Multiple Convergent Evolution of Arboreal Life in Oribatid Mites Indicates the Primacy of Ecology Mark Maraun1,2,*, Georgia Erdmann3,†, Garvin Schulz1, Roy A

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Convergent Evolution of Arboreal Life in Oribatid Mites Indicates the Primacy of Ecology Mark Maraun1,2,*, Georgia Erdmann3,†, Garvin Schulz1, Roy A Downloaded from rspb.royalsocietypublishing.org on January 22, 2010 Proc. R. Soc. B (2009) 276, 3219–3227 doi:10.1098/rspb.2009.0425 Published online 17 June 2009 Multiple convergent evolution of arboreal life in oribatid mites indicates the primacy of ecology Mark Maraun1,2,*, Georgia Erdmann3,†, Garvin Schulz1, Roy A. Norton4, Stefan Scheu1,2 and Katja Domes2 1Universita¨tGo¨ttingen, Institut fu¨r Zoologie und Anthropologie, Berliner Straße 28, 37073 Go¨ttingen, Germany 2Technische Universita¨t Darmstadt, Institut fu¨r Zoologie, Schnittspahnstraße 3, 64287 Darmstadt, Germany 3Staatliches Museum fu¨r Naturkunde Go¨rlitz, Am Museum 1, 02826 Go¨rlitz, Germany 4State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, USA Frequent convergent evolution in phylogenetically unrelated taxa points to the importance of ecological factors during evolution, whereas convergent evolution in closely related taxa indicates the importance of favourable pre-existing characters (pre-adaptations). We investigated the transitions to arboreal life in ori- batid mites (Oribatida, Acari), a group of mostly soil-living arthropods. We evaluated which general force—ecological factors, historical constraints or chance—was dominant in the evolution of arboreal life in oribatid mites. A phylogenetic study of 51 oribatid mite species and four outgroup taxa, using the ribosomal 18S rDNA region, indicates that arboreal life evolved at least 15 times independently. Arboreal oribatid mite species are not randomly distributed in the phylogenetic tree, but are concentrated among strongly sclerotized, sexual and evolutionary younger taxa. They convergently evolved a capitate sensillus, an anemoreceptor that either precludes overstimulation in the exposed bark habitat or functions as a gravity receptor. Sexual reproduction and strong sclerotization were important pre-adaptations for colonizing the bark of trees that facilitated the exploitation of living resources (e.g. lichens) and served as predator defence, respectively. Overall, our results indicate that ecological factors are most important for the observed pattern of convergent evolution of arboreal life in oribatid mites, supporting an adaptationist view of evolution. Keywords: convergent evolution; adaptation; ecological niche; pre-adaptation; oribatid mites; constraints 1. INTRODUCTION 2003; Langerhans & DeWitt 2004; Zhang 2006; Marks Convergent evolution is the development of similar traits 2007). In this view, convergent evolution indicates the in different evolutionary lineages. Famous examples of limits of potential evolutionary pathways, such that differ- convergence are the similar body forms and lifestyles ent evolutionary trajectories resulted in similar solutions of marsupial and eutherian mammals, camera eyes in to the same ecological problem. For example, Morris vertebrates and cephalopods, and electrogeneration (and (2003) used convergent evolution as evidence for directed perception) in the platypus and in a number of fishes, but evolution resulting in similar endpoints, although this myriad evolutionary convergences have been discovered teleological view has been criticized (Lenski 2003). in molecules, physiological traits and complex morpho- Convergent evolution may also be a product of chance, logical adaptations (Morris 2003). The haemoglobins in as there can be more than one optimum for a trait animals, plants, protists and prokaryotes probably have (Gould & Lewontin 1979; Doolittle 1981; Gould 1989; an independent evolutionary origin (Hardison 1996), Zhang & Kumar 1997; Marks 2007). An ecological chal- echolocation call design evolved convergently in bats lenge could have been solved in a similar way by two or (Jones & Teeling 2006) and eusociality evolved conver- more species through chance alone. Further, convergent