Distribution, Deposition and Impact of Tailing Disposal on the Seafloor in Ranfjorden, Northern Norway

Total Page:16

File Type:pdf, Size:1020Kb

Distribution, Deposition and Impact of Tailing Disposal on the Seafloor in Ranfjorden, Northern Norway Institute of Geosciences, UiT, The Arctic University of Norway Distribution, deposition and impact of tailing disposal on the seafloor in Ranfjorden, northern Norway — Anders Eirik Haugen Master’s thesis in Geosciences… July 2018 Table of Contents Abstract ................................................................................................................................................... 1 Acknowledgements ................................................................................................................................. 2 1 Introduction .................................................................................................................................... 3 1.1 Aim of Study ........................................................................................................................... 3 1.2 Background ............................................................................................................................. 4 Mine tailings .................................................................................................................... 5 Submarine Tailings Placement ........................................................................................ 7 1.3 Previous Work ....................................................................................................................... 11 2 Study Area .................................................................................................................................... 12 2.1 Physiographic setting ............................................................................................................ 12 2.2 Regional Geology .................................................................................................................. 13 2.3 Climate .................................................................................................................................. 14 2.4 Ranaelva River ...................................................................................................................... 15 2.5 Rana Gruber Mines ............................................................................................................... 16 Submarine Tailing Placement ........................................................................................ 16 3 Fjord Hydrography and Sedimentary Processes ........................................................................... 18 3.1 Fjord Hydrography ................................................................................................................ 18 3.2 Fjord Sedimentation .............................................................................................................. 20 4 Materials and Methods ................................................................................................................. 22 4.1 Sediment Collection .............................................................................................................. 22 Sediment Grab Documentation ..................................................................................... 22 4.2 Swath Bathymetry ................................................................................................................. 24 4.3 TOPAS Seismic ..................................................................................................................... 24 4.4 Laboratory Analysis .............................................................................................................. 25 Opening, Photography and X-Ray of Cores .................................................................. 25 XRF Analysis ................................................................................................................ 25 Sedimentary Core Logging............................................................................................ 25 Shear Strength Test ....................................................................................................... 26 Grainsize Analysis ......................................................................................................... 26 5 Swath Bathymetry ........................................................................................................................ 28 5.1 2012 WASSP and 2016 EM2040 Multibeam Bathymetry .................................................... 28 Interpretation: ................................................................................................................ 32 5.2 2014-2016 Changes in Bathymetry ....................................................................................... 32 Interpretation ................................................................................................................. 35 6 Sediment Cores and Grabs............................................................................................................ 36 6.1 Sediment Cores...................................................................................................................... 36 Core P1502-001 ............................................................................................................. 36 Core P1502-016 ............................................................................................................. 40 Core P1502-013 ............................................................................................................. 44 Core P1502-015 ............................................................................................................. 47 Core P1502-009 ............................................................................................................. 50 Core P1502-004 ............................................................................................................. 53 6.2 Sediment Grabs ..................................................................................................................... 56 Sediment Grab P1502-030 ............................................................................................ 57 Sediment Grab P1502-029 ............................................................................................ 57 Sediment Grab P1502-028 ............................................................................................ 58 Sediment Grab P1502-027 ............................................................................................ 58 Sediment Grab P1502-026 ............................................................................................ 59 Sediment Grab P1502-025 ............................................................................................ 59 Sediment Grab P1502-024 ............................................................................................ 60 Sediment Grab P1502-023 ............................................................................................ 60 Sediment Grab P1502-022 ............................................................................................ 61 Sediment Grab P1502-021 ............................................................................................ 61 Interpretation ................................................................................................................. 62 7 TOPAS Seismic ............................................................................................................................ 63 7.1 Profile 1502006 ..................................................................................................................... 64 7.2 Profile 1502027 ..................................................................................................................... 65 7.3 Interpretation ......................................................................................................................... 66 8 Discussion ..................................................................................................................................... 67 8.1 Depositional Environment ..................................................................................................... 67 Sediment Distribution .................................................................................................... 67 Sedimentary Processes .................................................................................................. 72 8.2 Impact of Tailings on the seafloor of the fjord ...................................................................... 74 9 Conclusion .................................................................................................................................... 76 Works Cited ........................................................................................................................................... 78 List of Tables Table 1.Mo i Rana average monthly temperatures (https://no.climate-data.org/) ................................. 15 Table 2. Sediment core lengths, sampling depths and positions (*Degrees Minutes Seconds) ............ 22 Table 3. Sediment grab depth and location (Degrees Minutes Seconds) .............................................. 24 List of Figures Figure 1. Ranfjorden Study Area ............................................................................................................ 3 Figure 2. World mining production 1984-2016 by continents (without construction minerals, in Million metric tons) ................................................................................................................................
