Topics in Differential Geometry This Page Intentionally Left Blank Topic S in Differentia L Geometr Y

Total Page:16

File Type:pdf, Size:1020Kb

Topics in Differential Geometry This Page Intentionally Left Blank Topic S in Differentia L Geometr Y http://dx.doi.org/10.1090/gsm/093 Topics in Differential Geometry This page intentionally left blank Topic s in Differentia l Geometr y Peter W. Michor Graduate Studies in Mathematics Volume 93 ^j^flll American Mathematical Society Providence, Rhode Island Editorial Board David Cox (Chair) Steven G. Krantz Rafe Mazzeo Martin Scharlemann 2000 Mathematics Subject Classification. Primary 53-01. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-93 Library of Congress Cataloging-in-Publication Data Michor, Peter W., 1949- Topics in differential geometry / Peter W. Michor. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v. 93) Includes bibliographical references and index. ISBN 978-0-8218-2003-2 (alk. paper) 1. Geometry, Differential. I. Title. QA641.M49 2008 516.3'6—dc22 2008010629 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. © 2008 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. @ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http: //www. ams. org/ 10 9 8 7 6 5 4 3 2 1 13 12 11 10 09 08 To the ladies of my life, Elli, Franziska, and Johanna This page intentionally left blank Contents Preface CHAPTER I. Manifolds and Vector Fields 1. Differentiate Manifolds 2. Submersions and Immersions 3. Vector Fields and Flows CHAPTER II. Lie Groups and Group Actions 4. Lie Groups I 5. Lie Groups II. Lie Subgroups and Homogeneous Spaces 6. Transformation Groups and G-Manifolds 7. Polynomial and Smooth Invariant Theory CHAPTER III. Differential Forms and de Rham Cohomology 8. Vector Bundles 9. Differential Forms 10. Integration on Manifolds 11. De Rham Cohomology 12. Cohomology with Compact Supports and Poincare Duality 13. De Rham Cohomology of Compact Manifolds 14. Lie Groups III. Analysis on Lie Groups 15. Extensions of Lie Algebras and Lie Groups Vlll Contents CHAPTER IV. Bundles and Connections 16. Derivations on the Algebra of Differential Forms 17. Fiber Bundles and Connections 18. Principal Fiber Bundles and G-Bundles 19. Principal and Induced Connections 20. Characteristic Classes 21. Jets CHAPTER V. Riemann Manifolds 22. Pseudo-Riemann Metrics and Covariant Derivatives 23. Geometry of Geodesies 24. Parallel Transport and Curvature 25. Computing with Adapted Frames and Examples 26. Riemann Immersions and Submersions 27. Jacobi Fields CHAPTER VI. Isometric Group Actions or Riemann G-Manifolds 28. Isometries, Homogeneous Manifolds, and Symmetric Spaces 29. Riemann G-Manifolds 30. Polar Actions CHAPTER VII. Symplectic and Poisson Geometry 31. Symplectic Geometry and Classical Mechanics 32. Completely Integrable Hamiltonian Systems 33. Poisson Manifolds 34. Hamiltonian Group Actions and Momentum Mappings List of Symbols Bibliography Index Preface This book is an introduction to the fundamentals of differential geometry (manifolds, flows, Lie groups and their actions, invariant theory, differential forms and de Rham cohomology, bundles and connections, Riemann mani• folds, isometric actions, symplectic geometry) which stresses naturality and functoriality from the beginning and is as coordinate-free as possible. The material presented in the beginning is standard — but some parts are not so easily found in text books: Among these are initial submanifolds (2.13) and the extension of the Probenius theorem for distributions of nonconstant rank (the Stefan-Sussman theory) in (3.21) - (3.28). A quick proof of the Campbell-Baker-Hausdorff formula for Lie groups is in (4.29). Lie group actions are studied in detail: Palais' results that an infinitesimal action of a finite-dimensional Lie algebra on a manifold integrates to a local action of a Lie group and that proper actions admit slices are presented with full proofs in sections (5) and (6). The basics of invariant theory are given in section (7): The Hilbert-Nagata theorem is proved, and Schwarz's theorem on smooth invariant functions is discussed, but not proved. In the section on vector bundles, the Lie derivative is treated for natural vector bundles, i.e., functors which associate vector bundles to manifolds and vector bundle homomorphisms to local diffeomorphisms. A formula for the Lie derivative is given in the form of a commutator, but it involves the tangent bundle of the vector bundle. So also a careful treatment of tangent bundles of vector bundles is given. Then follows a standard presentation of differential forms and de Rham cohomoloy including the theorems of de Rham and Poincare duality. This is used to compute the cohomology of compact Lie groups, and a section on extensions of Lie algebras and Lie groups follows. IX X Preface The chapter on bundles and connections starts with a thorough treatment of the Frolicher-Nijenhuis bracket via the study of all graded derivations of the algebra of differential forms. This bracket is a natural extension of the Lie bracket from vector fields to tangent bundle valued differential forms; it is one of the basic structures of differential geometry. We begin our treatment of connections in the general setting of fiber bundles (without