gently in insects, shrimps and mammals (O’Riain et al. evolution may result from historical contingencies of 2000). However, despite the large number of observed certain groups of organisms. Taxa may have certain pre- cases of convergent evolution, its importance and existing conditions, i.e. pre-adaptations, that result in implications are subjects of intense debate. fast radiation when environmental conditions change or For many, convergence derives from frequent and when new habitats are colonized. independent adaptations and thereby points to the impor- Oribatid mites may serve as model organisms to study tance of ecological factors during evolution (Sinclair et al. the hypothesis of the relative importance of adaptation versus chance during evolution. They are an evolutiona- rily old group that probably has existed for at least 380 *Author and address for correspondence: Universita¨t Go¨ttingen, million years (Norton et al. 1988), and they slowly but Institut fu¨r Zoologie und Anthropologie, Berliner Straße 28, 37073 continuously radiated to a large number of species; Go¨ttingen, Germany ([email protected]). †Present address: Universita¨t Go¨ttingen, Institut fu¨r Zoologie und about 10 000 species are described but overall 100 000 Anthropologie, Berliner Straße 28, 37073 Go¨ttingen, Germany. may exist (Walter & Proctor 1999; Schatz 2002). Received 13 March 2009 Accepted 27 May 2009 3219 This journal is q 2009 The Royal Society Downloaded from rspb.royalsocietypublishing.org on January 22, 2010 3220 M. Maraun et al. Convergent evolution of arboreal life Weinvestigated whether independent adaptations (caused (b) Sample preparation, PCR and sequencing by ecological factors), pre-adaptations or chance events were DNA was extracted from single individuals. Each mite was the important factors for the evolution of arboreal life in ori- placed in an Eppendorf tube, frozen in liquid nitrogen and batid mites by examining how often, and in which taxonomic crushed with a plastic rod. Total DNA was extracted using groups, arboreal lifeevolved. Oribatid mites are primarilysoil- Qiagen DNeasy Kit for animal tissues according to the man- living organisms, but numerous taxa include species with an ufacturer’s protocol (elution was performed in 30 ml instead arboreal lifestyle. Oribatid mites on trees live in particular of 400 ml; Qiagen, Germany). arboreal microhabitats such as bark or lichens, on both Amplifications were performed using the primers trunks and twigs (Proctor et al.2002; Lindo & Winchester 18Sforward (50-TACCTGGTTGATCCTGCCAG-30) and 2006; Behan-Pelletier et al.2007; Erdmann et al. 2007). 18Sreverse (50-TAATGATCCTTCCGCAGGTTCAC-30) Because arboreal oribatid mite species permanently live on (modified after Turbeville et al. 1991)in25ml volumes con- trees, they probably share morphological or behavioural taining 0.5–0.7 ml of each primer (100 pmol ml21), 5–8 ml traits (Walter & Behan-Pelletier 1999; Karasawa & Hijii DNA and 12.5 ml HotStarTaq Mastermix (1.25 U HotStar- 2004) including sexual reproduction (Behan-Pelletier & Taq polymerase, 100 mM of each dNTP and 7.5 mM Winchester 1998; Erdmann et al.2006). In contrast to oriba- MgCl2 buffer solution; Qiagen). PCR conditions were as fol- tid mites on trees, of which in temperate forests 95 per cent of lows: initial activation at 958C for 15 min, 34 amplification all individuals reproduce sexually (Erdmann et al.2006), cycles (958C for 45 s, 578C for 1 min and 728C for 1 min); parthenogenetic reproduction dominates in soil-living taxa; final elongation at 728C (10 min). in soils of temperate forests, about 80 per cent of the individ- PCR products were visualized on 1 per cent agarose gels and uals are parthenogenetic (Maraun et al.2003; Cianciolo & purified using QIAquick PCR Purification Kit (Qiagen); PCR Norton 2006; Domes et al.2007a). In soil, both oribatid products were directly sequenced by Macrogen Inc. (Seoul, mites with cuticles hardened by sclerotization or mineraliz- South Korea) using the additional primers 18S554f (50- ation and soft-bodied species coexist, whereas on trees species AAGTCTGGTGCCAGCAGCCGC-30), 18S1282r (50-TCA with soft-bodied adults