Recommended publications
  • Strukturell Kontroll Av Stratiform Jernmalm Ved Kvannevann Øst, Dunderlandsdalen, Nordland
    Institutt for geovitenskap Strukturell kontroll av stratiform jernmalm ved Kvannevann øst, Dunderlandsdalen, Nordland Fredrik Lie Masteroppgave i geologi, GEO-3900, Mai 2019 i Sammendrag Stratiform jernmalm av verdensklasse fremgår i Dunderlandsdalen, der de prinsipielle malmmineralene består av hematitt og magnetitt. Jernmalmen tilhører Dunderlandsformasjonen, som er del av Ramnålidekket innenfor Rødingsfjell dekkekompleks i det øverste allokton av den kaledonske fjellkjeden. Sidebergartene til jernmalmen består av godt folierte glimmerskifere, metapsammitter og tykke lagpakker av dolomittisk og kalsittisk marmor, som har gjennomgått metamorfose i amfibolitt fase. Sekvensen med bergarter som jernmalmen inngår i, ble avsatt i neoproterozoikum. Bergartene ble deformert gjennom flere faser (D1-D3) under den kaledonske fjellkjededannelsen. D1 omfatter F1 folder som er resultat av Ø-V strykende makro- til meso og mikro-skala isoklinale skjærfolder av antatt primærsedimentære lag, som har medført repetisjoner av stratigrafien, og samtidig utviklet en gjennomgående akseplanfoliasjon (S1). Foliasjonen er i dag subvertikal og inneholder blant annet strekningslineasjoner og mylonittiske skjærsoner med interne, disharmoniske F1-folder og komplekst transponerte foldehengsler. D2 førte til refolding av S1 og tilhørende intrafoliale strukturelementer gjennom asymmetriske og svakt overbikkede tett til moderat åpne folder (F2), koaksialt til F1 folder, og sannsynligvis var årsaken til vertikalstilling av lagrekken. Det siste duktile deformasjonsstadiet foregikk gjennom refolding av hele dekkesekvensen i makro skala. Mikroteksturelle studier av hematitt- og magnetittmalm har påvist tidlig hematitt langs rytmiske lag/bånd sammen med kompetente kvartsrike lag. Større tabulær hematitt (spekularitt) er utviklet parallelt med S1 i forbindelse med den første påviste foldefasen, og en enda senere generasjon langs F2 akseplan. Magnetitt utgjør større anhedrale korn som har vokst over hematitt og indikerer en senere dannelse.
    [Show full text]
  • Numerical Modelling of the High Rock Stress Challenges at Rana Mine, Norway
    doi:10.36487/ACG_rep/1952_09_Trinh Numerical modelling of the high rock stress challenges at Rana mine, Norway N.Q. Trinh1, T.E. Larsen1, S. Molund2, B. Nøst2, and A. Kuhn2 1SINTEF AS, Infrastructure, Rock and Soil Mechanics, Norway 2Rana Gruber AS, Norway Rana Gruber AS is an iron mining company in the north of Norway, and operates the Kvannevann mine 30 km east of Mo i Rana. The Kvannevann mine is located in a foliated gneiss host rock, with an ore body about 70 m wide and more than 300 m deep. During the history of the mine, it has been in operation for many years using an open-pit mining method, which was later it converted to sublevel-stoping. After thorough planning and preparation, the sub-level cave mining method was put in operation in 2012. Experience from past mining activities and in the preparation of infrastructure for the new mining method indicates that the mine is located in a hard, brittle rock mass with high horizontal stresses. Stress measurements have been made from time to time. The measurement results indicate a major principal stress of approximately 20 MPa perpendicular to the strike of the ore, and a minor principal stress of approximately 10 MPa parallel to the strike of the ore, which is 10–15 times higher than the theoretical vertical stress caused by gravity at the measured location. This paper presents some challenges related to high stress during development and operation of the mine. The paper also presents a comprehensive rock mechanics program, applying a combination of stress measurements, numerical modelling, and monitoring, to deal with the situation.
