Tuberolachnus (Tuberolachniella) Macrotuberculatus Sp

Total Page:16

File Type:pdf, Size:1020Kb

Tuberolachnus (Tuberolachniella) Macrotuberculatus Sp ANNALES ZOOLOGICI (Warszawa), 2005, 55(3): 315-324 TYLENCHID NEMATODES FOUND ON THE NUNATAK BASEN, EAST ANTARCTICA Alexander Ryss1, Sven Boström2 and Björn Sohlenius2 1Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg 199034, Russia; e-mail: [email protected] 2Swedish Museum of Natural History, Department of Invertebrate Zoology, Box 50007, SE-104 05 Stockholm, Sweden; e-mail: [email protected]; [email protected] Abstract.— One new, four known and one unidentified species of tylenchid nematodes are described from samples collected on the nunatak Basen, Vestfjella, Dronning Maud Land, East Antarctica. Apratylenchoides joenssoni sp. nov. differs from the only other known spe- cies of Apratylenchoides, A. belli Sher, 1973, in having a pumpkin-like spermatheca, shorter dorsal gland lobe, longer tail, and crenate tail tip. Pratylenchus andinus Lordello, Zamith et Boock, 1961, Tylenchorhynchus maximus Allen, 1955, Aglenchus agricola (de Man, 1884) Meyl, 1961 and Paratylenchus nanus Cobb, 1923 were also recorded for the first time in Antarctica. The rather unexpected presence of plant parasitic nematodes in habitats devoid of vascular plants and some biogeographical implications of the findings are discussed. Key words.— Aglenchus, Apratylenchoides, Filenchus, morphology, Nematoda, new species, Paratylenchus, Pratylenchus, taxonomy, Tylenchorhynchus. Introduction Materials and Methods During the Swedish Antarctic Research Expedition Samples of soil, mosses and lichens were collected (SWEDARP) in the austral summer 2001/2002, samples from the nunatak Basen in December 2001 and January of terrestrial material were collected from the nunatak 2002 by Dr. K.I. Jönsson. Site descriptions are given in Basen, Vestfjella, Dronning Maud Land (DML), East Table 1. The samples were extracted by a wet-funnel Antarctica. The samples were analysed for presence of method (Sohlenius 1979) at the Swedish station Wasa. microfauna (nematodes, rotifers and tardigrades) and Suspensions of microfauna were killed by heat, fixed in these results are reported by Sohlenius et al. (2004). cold TAF, and transported to Sweden for futher analysis. Some of the samples contained species of plant para- For light microscopy (LM), nematodes were processed sitic nematodes belonging to the genera Apratylenchoides to anhydrous glycerine by a slow evaporation method. Sher, 1973, Pratylenchus Filipjev, 1936, Tylenchorhynchus Preparation of slides was made according to Boström Cobb, 1913, Aglenchus (Andrássy, 1954) Meyl, 1961, and Gydemo (1983). Slides are deposited in the collec- Filenchus Andrássy, 1954 and Paratylenchus Micoletzky, tions of the Department of Invertebrate Zoology, Swedish 1922. Nematodes have previously been recorded from Museum of Natural History, Stockholm, Sweden. this nunatak (Boström 1995, 1997, Sohlenius et al. Nematodes were studied under the highest magnifi- 1995, 1996), but tylenchids were found for the first cations of the LM and their images were captured via a time (Sohlenius et al. 2004). The six species found are digital camera and Asus V7700 Geforce2 DeLuxe video- described below. The rather unexpected presence of card. Image series were made along the body, to cover plant parasitic nematodes in habitats devoid of vascular all body parts. The microscope was focused on different plants and some biogeographical implications of the planes to obtain the best view of all important structures findings are discussed. and their parts. Separate image series “from the top to ANNALES ZOOLOGICI (Warszawa), 2005, 55(3): 325-327 A NEW SPECIES OF THE GENUS PALEONURA CASSAGNAU, 1982 FROM NORTH VIETNAM (COLLEMBOLA: NEANURIDAE: NEANURINAE) Adrian Smolis1 and Louis Deharveng2 1Zoological Institute, Uniwersity of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland; e-mail: [email protected] 2Museum National ďHistoire Naturelle, Laboratoire ďEntomologie, ESA 8043 du CNRS, 45 rue Buffon, 75005-Paris, France; e-mail: [email protected] Abstract.