are virtually absent. Soil oribatid CTCCACCAACTAAGAACGGC-30), 18S1150f (50-ATTGA mites are characterized by a large and often ornamented CGGAAGGGCACCACCAG-30) and 18S614r (50-TCCAAC sensillus, whereas in tree-living species a capitate sensillus TACGAGCTTTTTAACC-30) (modified after Turbeville et al. predominates (Aoki 1973). Further, in contrast to soil- 1991). All sequences are available at GenBank (see table 1 for living oribatid mites, many tree-living oribatid mite species accession numbers). feed on lichens (Seyd & Seaward 1984; Erdmann et al.2007). Using a large collection of oribatid mite taxa representing (c) Alignment and phylogenetic analyses most of the known tree-living taxa, we investigated how DNA sequences of the ribosomal 18S region were aligned often oribatid mites independently colonized trees. A mol- using the default settings in CLUSTALX (Thompson et al. ecular phylogeny was constructed using the ribosomal 18S 1994, 1997); the alignment was modified by eye since gaps region (18S rDNA). We also tested whether tree-living in occurred. The evolutionary model parameters were deter- oribatid mites is correlated with the traits noted above, mined with MODELTEST 3.7 (Posada & Crandall 1998) sexual reproduction, a capitate sensillus and strong scleroti- using a hierarchical likelihood ratio test. The model of evol- zation, using information from the literature (e.g. Seyd & ution was GTR þ I þ G(Tamura & Nei 1993) with base fre- Seaward 1984; Weigmann 2006; Erdmann et al. 2007; quencies A ¼ 0.2567, C ¼
Recommended publications
  • Comparison of Sporormiella Dung Fungal Spores and Oribatid Mites As Indicators of Large Herbivore Presence: Evidence from the Cuzco Region of Peru
    Comparison of Sporormiella dung fungal spores and oribatid mites as indicators of large herbivore presence: evidence from the Cuzco region of Peru Article (Accepted Version) Chepstow-Lusty, Alexander, Frogley, Michael and Baker, Anne (2019) Comparison of Sporormiella dung fungal spores and oribatid mites as indicators of large herbivore presence: evidence from the Cuzco region of Peru. Journal of Archaeological Science. ISSN 0305-4403 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/80870/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
    [Show full text]
  • Coleoptera: Staphylinidae: Scydmaeninae) on Oribatid Mites: Prey Preferences and Hunting Behaviour
    Eur. J. Entomol. 110(2): 339–353, 2013 http://www.eje.cz/pdfs/110/2/339 ISSN 1210-5759 (print), 1802-8829 (online) Specialized feeding of Euconnus pubicollis (Coleoptera: Staphylinidae: Scydmaeninae) on oribatid mites: Prey preferences and hunting behaviour 1 2 PAWEŁ JAŁOSZYŃSKI and ZIEMOWIT OLSZANOWSKI 1 Museum of Natural History, Wrocław University, Sienkiewicza 21, 50-335 Wrocław, Poland; e-mail: [email protected] 2 Department of Animal Taxonomy and Ecology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland; e-mail: [email protected] Key words. Coleoptera, Staphylinidae, Scydmaeninae, Cyrtoscydmini, Euconnus, Palaearctic, prey preferences, feeding behaviour, Acari, Oribatida Abstract. Prey preferences and feeding-related behaviour of a Central European species of Scydmaeninae, Euconnus pubicollis, were studied under laboratory conditions. Results of prey choice experiments involving 50 species of mites belonging to 24 families of Oribatida and one family of Uropodina demonstrated that beetles feed mostly on ptyctimous Phthiracaridae (over 90% of prey) and only occasionally on Achipteriidae, Chamobatidae, Steganacaridae, Oribatellidae, Ceratozetidae, Euphthiracaridae and Galumni- dae. The average number of mites consumed per beetle per day was 0.27 ± 0.07, and the entire feeding process took 2.15–33.7 h and showed a clear linear relationship with prey body length. Observations revealed a previously unknown mechanism for capturing prey in Scydmaeninae in which a droplet of liquid that exudes from the mouth onto the dorsal surface of the predator’s mouthparts adheres to the mite’s cuticle. Morphological adaptations associated with this strategy include the flattened distal parts of the maxillae, whereas the mandibles play a minor role in capturing prey.