    [Show full text]
  • Marine and Riverine Discharges of Mine Tailings 2012
    International Assessment of Marine and Riverine Disposal of Mine Tailings Study commissioned by the Office for the London Convention and Protocol and Ocean Affairs, IMO, in collaboration with the United Nations Environment Programme (UNEP) Global Programme of Action May 2013 About this report This report presents a world-wide inventory of operating mines that dispose of mine tailings to marine and riverine waters and a review of what is known about the environmental impacts of those discharges. The report was commissioned by the Office for the London Convention and Protocol and Ocean Affairs, Marine Environment Division, International Maritime Organization, in collaboration with the United Nations Environment Programme (UNEP) Global Programme of Action, and was compiled by a consultant, Craig Vogt Inc Ocean & Coastal Environmental Consulting. Disclaimer The views expressed in this document are those of the author(s) and may not necessarily reflect those of the organization (IMO). IMO shall not be liable to any person or organization for any loss, damage or expense caused by reliance on the information or advice in this document or howsoever provided. IMO does not take responsibility for the implications of the use of any information or data presented in this publication and the publication does not constitute any form of endorsement whatsoever by IMO. Individuals and organisations that make use of any data or other information contained in the report do so entirely at their own risk. Marine and Riverine Discharges of Mine Tailings 2012 Preface This report presents a world-wide inventory of operating mines that dispose of mine tailings to marine and riverine waters and a review of what is known about the environmental impacts of those discharges.
    [Show full text]
  • Dunderlandsdalen
    NORGES GEOLOGISKE UNDERSØKELSE Nr. 86 DUNDERLANDSDALEN FJELDBYGNINGEN INDEN GRADAVDELINGSKARTET DUNDERLANDSDALENS OMRAADE A\' JOHN OXAAL MED KART, l Pl.ANCHE oc; ENGLISH SUN\MARY -~- KRISTIANIA l 919 l KOMMISSION HOS H. ASCHEHOUG & CO. A. W. BR0GGERS BOKTRYKKERI AS In d ho 1d. Side Topografisk oversigt ........................................... Bræer. Snegrænsen ....... ., . 7 Skogen og skoggrænsen . 9 Tidligere geologiske undersøkelser.. 12 Berggrunden . 13 Glimmerskiferen............................................. 14 Kalksten, dolomit og marmor . 18 jernmalmleierne . 22 Kvarts it. 24 Granit...................................................... 28 Basiske eruptiver. 30 Glimmerskifergneis . 31 Træk av omraadets tektonik . 35 Isskuring. Glaciale avsætninger. Moræner . 41 Elveavsætninger ............ ·. 43 Marine avleiringer. Skjælforekomster . 43 Bræsjøerne i Bjellaadalen . 48 Kalkstenshuler og underjordiske vandløp . 51 jernmalmforekomsterne og Dunderlandsverket . 56 Stenbrudd og skjærp . 68 Litteratur . 70 English Summary.............................................. 71 Topografisk oversigt. radavdelings~art~t Dun~erla,ndsdal~n omfatter omr~adet G mellem 66 20 og 66 · 40 nordhg bredde og 3 · 30' til 4 o 30' østlig længde fra Kristiania observatorium. Kart­ bladet er utgit av Norges geografiske Opmaaling i 1902. Distriktet ligger i nordøstlig retning for bunden av Ranen­ fjord og av kartbladets ca. 1620 km2 ligger den aller største del inden Mo prestegjelds grænser. Kun ca. 7,2 km2 ved den nordlige kartgrænse tilhører Beiern prestegjeld,
    [Show full text]
  • An Alternative Mining Method at the Kvannevann Mine, Northern Norway
    Caving 2010 — Y. Potvin (ed) © 2010 Australian Centre for Geomechanics, Perth, ISBN 978-0-9806154-1-8 doi:10.36487/ACG_rep/1002_17_NaevermoSand An alternative mining method at the Kvannevann Mine, northern Norway S. Nævermo Sand Rana Gruber AS, Norway Abstract After more than 30 years of open pit mining, in 2000 Rana Gruber AS started underground mining using the sublevel open stoping method at the Kvannevann Mine, located in northern Norway. The mining has been continuously improved and further developed to suit the difficult rock conditions in the area and to reduce operating costs. A combination of low grade iron ore (with on average 33% iron (Fe)) and significant rock mechanics challenges (large horizontal stresses) has made mining in the Kvannevann Mine extraordinary. Because of the last year’s increase of production due to the demand for iron ore, Rana Gruber AS investigated methods to increase the mining capacity and resources. This resulted in an evaluation of alternative mining methods. The investigation resulted in the decision to change over from sublevel open stoping to sublevel caving. Key arguments were: a) mineable reserves; b) cost and benefit with respect to investment; c) extraction values show an optimistic and satisfactory result; and d) estimations and field tests indicating a satisfactory caving of the deposit. 1 Introduction The Kvannevann Mine is one of several iron ore mines operated and owned by Rana Gruber AS in the Dunderland Valley. The Kvannevann Mine is the only underground mine in the region. The deposit is located in the northern part of Norway, approximately 50 km south of the Arctic Circle.