― Paleonura tenuisensillata, new species from Vietnam is described and illustrated. Key words.— Entomology, taxonomy, Collembola, Neanuridae, Neanurinae, Paleonura, new species, North Vietnam. Introduction Tubercles: An – antennal, Fr – frontal, Cl – clypeal, De – dorsoexternal, Di – dorsointernal, Dl – dorsola- The genus Paleonura was established by Cassagnau teral, L – lateral, Oc – ocular, So – subocular. (1982), with P. spectabilis Cassagnau, 1982 from Nepal (the Types of chaetae: M – macrochaeta, me – mesochae- Himalaya) as a type species. Later the genus was classified ta, mi – microchaeta, ms – microsensillum, s – S-chaeta by the same author (1989) to Paleonurini, one of six estab- (chaeta sensualis or sensillum), or – organite of antenna lished tribes within Neanurinae. Paleonura is one of the IV, i – ordinary chaeta on antenna IV, mou – cylindri- most species-rich genus in the whole subfamily and cur- cal sensilla on antenna IV („soies mousses”), x – labial rently comprises 49 species distributed mostly in tropical papilla x. parts of the World (Cassagnau 1996, Hopkin 1997, Weiner and Najt 1998). Till now only one species of the genus – P. epiphytica Smolis et Deharveng, 2003 was known and Paleonura tenuisensillata sp. nov. described from Vietnam (Smolis and Deharveng 2003). (Figs 1–3, Table 1) Recent examination of the material of Collembola from North Vietnam revealed another new species, which is Etymology. The name of the species refers to the herein described. P. tenuisensillata sp. nov. was collected shape of body sensilla. by Prof. R. J. Pomorski during an expedition to the Tam Diagnosis. P. tenuisensillata sp. nov. belongs together Dao National Park, sponsored by Museum and Institute of with Paleonura carayoni Massoud et Thibaud, 1987 Zoology PAS (Warszawa) and Wrocław University. – Guadeloupe (Lesser Antilles), Paleonura cassagnaui Weiner et Najt, 1998 – Tanzania and Paleonura nuda Cassagnau et Pereira de Oliveira, 1990 – Brazil, to the Abbreviations group of species characterised by 2+2 eyes, three chaetae in group De of th. II–III, two chaetae in group Di of abd. The terminology and layout of the tables used in this V and dorsal body sensilla longer than nearby macro- paper follow Deharveng (1983), Deharveng and Weiner chaetae. Within the group, the new species is well distin- (1984) and Greenslade and Deharveng (1990), and the guished by the presence of 10 chaetae in groups An, Fr on following abbreviations are used: head (in carayoni – 6, in cassagnaui – 8 and in nuda – 4 General morphology: abd. – abdomen, ant. – anten- chaetae) and 2 chaetae in group De of abd. IV (in carayoni na, Cx – coxa, Fe – femur, Scx2 – subcoxa 2, th. – thorax, and cassagnaui – 1, in nuda 4 chaetae). P. tenuisensillata Tr – trochanter, T – tibiotarsus, VT – ventral tube. sp. nov. is closely related to P. carayoni. Both species have Groups of chaetae: Ag – antegenital, Fu – furcal; very long tergal sensilla (Figs 1, 2; Fig. 2E in Massoud and Ve – ventroexternal, Vi – ventrointernal, Vl – ventrola- Thibaud 1987) and 3 chaetae in group De of abd. I–III. teral, Va – anal valve. Additionally the new species differs from the mentioned ANNALES ZOOLOGICI (Warszawa), 2005, 55(3): 329-333 NOTES ON THE GENUS PROTOTHEA WEISE WITH REDESCRIPTION OF P. QUADRIPUNCTATA (MULSANT) (COLEOPTERA: COCCINELLIDAE: COCCINELLINI) Jana Kirman Poorani1 and Adam Slipinski2 1Project Directorate of Biological Control, P.B. No. 2491, H.A. Farm Post, Bellary Road, Bangalore 560 024, Karnataka, India; e-mail: [email protected] 2CSIRO Entomology, GPO Box 1700, Canberra ACT 2601 Australia; e-mail: [email protected] Abstract.