4 Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data is available from the publisher. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permis- sion should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.
    [Show full text]
  • Communicating Between the Kernel and User-Space in Linux Using Netlink Sockets
    SOFTWARE—PRACTICE AND EXPERIENCE Softw. Pract. Exper. 2010; 00:1–7 Prepared using speauth.cls [Version: 2002/09/23 v2.2] Communicating between the kernel and user-space in Linux using Netlink sockets Pablo Neira Ayuso∗,∗1, Rafael M. Gasca1 and Laurent Lefevre2 1 QUIVIR Research Group, Departament of Computer Languages and Systems, University of Seville, Spain. 2 RESO/LIP team, INRIA, University of Lyon, France. SUMMARY When developing Linux kernel features, it is a good practise to expose the necessary details to user-space to enable extensibility. This allows the development of new features and sophisticated configurations from user-space. Commonly, software developers have to face the task of looking for a good way to communicate between kernel and user-space in Linux. This tutorial introduces you to Netlink sockets, a flexible and extensible messaging system that provides communication between kernel and user-space. In this tutorial, we provide fundamental guidelines for practitioners who wish to develop Netlink-based interfaces. key words: kernel interfaces, netlink, linux 1. INTRODUCTION Portable open-source operating systems like Linux [1] provide a good environment to develop applications for the real-world since they can be used in very different platforms: from very small embedded devices, like smartphones and PDAs, to standalone computers and large scale clusters. Moreover, the availability of the source code also allows its study and modification, this renders Linux useful for both the industry and the academia. The core of Linux, like many modern operating systems, follows a monolithic † design for performance reasons. The main bricks that compose the operating system are implemented ∗Correspondence to: Pablo Neira Ayuso, ETS Ingenieria Informatica, Department of Computer Languages and Systems.
    [Show full text]