    [Show full text]
  • The Coastal Road (State Highway 17) from Holandsfjorden to Nesna
    The coastal road (state highway 17) from Holandsfjorden to Nesna 93 Locality 39 - Blokktinden, Tjong On the road to Tjong and onwards to Reppa there is a good view towards Blokktinden and its very large avalanche cone. Blokktinden is carved in granitic gneiss and belongs to one of the Precambrian basement windows. Strong vertical jointing in the bedrock is one of the reasons for the large quantities of scree material which have accumulated here. The main shore line forms a break in the avalanche slope and can be seen as a horizontal line. Here it represents the marine limit and is clearly developed in the fallen material. This means that most of the cone is a little older than the last part of the Younger Dryas. Probably most of the stoneblocks fell from the mountain wall a little after the mountain emerged from the ice masses 12,000-11,000 years ago. The climate during the first part of Younger Dryas time was very cold which enhanced fracturing of the rock walls and initiated stone-block production. Blokktinden with its 400 m avalanche cone, looking south from Tjong. Photo: Terje H. Bargel. 94 Locality 40 - Nordværnes On a branch road, about 15 km from Straumsvika and only a few hundred metres from Nordværnes, is a body of peridotite (olivine/pyroxene rock). It is easily seen because of ifs reddish yellow alteration colour. Parts of this body, particularly the marginal zone and intersecting veins, are very special. In a groundmass which consists mostly of orthopyroxene there are olivine crystals 5 cm to 1 m in length and randomly orientated.
    [Show full text]
  • Rana Gruber Company Presentation
    A Norwegian world-class sustainable mineral producer March 2021 Disclaimer and important information The information contained in this presentation (the “Presentation”) has been prepared by Rana Gruber AS ("Rana Gruber" or the "Company" and, together with its subsidiary the "Group") and is being distributed in connection with the invitation to participate in a potential offer of shares in Rana Gruber. The Presentation has only been made and shall only be made available to a limited number of prospective investors (the "Recipients"). This Presentation is strictly private, proprietary and confidential. This Presentation may not be distributed, published, reproduced or transmitted in whole or in part, and the information contained herein, including the potential investment opportunity, may not be disclosed by a Recipient to any third party. By accepting delivery of this Presentation, the Recipient agrees to keep the information it contains strictly private and confidential, and to return the Presentation to Rana Gruber at any time upon Rana Gruber's request. The information contained in this Presentation reflects the conditions and views as of the date set out in the Presentation. The information contained herein is subject to change, completion, or amendment without notice. Past performance information included in this Presentation or in such other written or oral material is not an indication of future performance and the actual returns on investments may differ materially from the returns indicated herein. No representation or warranty,
    [Show full text]
  • 1472 Brukerundersøkelse I Saltfjellet-Svartisen Nasjonalpark
    1472 Brukerundersøkelse i Saltfjellet-Svartisen nasjonalpark Sommeren 2017 Sofie K. Selvaag Line C. Wold NINAs publikasjoner NINA Rapport Dette er NINAs ordinære rapportering til oppdragsgiver etter gjennomført forsknings-, overvåkings- eller utredningsarbeid. I tillegg vil serien favne mye av instituttets øvrige rapportering, for eksempel fra seminarer og konferanser, resultater av eget forsknings- og utredningsarbeid og litteraturstudier. NINA Rapport kan også utgis på annet språk når det er hensiktsmessig.. NINA Temahefte Som navnet angir behandler temaheftene spesielle emner. Heftene utarbeides etter behov og serien favner svært vidt; fra systematiske bestemmelsesnøkler til informasjon om viktige problemstillinger i samfunnet. NINA Temahefte gis vanligvis en populærvitenskapelig form med mer vekt på illustrasjoner enn NINA Rapport. NINA Fakta Faktaarkene har som mål å gjøre NINAs forskningsresultater raskt og enkelt tilgjengelig for et større publikum. Faktaarkene gir en kort framstilling av noen av våre viktigste forskningstema. Annen publisering I tillegg til rapporteringen i NINAs egne serier publiserer instituttets ansatte en stor del av sine vitenskapelige resultater i internasjonale journaler, populærfaglige bøker og tidsskrifter. Brukerundersøkelse i Saltfjellet-Svartisen nasjonalpark Sommeren 2017 Sofie K. Selvaag Line C. Wold Norsk institutt for naturforskning NINA Rapport 1472 Selvaag S.K. & Wold L.C (2018). Brukerundersøkelse i Saltfjellet- Svartisen nasjonalpark. Revidert utgave. NINA Rapport 1472. Norsk institutt for