— The genus Protothea Weise, 1898 is diagnosed and transferred from Halyziini (=Psylloborini) to Coccinellini. Nedina Hoang, 1983 is synonymised with Protothea (new synonym) and Nedina mirabilis Hoang, 1984 with Protothea quadripunctata (Mulsant, 1853) (new synonym). The remaining species of Nedina are transferred to Protothea: P. decemguttata (Hoang, 1983), P. limbata (Hoang, 1983), P. flavescens (Hoang, 1983), P. octoguttata (Hoang, 1983), P. aure a (Hoang, 1984), and P. mel anar i a (Hoang, 1984) (new combinations). P. quadripunctata (Mulsant) is redescribed and illustrated based on mate- rial from India (Assam; Nagaland). Key words.— Protothea, Nedina, Coccinellidae, Coccinellini, new synonyms, new combinations, Protothea quadripunctata, redescription. Introduction Taxonomy Protothea Weise (1898) is a poorly known genus of Protothea Weise ladybird beetles with only two recognized Oriental spe- (Figs 1–19) cies, P. quadripunctata (Mulsant, 1853) and P. f ir ma Weise (1898). The third species, Protothea ranamese Bielawski Protothea Weise, 1898: 226. Type species by monotypy: P. f ir ma (1960), described from Sunda Islands, was transferred Weise, 1898. by Iablokoff-Khnzorian (1984) to Illeis (Bielawskia). Nedina Hoang, 1983a: 150. Type species by original designation: Iablokoff-Khnzorian (1982) included Protothea in the N. flavescens Hoang, 1983a. New synonym. annex of his revision of the Palaearctic and Oriental Coccinellini having insufficient material for its proper Diagnosis. Protothea is readily separated from the treatment. He provided brief descriptions of the genus other Coccinellinae of the Oriental Region by the unusu- and the two species therein without any illustrations and al, characteristic structure of the prosternum (Figs 5, 15), also did not include the genus in his key to the genera. and the elongate terminal segment of antenna (Fig. 2), Protothea quadripunctata
Recommended publications
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • Heteroptera: Coreidae: Coreinae: Leptoscelini)
    Brailovsky: A Revision of the Genus Amblyomia 475 A REVISION OF THE GENUS AMBLYOMIA STÅL (HETEROPTERA: COREIDAE: COREINAE: LEPTOSCELINI) HARRY BRAILOVSKY Instituto de Biología, UNAM, Departamento de Zoología, Apdo Postal 70153 México 04510 D.F. México ABSTRACT The genus Amblyomia Stål is revised and two new species, A. foreroi and A. prome- ceops from Colombia, are described. New host plant and distributional records of A. bifasciata Stål are given; habitus illustrations and drawings of male and female gen- italia are included as well as a key to the known species. The group feeds on bromeli- ads. Key Words: Insecta, Heteroptera, Coreidae, Leptoscelini, Amblyomia, Bromeliaceae RESUMEN El género Amblyomia Stål es revisado y dos nuevas especies, A. foreroi y A. prome- ceops, recolectadas en Colombia, son descritas. Plantas hospederas y nuevas local- idades para A. bifasciata Stål son incluidas; se ofrece una clave para la separación de las especies conocidas, las cuales son ilustradas incluyendo los genitales de ambos sexos. Las preferencias tróficas del grupo están orientadas hacia bromelias. Palabras clave: Insecta, Heteroptera, Coreidae, Leptoscelini, Amblyomia, Bromeli- aceae The neotropical genus Amblyomia Stål was previously known from a single Mexi- can species, A. bifasciata Stål 1870. In the present paper the genus is redefined to in- clude two new species collected in Colombia. This genus apparently is restricted to feeding on members of the Bromeliaceae, and specimens were collected on the heart of Ananas comosus and Aechmea bracteata.