structure group). A connection on a fiber bundle is just a projection onto the vertical bundle. Curvature and the Bianchi identity are expressed with the help of the Frolicher-Nijenhuis bracket. The parallel transport for such a general connection is not defined along the whole of the curve in the base in general — if this is the case, the connection is called complete. We show that every fiber bundle admits complete connections. For complete connections we treat holonomy groups and the holonomy Lie algebra, a subalgebra of the Lie algebra of all vector fields on the standard fiber. Then we present principal bundles and associated bundles in detail together with the most important examples. Finally we investigate principal connections by requiring equivariance under the structure group. It is remarkable how fast the usual structure equations can be derived from the basic properties of the Frolicher-Nijenhuis bracket. Induced connections are investigated thoroughly — we describe tools to recognize induced connections among general ones. If the holonomy Lie algebra of a connection on a fiber bundle with compact standard fiber turns out to be finite-dimensional, we are able to show that in fact the fiber bundle is associated to a principal bundle and the connection is an induced one. I think that the treatment of connections presented here offers some didactical advantages: The geometric content of a connection is treated first, and the additional requirement of equi variance under a structure group is seen to be additional and can be dealt with later — so the student is not required to grasp all the structures at the same time. Besides that it gives new results and new insights. This treatment is taken from [146]. The chapter on Riemann geometry contains a careful treatment of connec• tions to geodesic structures to sprays to connectors and back to connections considering also the roles of the second and third tangent bundles in this. Most standard results are proved. Isometric immersions and Riemann sub• mersions are treated in analogy to each other. A unusual feature is the Jacobi flow on the second tangent bundle. The chapter on isometric ac• tions starts off with homogeneous Riemann manifolds and the beginnings of symmetric space theory; then Riemann G-manifolds and polar actions are treated. The final chapter on symplectic and Poisson geometry puts some emphasis on group actions, momentum mappings and reductions. Preface XI There are some glaring omissions: The Laplace-Beltrami operator is treated only summarily, there is no spectral theory, and the structure theory of Lie algebras is not treated and used. Thus the finer theory of symmetric spaces is outside of the scope of this book. The exposition is not always linear. Sometimes concepts treated in detail in later sections are used or pointed out earlier on when they appear in a natural way. Text cross-references to sections, subsections, theorems, numbered equations, items in a list, etc., appear in parantheses, for example, section (1), subsection (1.1), theorem (3.16), equation (3.16.3) which will be called (3) within (3.16) and its proof, property (3.22.1). This book grew out of lectures which I have given during the last three decades on advanced differential geometry, Lie groups and their actions, Riemann geometry, and symplectic geometry. I have benefited a lot from the advise of colleagues and remarks by readers and students. In particular I want to thank Konstanze Rietsch whose write-up of my lecture course on isometric group actions was
Recommended publications
  • Connections on Bundles Md
    Dhaka Univ. J. Sci. 60(2): 191-195, 2012 (July) Connections on Bundles Md. Showkat Ali, Md. Mirazul Islam, Farzana Nasrin, Md. Abu Hanif Sarkar and Tanzia Zerin Khan Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh, Email: [email protected] Received on 25. 05. 2011.Accepted for Publication on 15. 12. 2011 Abstract This paper is a survey of the basic theory of connection on bundles. A connection on tangent bundle , is called an affine connection on an -dimensional smooth manifold . By the general discussion of affine connection on vector bundles that necessarily exists on which is compatible with tensors. I. Introduction = < , > (2) In order to differentiate sections of a vector bundle [5] or where <, > represents the pairing between and ∗. vector fields on a manifold we need to introduce a Then is a section of , called the absolute differential structure called the connection on a vector bundle. For quotient or the covariant derivative of the section along . example, an affine connection is a structure attached to a differentiable manifold so that we can differentiate its Theorem 1. A connection always exists on a vector bundle. tensor fields. We first introduce the general theorem of Proof. Choose a coordinate covering { }∈ of . Since connections on vector bundles. Then we study the tangent vector bundles are trivial locally, we may assume that there is bundle. is a -dimensional vector bundle determine local frame field for any . By the local structure of intrinsically by the differentiable structure [8] of an - connections, we need only construct a × matrix on dimensional smooth manifold . each such that the matrices satisfy II.