    [Show full text]
  • High Consistency of Trophic Niches in Soil Microarthropod Species
    1 Supplementary materials 2 High consistency of trophic niches in soil microarthropod species 3 (Oribatida, Acari) across soil depth and forest type 4 Authors: Jing-Zhong Lu1*, Peter Cordes1, Mark Maraun1, Stefan Scheu1,2 5 6 Affiliations: 7 1. Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Universität Göttingen, 8 Untere Karspüle 2, 37073 Göttingen, Germany 9 2. Center of Biodiversity and Sustainable Land Use, Universität Göttingen, Büsgenweg 1, 37077 10 Göttingen, Germany 11 * Corresponding author (E-mail: [email protected]) 12 13 Supplementary Tables 14 Table S1 15 Species list Oribatida (n = 40). Trophic guilds were assigned according to litter calibrated δ13C and 16 δ15N values: primary decomposer, secondary decomposer, endophagous Oribatida and 17 scavenger/predator. Total number of animals for each species used for stable isotopes and their 18 ranges (min - max) are given. Total number Trophic Oribatid taxa Family (range) δ13C δ15N guilds Ceratozetes minimus Sellnick, 1928 Ceratozetidae 10 (10-10) 2.95 ± 0.06 11.02 ± 0.17 predator Hypochthonius rufulus C. L. Koch, 1835 Hypochthoniidae 4 (2-7) 3.15 ± 0.77 6.23 ± 0.96 predator Metabelba pulverosa Strenzke, 1953 Damaeidae 3 (3-3) 3.08 ± 0.25 6.29 ± 2.40 predator Microppia minus (Paoli, 1908) Oppiidae 19 (7-25) 2.42 ± 0.28 8.74 ± 2.42 predator Oppiella nova (Oudemans, 1902) Oppiidae 14 (8-17) 2.70 ± 1.84 6.73 ± 2.79 predator Oppiella subpectinata (Oudemans, 1900) Oppiidae 9 (3-16) 2.93 ± 0.93 7.28 ± 1.96 predator Suctobelbella spp Jacot, 1937 Suctobelbidae 22 (18-26) 3.00 ± 0.74 6.69 ± 0.72 predator Acrogalumna longipluma (Berlese, 1904) Galumnidae 4 (3-5) 4.41 ± 0.18 5.06 ± 0.12 endophagous Carabodes ornatus Storkan, 1925 Carabodidae 2 (1-3) 3.26 ± 1.79 0.68 ± 0.52 endophagous Liacarus coracinus (C.
    [Show full text]
  • Deformation to Users
    DEFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. IDgher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell InArmadon Compai^ 300 Noith Zeeb Road, Ann Aibor MI 48106-1346 USA 313/761-4700 800/521-0600 Conservation of Biodiversity: Guilds, Microhabitat Use and Dispersal of Canopy Arthropods in the Ancient Sitka Spruce Forests of the Carmanah Valley, Vancouver Island, British Columbia. by Neville N.