    [Show full text]
  • The Mechanism by Which Aphids Adhere to Smooth Surfaces
    J. exp. Biol. 152, 243-253 (1990) 243 Printed in Great Britain © The Company of Biologists Limited 1990 THE MECHANISM BY WHICH APHIDS ADHERE TO SMOOTH SURFACES BY A. F. G. DIXON, P. C. CROGHAN AND R. P. GOWING School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ Accepted 30 April 1990 Summary 1. The adhesive force acting between the adhesive organs and substratum for a number of aphid species has been studied. In the case of Aphis fabae, the force per foot is about 10/iN. This is much the same on both glass (amphiphilic) and silanized glass (hydrophobic) surfaces. The adhesive force is about 20 times greater than the gravitational force tending to detach each foot of an inverted aphid. 2. The mechanism of adhesion was considered. Direct van der Waals forces and viscous force were shown to be trivial and electrostatic force and muscular force were shown to be improbable. An adhesive force resulting from surface tension at an air-fluid interface was shown to be adequate and likely. 3. Evidence was collected that the working fluid of the adhesive organ has the properties of a dilute aqueous solution of a surfactant. There is a considerable reserve of fluid, presumably in the cuticle of the adhesive organ. Introduction The mechanism by which certain insects can walk on smooth vertical and even inverted surfaces has long interested entomologists and recently there have been several studies on this subject (Stork, 1980; Wigglesworth, 1987; Lees and Hardie, 1988). The elegant study of Lees and Hardie (1988) on the feet of the vetch aphid Megoura viciae Buckt.
    [Show full text]
  • New Species of Fossil Oribatid Mites (Acariformes, Oribatida), from the Lower Cretaceous Amber of Spain
    Cretaceous Research 63 (2016) 68e76 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes New species of fossil oribatid mites (Acariformes, Oribatida), from the Lower Cretaceous amber of Spain * Antonio Arillo a, , Luis S. Subías a, Alba Sanchez-García b a Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain b Departament de Dinamica de la Terra i de l'Ocea and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Geologia, Universitat de Barcelona, E- 08028 Barcelona, Spain article info abstract Article history: Mites are relatively common and diverse in fossiliferous ambers, but remain essentially unstudied. Here, Received 12 November 2015 we report on five new oribatid fossil species from Lower Cretaceous Spanish amber, including repre- Received in revised form sentatives of three superfamilies, and five families of the Oribatida. Hypovertex hispanicus sp. nov. and 8 February 2016 Tenuelamellarea estefaniae sp. nov. are described from amber pieces discovered in the San Just outcrop Accepted in revised form 22 February 2016 (Teruel Province). This is the first time fossil oribatid mites have been discovered in the El Soplao outcrop Available online 3 March 2016 (Cantabria Province) and, here, we describe the following new species: Afronothrus ornosae sp. nov., Nothrus vazquezae sp. nov., and Platyliodes sellnicki sp. nov. The taxa are discussed in relation to other Keywords: Lamellareidae fossil lineages of Oribatida as well as in relation to their modern counterparts. Some of the inclusions Neoliodidae were imaged using confocal laser scanning microscopy, demonstrating the potential of this technique for Nothridae studying fossil mites in amber.
    [Show full text]
  • PRA Cerataphis Lataniae
    CSL Pest Risk Analysis for Cerataphis lataniae CSL copyright, 2005 Pest Risk Analysis for Cerataphis lataniae Boisduval STAGE 1: PRA INITIATION 1. What is the name of the pest? Cerataphis lataniae (Boisduval) Hemiptera Aphididae the Latania aphid Synonyms: Ceratovacuna palmae (Baehr) Aphis palmae (Baehr) Boisduvalia lataniae (Boisduval) Note: In the past C. lataniae has been confused with both C. brasiliensis and C. orchidearum (Howard, 2001). As a result it is not always clear which of the older records for host plants and distribution refer to which species. BAYER CODES: CEATLA 2. What is the reason for the PRA? This PRA was initiated following a second interception of this species. Cerataphis lataniae was first intercepted in the UK in 1999 on a consignment of Archontophoenix alexandra and Brahea drandegai, from South Africa. Since then it has been intercepted twice more; on 30/05/02 on Cocos spp. and then again on 13/06/02 on Cocos nucifera. Both the findings in 2002 were at the same botanic garden and there is some suggestion the Coco plants were supplied by the nursery where the first interception was made in 1999. 3. What is the PRA area? As C. lataniae is present within the EU (Germany, Italy, Spain) (See point 11.) this PRA only considers the UK. STAGE 2: PEST RISK ASSESSMENT 4. Does the pest occur in the PRA area or does it arrive regularly as a natural migrant? No. Although Cerataphis lataniae is included on the British checklist this is likely to be an invalid record as there is no evidence to suggest it is established in the UK (R.