    [Show full text]
  • BERGMEKANIKDAG 2012 Föredrag
    BERGMEKANIKDAG 2012 Föredrag Box 5501 [email protected] s www.befoonline.org ISSN 0281-4714 SE-114 85 Stockholm Besöksadress: Storgatan 19 319663_Omslag_BM-dagen_9mm.indd 1 2012-03-05 12.38 BERGMEKANIKDAGEN 2012 08.30 Registrering, Kaffe/The 09.00 Inledning Per Tengborg, BeFo Presentation av EU-projekt: Intelligent Innovative Deep Mine Erling Nordlund, Luleå tekniska universitet Inbjudna gästföreläsare: Bergmekanisk forskning och utveckling i Norge/Finland Charlie Li, NTNU, Norge Mikael Rinne, Aalto University, Finland 10.00 Förundersökningar och labbtester - Inledare: Beatrice Lindström, Trafikverket Förbifart Stockholm - Borrhålsundersökningar som underlag för byggande i berg Tomas Svensson, Geosigma / Kent Hansson, Geosigma / Eva Samuelsson, Geosigma / Calle Hjerne, Geosigma 10.30 Kaffe, The & Frukt Influence of heat on the physical and mechanical properties of selected rock types - A laboratory study Christine Saiang, Luleå University of Technology Laboratory study on the impact of matedness on the peak shear strength of rock joints Ahmed El-Sayed, Ramböll / Fredrik Johansson, KTH/Sweco 11.30 Utmaningar vid bergbyggande - Inledare: Per Tengborg, BeFo Brytningsrelaterade utmaningar hos Rana Gruber Kristina Jonsson, Rana Gruber, Norge Susanne Nävermo Sand, Rana Gruber, Norge 12.00 Lunch 13.00 En miljövänlig metod för bergbrytning - hydraulisk spräckning Ulf Håkansson, Skanska/KTH / Yanting Chang, Geton Consulting / Erik Ahnberg, Emstone Dynamisk belastning av fallande fullborrningskrona Anders Nyström, Boliden Mineral / Per-Ivar Marklund
    [Show full text]
  • Rana Gruber AS (A Private Limited Liability Company Incorporated Under the Laws of Norway)
    INFORMATION DOCUMENT Rana Gruber AS (A private limited liability company incorporated under the laws of Norway) Admission to trading of shares on Euronext Growth Oslo ________________________________________________________ This information document (the "Information Document") has been prepared by Rana Gruber AS (the "Company" or "Rana Gruber" and, together with its subsidiary, the "Group") solely for use in connection with the admission to trading of the Company's 37,392,000 shares, each with a nominal value of NOK 0.25 (the "Shares") on Euronext Growth, operated by Oslo Børs ("Euronext Growth Oslo"). The Company has applied for admission to trading of its Shares on Euronext Growth Oslo and it is expected that the Shares will start trading on or about 26 February 2021 under the ticker symbol "RANA". The present Information Document has been drawn up under the responsibility of the Company. It has been reviewed by the Euronext Growth Advisors and has been subject to an appropriate review of its completeness, consistency and comprehensibility by Euronext Growth Oslo. Euronext Growth is a market operated by Euronext. Companies on Euronext Growth, a multilateral trading facility (MTF), are not subject to the same rules as companies on a Regulated Market (a main market). Instead they are subject to a less extensive set of rules and regulations adjusted to small growth companies. The risk in investing in a company on Euronext Growth may therefore be higher than investing in a company on a Regulated Market. Investors should take this into account when making investment decisions. The present Information Document does not constitute a prospectus within the meaning of Regulation (EU) 2017/1129 of the European Parliament and of the Council of 14 June 2017 on the prospectus to be published when securities are offered to the public or admitted to trading on a regulated market, and repealing Directive 2003/71.