    [Show full text]
  • New Species of Fossil Oribatid Mites (Acariformes, Oribatida), from the Lower Cretaceous Amber of Spain
    Cretaceous Research 63 (2016) 68e76 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes New species of fossil oribatid mites (Acariformes, Oribatida), from the Lower Cretaceous amber of Spain * Antonio Arillo a, , Luis S. Subías a, Alba Sanchez-García b a Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain b Departament de Dinamica de la Terra i de l'Ocea and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Geologia, Universitat de Barcelona, E- 08028 Barcelona, Spain article info abstract Article history: Mites are relatively common and diverse in fossiliferous ambers, but remain essentially unstudied. Here, Received 12 November 2015 we report on five new oribatid fossil species from Lower Cretaceous Spanish amber, including repre- Received in revised form sentatives of three superfamilies, and five families of the Oribatida. Hypovertex hispanicus sp. nov. and 8 February 2016 Tenuelamellarea estefaniae sp. nov. are described from amber pieces discovered in the San Just outcrop Accepted in revised form 22 February 2016 (Teruel Province). This is the first time fossil oribatid mites have been discovered in the El Soplao outcrop Available online 3 March 2016 (Cantabria Province) and, here, we describe the following new species: Afronothrus ornosae sp. nov., Nothrus vazquezae sp. nov., and Platyliodes sellnicki sp. nov. The taxa are discussed in relation to other Keywords: Lamellareidae fossil lineages of Oribatida as well as in relation to their modern counterparts. Some of the inclusions Neoliodidae were imaged using confocal laser scanning microscopy, demonstrating the potential of this technique for Nothridae studying fossil mites in amber.
    [Show full text]
  • The Armoured Mite Fauna (Acari: Oribatida) from a Long-Term Study in the Scots Pine Forest of the Northern Vidzeme Biosphere Reserve, Latvia
    FRAGMENTA FAUNISTICA 57 (2): 141–149, 2014 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS DOI 10.3161/00159301FF2014.57.2.141 The armoured mite fauna (Acari: Oribatida) from a long-term study in the Scots pine forest of the Northern Vidzeme Biosphere Reserve, Latvia 1 2 1 Uģis KAGAINIS , Voldemārs SPUNĢIS and Viesturs MELECIS 1 Institute of Biology, University of Latvia, 3 Miera Street, LV-2169, Salaspils, Latvia; e-mail: [email protected] (corresponding author) 2 Department of Zoology and Animal Ecology, Faculty of Biology,University of Latvia, 4 Kronvalda Blvd., LV-1586, Riga, Latvia; e-mail: [email protected] Abstract: In 1992–2012, a considerable amount of soil micro-arthropods has been collected annually as a part of a project of the National Long-Term Ecological Research Network of Latvia at the Mazsalaca Scots Pine forest sites of the North Vidzeme Biosphere Reserve. Until now, the data on oribatid species have not been published. This paper presents a list of oribatid species collected during 21 years of ongoing research in three pine stands of different age. The faunistic records refer to 84 species (including 17 species new to the fauna of Latvia), 1 subspecies, 1 form, 5 morphospecies and 18 unidentified taxa. The most dominant and most frequent oribatid species are Oppiella (Oppiella) nova, Tectocepheus velatus velatus and Suctobelbella falcata. Key words: species list, fauna, stand-age, LTER, Mazsalaca INTRODUCTION Most studies of Oribatida or the so-called armoured mites (Subías 2004) have been relatively short term and/or from different ecosystems simultaneously and do not show long- term changes (Winter et al.