    [Show full text]
  • Acari: Oribatida) of Canada and Alaska
    Zootaxa 4666 (1): 001–180 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4666.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:BA01E30E-7F64-49AB-910A-7EE6E597A4A4 ZOOTAXA 4666 Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska VALERIE M. BEHAN-PELLETIER1,3 & ZOË LINDO1 1Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, K1A0C6, Canada. 2Department of Biology, University of Western Ontario, London, Canada 3Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by T. Pfingstl: 26 Jul. 2019; published: 6 Sept. 2019 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 VALERIE M. BEHAN-PELLETIER & ZOË LINDO Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska (Zootaxa 4666) 180 pp.; 30 cm. 6 Sept. 2019 ISBN 978-1-77670-761-4 (paperback) ISBN 978-1-77670-762-1 (Online edition) FIRST PUBLISHED IN 2019 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] https://www.mapress.com/j/zt © 2019 Magnolia Press ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4666 (1) © 2019 Magnolia Press BEHAN-PELLETIER & LINDO Table of Contents Abstract ...................................................................................................4 Introduction ................................................................................................5
    [Show full text]
  • Hotspots of Mite New Species Discovery: Sarcoptiformes (2013–2015)
    Zootaxa 4208 (2): 101–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:47690FBF-B745-4A65-8887-AADFF1189719 Hotspots of mite new species discovery: Sarcoptiformes (2013–2015) GUANG-YUN LI1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author; email: [email protected] Abstract A list of of type localities and depositories of new species of the mite order Sarciptiformes published in two journals (Zootaxa and Systematic & Applied Acarology) during 2013–2015 is presented in this paper, and trends and patterns of new species are summarised. The 242 new species are distributed unevenly among 50 families, with 62% of the total from the top 10 families. Geographically, these species are distributed unevenly among 39 countries. Most new species (72%) are from the top 10 countries, whereas 61% of the countries have only 1–3 new species each. Four of the top 10 countries are from Asia (Vietnam, China, India and The Philippines). Key words: Acari, Sarcoptiformes, new species, distribution, type locality, type depository Introduction This paper provides a list of the type localities and depositories of new species of the order Sarciptiformes (Acari: Acariformes) published in two journals (Zootaxa and Systematic & Applied Acarology (SAA)) during 2013–2015 and a summary of trends and patterns of these new species. It is a continuation of a previous paper (Liu et al.
    [Show full text]
  • Aphids (Hemiptera, Aphididae)
    A peer-reviewed open-access journal BioRisk 4(1): 435–474 (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2 435 doi: 10.3897/biorisk.4.57 RESEARCH ARTICLE BioRisk www.pensoftonline.net/biorisk Aphids (Hemiptera, Aphididae) Chapter 9.2 Armelle Cœur d’acier1, Nicolas Pérez Hidalgo2, Olivera Petrović-Obradović3 1 INRA, UMR CBGP (INRA / IRD / Cirad / Montpellier SupAgro), Campus International de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez, France 2 Universidad de León, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 – León, Spain 3 University of Belgrade, Faculty of Agriculture, Nemanjina 6, SER-11000, Belgrade, Serbia Corresponding authors: Armelle Cœur d’acier ([email protected]), Nicolas Pérez Hidalgo (nperh@unile- on.es), Olivera Petrović-Obradović ([email protected]) Academic editor: David Roy | Received 1 March 2010 | Accepted 24 May 2010 | Published 6 July 2010 Citation: Cœur d’acier A (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2. In: Roques A et al. (Eds) Alien terrestrial arthropods of Europe. BioRisk 4(1): 435–474. doi: 10.3897/biorisk.4.57 Abstract Our study aimed at providing a comprehensive list of Aphididae alien to Europe. A total of 98 species originating from other continents have established so far in Europe, to which we add 4 cosmopolitan spe- cies of uncertain origin (cryptogenic). Th e 102 alien species of Aphididae established in Europe belong to 12 diff erent subfamilies, fi ve of them contributing by more than 5 species to the alien fauna. Most alien aphids originate from temperate regions of the world. Th ere was no signifi cant variation in the geographic origin of the alien aphids over time.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • An Inventory of Nepal's Insects
    An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera & Diptera) V. K. Thapa An Inventory of Nepal's Insects Volume III (Hemiptera, Hymenoptera, Coleoptera& Diptera) V.K. Thapa IUCN-The World Conservation Union 2000 Published by: IUCN Nepal Copyright: 2000. IUCN Nepal The role of the Swiss Agency for Development and Cooperation (SDC) in supporting the IUCN Nepal is gratefully acknowledged. The material in this publication may be reproduced in whole or in part and in any form for education or non-profit uses, without special permission from the copyright holder, provided acknowledgement of the source is made. IUCN Nepal would appreciate receiving a copy of any publication, which uses this publication as a source. No use of this publication may be made for resale or other commercial purposes without prior written permission of IUCN Nepal. Citation: Thapa, V.K., 2000. An Inventory of Nepal's Insects, Vol. III. IUCN Nepal, Kathmandu, xi + 475 pp. Data Processing and Design: Rabin Shrestha and Kanhaiya L. Shrestha Cover Art: From left to right: Shield bug ( Poecilocoris nepalensis), June beetle (Popilla nasuta) and Ichneumon wasp (Ichneumonidae) respectively. Source: Ms. Astrid Bjornsen, Insects of Nepal's Mid Hills poster, IUCN Nepal. ISBN: 92-9144-049 -3 Available from: IUCN Nepal P.O. Box 3923 Kathmandu, Nepal IUCN Nepal Biodiversity Publication Series aims to publish scientific information on biodiversity wealth of Nepal. Publication will appear as and when information are available and ready to publish. List of publications thus far: Series 1: An Inventory of Nepal's Insects, Vol. I. Series 2: The Rattans of Nepal.