    [Show full text]
  • Ranaelva Oppstrøms Reinforsen
    1259 Inventering av Ranaelva oppstrøms Reinforsen Produksjonspotensial for sjøvandrende laksefisk Marius Berg & Anders Foldvik NINAs publikasjoner NINA Rapport Dette er en elektronisk serie fra 2005 som erstatter de tidligere seriene NINA Fagrapport, NINA Oppdragsmelding og NINA Project Report. Normalt er dette NINAs rapportering til oppdragsgiver etter gjennomført forsknings-, overvåkings- eller utredningsarbeid. I tillegg vil serien favne mye av instituttets øvrige rapportering, for eksempel fra seminarer og konferanser, resultater av eget forsk- nings- og utredningsarbeid og litteraturstudier. NINA Rapport kan også utgis på annet språk når det er hensiktsmessig. NINA Temahefte Som navnet angir behandler temaheftene spesielle emner. Heftene utarbeides etter behov og se- rien favner svært vidt; fra systematiske bestemmelsesnøkler til informasjon om viktige problemstil- linger i samfunnet. NINA Temahefte gis vanligvis en populærvitenskapelig form med mer vekt på illustrasjoner enn NINA Rapport. NINA Fakta Faktaarkene har som mål å gjøre NINAs forskningsresultater raskt og enkelt tilgjengelig for et større publikum. De sendes til presse, ideelle organisasjoner, naturforvaltningen på ulike nivå, politikere og andre spesielt interesserte. Faktaarkene gir en kort framstilling av noen av våre viktigste forsk- ningstema. Annen publisering I tillegg til rapporteringen i NINAs egne serier publiserer instituttets ansatte en stor del av sine viten- skapelige resultater i internasjonale journaler, populærfaglige bøker og tidsskrifter. Inventering
    [Show full text]
  • Thesis.Pdf (6.091Mb)
    Faculty of Science and Technology - Department of Geosciences Environmental impact of sediment-hosted stratiform iron deposits: an on-land vs. submarine tailing simulation A study of the stratiform iron mineralization in Dunderland Valley — Birgitte Andrea Fagerheim Master’s thesis in Geology GEO-3900 May 2019 Master’s thesis in [study program] … Month Year 1 UiT - The Arctic University of Norway Faculty of Science and Technology Department of Geosciences GEO-3900 Master thesis in Hard Rock Geology ❖ Environmental impact of sediment-hosted stratiform iron deposits: an on-land vs. submarine tailing simulation. A study of the stratiform iron mineralization in Dunderland Valley. ❖ Submitted by: Birgitte Andrea Fagerheim Supervisor: Sabina Strmic Palinkaš i ii Abstract This thesis studies possible environmental impacts of tailings from the stratiform iron deposits. The study was conducted on selected mineralized samples from the Dunderland Valley, Nordland, simulating on-land and submarine tailing disposal conditions. The Dunderland Valley mineralization is hosted by Neoproterozoic (Tonian, 800-730 Ma) meta- sedimentary sequence of the Caledonian Uppermost Allochthon. The main ore minerals are hematite and magnetite, with quartz and carbonates as principal gangue minerals. Locally, a manganese-rich mineralization occurs. The concentrations of sulphide in is low, with iron sulphides recorded mostly along contact of ore bodies and host rocks. The study combines determination of mineralogical and geochemical characteristics of three main types of ore mineralization and their behaviour in a kinetic column test (12 weeks; modified EPA method 1627) simulating: 1) non-buffered on-land; 2) carbonate-buffered on-land; 3) submarine conditions. Physicochemical properties (pH, redox potential (Eh) and conductivity) of the kinetic column leachates were measured after 24 h, 48h, 1 week, 2 weeks, 6 weeks and 12 weeks.
    [Show full text]