    [Show full text]
  • Acari: Oribatida) of Canada and Alaska
    Zootaxa 4666 (1): 001–180 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4666.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:BA01E30E-7F64-49AB-910A-7EE6E597A4A4 ZOOTAXA 4666 Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska VALERIE M. BEHAN-PELLETIER1,3 & ZOË LINDO1 1Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, K1A0C6, Canada. 2Department of Biology, University of Western Ontario, London, Canada 3Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by T. Pfingstl: 26 Jul. 2019; published: 6 Sept. 2019 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 VALERIE M. BEHAN-PELLETIER & ZOË LINDO Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska (Zootaxa 4666) 180 pp.; 30 cm. 6 Sept. 2019 ISBN 978-1-77670-761-4 (paperback) ISBN 978-1-77670-762-1 (Online edition) FIRST PUBLISHED IN 2019 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] https://www.mapress.com/j/zt © 2019 Magnolia Press ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4666 (1) © 2019 Magnolia Press BEHAN-PELLETIER & LINDO Table of Contents Abstract ...................................................................................................4 Introduction ................................................................................................5
    [Show full text]
  • Hotspots of Mite New Species Discovery: Sarcoptiformes (2013–2015)
    Zootaxa 4208 (2): 101–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:47690FBF-B745-4A65-8887-AADFF1189719 Hotspots of mite new species discovery: Sarcoptiformes (2013–2015) GUANG-YUN LI1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author; email: [email protected] Abstract A list of of type localities and depositories of new species of the mite order Sarciptiformes published in two journals (Zootaxa and Systematic & Applied Acarology) during 2013–2015 is presented in this paper, and trends and patterns of new species are summarised. The 242 new species are distributed unevenly among 50 families, with 62% of the total from the top 10 families. Geographically, these species are distributed unevenly among 39 countries. Most new species (72%) are from the top 10 countries, whereas 61% of the countries have only 1–3 new species each. Four of the top 10 countries are from Asia (Vietnam, China, India and The Philippines). Key words: Acari, Sarcoptiformes, new species, distribution, type locality, type depository Introduction This paper provides a list of the type localities and depositories of new species of the order Sarciptiformes (Acari: Acariformes) published in two journals (Zootaxa and Systematic & Applied Acarology (SAA)) during 2013–2015 and a summary of trends and patterns of these new species. It is a continuation of a previous paper (Liu et al.
    [Show full text]
  • 10010 Processing Mites and Springtails
    Alberta Biodiversity Monitoring Institute www.abmi.ca Processing Mites (Oribatids) and Springtails (Collembola) Version 2009-05-08 May 2009 ALBERTA BIODIVERSITY MONITORING INSTITUTE Acknowledgements Jeff Battegelli reviewed the literature and suggested protocols for sampling mites and springtails. These protocols were refined based on field testing and input from Heather Proctor. The present document was developed by Curtis Stambaugh and Christina Sobol, with the training material compiled by Brian Carabine. Jim Schieck provided input on earlier drafts of the present document. Updates to this document were incorporated by Dave Walter and Robert Hinchliffe. Disclaimer These standards and protocols were developed and released by the ABMI. The material in this publication does not imply the expression of any opinion whatsoever on the part of any individual or organization other than the ABMI. Moreover, the methods described in this publication do not necessarily reflect the views or opinions of the individual scientists participating in methodological development or review. Errors, omissions, or inconsistencies in this publication are the sole responsibility of ABMI. The ABMI assumes no liability in connection with the information products or services made available by the Institute. While every effort is made to ensure the information contained in these products and services is correct, the ABMI disclaims any liability in negligence or otherwise for any loss or damage which may occur as a result of reliance on any of this material. All information products and services are subject to change by the ABMI without notice. Suggested Citation: Alberta Biodiversity Monitoring Institute, 2009. Processing Mites and Springtails (10010), Version 2009-05-08.
    [Show full text]
  • Importance of Tree Hollows for Biodiversity of Mites (Acari) in the Forest Reserve „Śrubita” (Carpathian Mountains, South Poland)
    BIOLOGICAL LETT. 2011, 48(1): 97–106 Available online at: http:/www.versita.com/science/lifesciences/bl/ DOI: 10.2478/v10120-011-0010-z Importance of tree hollows for biodiversity of mites (Acari) in the forest reserve „Śrubita” (Carpathian Mountains, south Poland) PIOTR SKUBAŁA and BEATA GURGUL University of Silesia, Department of Ecology, 40-007 Katowice, Bankowa 9, Poland Corresponding author: Piotr Skubała, [email protected] (Received on 21 May 2010; Accepted on 24 February 2011) Abstract: Tree hollows harbour a specialized fauna, and mites usually are the most numerous arthropods in this microhabitat. Mite fauna in 3 types of tree hollows was studied in the forest reserve “Śrubita” near Żywiec, at an altitude of about 850 m. In total, 2037 individuals of Acari and 1414 of Oribatida, representing 72 species, were collected. Over 1200 individuals per 100 g dry weight of wood dust were collected from tree hollows. The total number of oribatid species in tree hollows was higher than in the forest floor. Most species (also dominants) were obligate members of communities of a certain type of tree hollows. Keywords: mites, Oribatida, tree hollow, wood dust INTRODUCTION The long history of human management of forests has created the European for- ests that we know today: “clean” forests where it is difficult to find decaying wood. The importance of dead wood in forest ecosystems has been reiterated since the 1980s (maser & traPPe 1984). One of the specific and important form of dead wood is wood mould in tree hollows. Today, many forest stands contain only a few trees with hollows, and these trees should be actively managed to prolong the survival of the rare saproxylic fauna (ranius 2002).