    [Show full text]
  • Characterization of the Mitochondrial Genomes of Diuraphis Noxia Biotypes
    Characterization of the mitochondrial genomes of Diuraphis noxia biotypes By Laura de Jager Thesis presented in partial fulfilment of the requirements for the degree Magister Scientiae In the Faculty of Natural and Agricultural Science Department of Genetics University of Stellenbosch Stellenbosch Under the supervision of Prof. AM Botha-Oberholster December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: . 25 December 2014. Copyright 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Abstract Diuraphis noxia (Kurdjumov, Hemiptera, Aphididae) commonly known as the Russian wheat aphid (RWA), is a small phloem-feeding pest of wheat (Triticum aestivum L). Virulent D. noxia biotypes that are able to feed on previously resistant wheat cultivars continue to develop and therefor the identification of factors contributing to virulence is vital. Since energy metabolism plays a key role in the survival of organisms, genes and processes involved in the production and regulation of energy may be key contributors to virulence: such as mitochondria and the NAD+/NADH that reflects the health and metabolic activities of a cell. The involvement of carotenoids in the generation of energy through a photosynthesis- like process may be an important factor, as well as its contribution to aphid immunity through mediation of oxidative stress.
    [Show full text]
  • Hemiptera, Aphididae) Inferred from Molecular-Based Phylogeny and Comprehensive Morphological Data
    RESEARCH ARTICLE The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny and comprehensive morphological data Karina Wieczorek1*, Dorota Lachowska-Cierlik2, èukasz Kajtoch3, Mariusz Kanturski1 1 Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland, 2 Department of Entomology, Institute of Zoology, Jagiellonian University, KrakoÂw, Poland, 3 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, KrakoÂw, Poland a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The Chaitophorinae is a bionomically diverse Holarctic subfamily of Aphididae. The current classification includes two tribes: the Chaitophorini associated with deciduous trees and shrubs, and Siphini that feed on monocotyledonous plants. We present the first phylogenetic OPEN ACCESS hypothesis for the subfamily, based on molecular and morphological datasets. Molecular Citation: Wieczorek K, Lachowska-Cierlik D, analyses were based on the mitochondrial gene cytochrome oxidase subunit I (COI) and the Kajtoch è, Kanturski M (2017) The relationships within the Chaitophorinae and Drepanosiphinae nuclear gene elongation factor-1α (EF-1α). Phylogenetic inferences were obtained individu- (Hemiptera, Aphididae) inferred from molecular- ally on each of genes and joined alignments using Bayesian inference (BI) and Maximum based phylogeny and comprehensive likelihood (ML). In phylogenetic trees reconstructed on the basis of nuclear and mitochon- morphological data. PLoS ONE 12(3): e0173608. https://doi.org/10.1371/journal.pone.0173608 drial genes as well as a morphological dataset, the monophyly of Siphini and the genus Chaitophorus was supported. Periphyllus forms independent lineages from Chaitophorus Editor: Daniel Doucet, Natural Resources Canada, CANADA and Siphini. Within this genus two clades comprising European and Asiatic species, respec- tively, were indicated.
    [Show full text]