    [Show full text]
  • Special Publications Special
    ARACHNIDS ASSOCIATED WITH WET PLAYAS IN THE SOUTHERN HIGH PLAINS WITH WET PLAYAS ARACHNIDS ASSOCIATED SPECIAL PUBLICATIONS Museum of Texas Tech University Number 54 2008 ARACHNIDS ASSOCIATED WITH WET PLAYAS IN THE SOUTHERN HIGH PLAINS (LLANO ESTACADO), C okendolpher et al. U.S.A. JAMES C. COKENDOLPHER, SHANNON M. TORRENCE, JAMES T. ANDERSON, W. DAVID SISSOM, NADINE DUPÉRRÉ, JAMES D. RAY & LOREN M. SMITH SPECIAL PUBLICATIONS Museum of Texas Tech University Number 54 Arachnids Associated with Wet Playas in the Southern High Plains (Llano Estacado), U.S.A. JAMES C. COKENDOLPHER , SHANNON M. TORREN C E , JAMES T. ANDERSON , W. DAVID SISSOM , NADINE DUPÉRRÉ , JAMES D. RAY , AND LOREN M. SMI T H Texas Tech University, Oklahoma State University, B&W Pantex, Texas Parks and Wildlife Department, West Texas A&M University, West Virginia University Layout and Design: Lisa Bradley Cover Design: James C. Cokendolpher et al. Copyright 2008, Museum of Texas Tech University All rights reserved. No portion of this book may be reproduced in any form or by any means, including electronic storage and retrieval systems, except by explicit, prior written permission of the publisher. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 10 April 2008 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 54 Series Editor: Robert J. Baker Arachnids Associated with Wet Playas in the Southern High Plains (Llano Estacado), U.S.A.
    [Show full text]
  • Accelerating Studies on the Ontogeny and Morphological Diversity in Immature Mites
    Zootaxa 4540 (1): 005–006 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4540.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:36AEB993-31A0-4B5C-AFDF-7E03532B73B2 Accelerating studies on the ontogeny and morphological diversity in immature mites ZHI-QIANG ZHANG1, 2 1 Landcare Research, 231 Morrin Road, Auckland, New Zealand; [email protected]; http://orcid.org/0000-0003-4172- 0592 2 Centre for Biodiversity & Biosecurity, School of Biological Sciences, University of Auckland, Auckland, New Zealand Over 58,000 species of mites have been described (Zhang 2011; Liu et al. 2013)1. Most species of mites are known only as adults, although immature instars also present a diversity of characters and other information potentially useful for understanding mite taxonomy, phylogeny and biology. A recent overview of juvenile instars of oribatid mites (excluding Astigmata) shows that only about 8% of the known oribatid mites have one or more juvenile instars described (Norton & Ermilov 2014). A survey of papers published during the last three years (2015–2017) in five main acarological journals (Acarina, Acarologia, International Journal of Acarology, Persian Journal of Acarology, Systematic and Applied Acarology) and two other main zoological journals (Zootaxa and ZooKeys) with mite papers showed only 3% to 19% of these with descriptions of immatures, but among the 151 species included in these papers as many as 61% have full data on the ontogeny (Liu & Zhang 2018). This series of special volumes on the ontogeny and morphological diversity in immature mites in Zootaxa aims to encourage and promote studies in this subject, and to facilitate the publication of papers.
    [Show full text]