    [Show full text]
  • Killing Spinor-Valued Forms and the Cone Construction
    ARCHIVUM MATHEMATICUM (BRNO) Tomus 52 (2016), 341–355 KILLING SPINOR-VALUED FORMS AND THE CONE CONSTRUCTION Petr Somberg and Petr Zima Abstract. On a pseudo-Riemannian manifold M we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on M and parallel fields on the metric cone over M for spinor-valued forms. 1. Introduction The subject of the present article are the systems of over-determined partial differential equations for spinor-valued differential forms, classified as atypeof Killing equations. The solution spaces of these systems of PDE’s are termed Killing spinor-valued differential forms. A central question in geometry asks for pseudo-Riemannian manifolds admitting non-trivial solutions of Killing type equa- tions, namely how the properties of Killing spinor-valued forms relate to the underlying geometric structure for which they can occur. Killing spinor-valued forms are closely related to Killing spinors and Killing forms with Killing vectors as a special example. Killing spinors are both twistor spinors and eigenspinors for the Dirac operator, and real Killing spinors realize the limit case in the eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds of positive scalar curvature. There is a classification of complete simply connected Riemannian manifolds equipped with real Killing spinors, leading to the construction of manifolds with the exceptional holonomy groups G2 and Spin(7), see [8], [1]. Killing vector fields on a pseudo-Riemannian manifold are the infinitesimal generators of isometries, hence they influence its geometrical properties.
    [Show full text]
  • Arxiv:Gr-Qc/0611154 V1 30 Nov 2006 Otx Fcra Geometry
    MacDowell–Mansouri Gravity and Cartan Geometry Derek K. Wise Department of Mathematics University of California Riverside, CA 92521, USA email: [email protected] November 29, 2006 Abstract The geometric content of the MacDowell–Mansouri formulation of general relativity is best understood in terms of Cartan geometry. In particular, Cartan geometry gives clear geomet- ric meaning to the MacDowell–Mansouri trick of combining the Levi–Civita connection and coframe field, or soldering form, into a single physical field. The Cartan perspective allows us to view physical spacetime as tangentially approximated by an arbitrary homogeneous ‘model spacetime’, including not only the flat Minkowski model, as is implicitly used in standard general relativity, but also de Sitter, anti de Sitter, or other models. A ‘Cartan connection’ gives a prescription for parallel transport from one ‘tangent model spacetime’ to another, along any path, giving a natural interpretation of the MacDowell–Mansouri connection as ‘rolling’ the model spacetime along physical spacetime. I explain Cartan geometry, and ‘Cartan gauge theory’, in which the gauge field is replaced by a Cartan connection. In particular, I discuss MacDowell–Mansouri gravity, as well as its recent reformulation in terms of BF theory, in the arXiv:gr-qc/0611154 v1 30 Nov 2006 context of Cartan geometry. 1 Contents 1 Introduction 3 2 Homogeneous spacetimes and Klein geometry 8 2.1 Kleingeometry ................................... 8 2.2 MetricKleingeometry ............................. 10 2.3 Homogeneousmodelspacetimes. ..... 11 3 Cartan geometry 13 3.1 Ehresmannconnections . .. .. .. .. .. .. .. .. 13 3.2 Definition of Cartan geometry . ..... 14 3.3 Geometric interpretation: rolling Klein geometries . .............. 15 3.4 ReductiveCartangeometry . 17 4 Cartan-type gauge theory 20 4.1 Asequenceofbundles .............................
    [Show full text]
  • The Positivity of Local Equivariant Hirzebruch Class for Toric Varieties
    THE POSITIVITY OF LOCAL EQUIVARIANT HIRZEBRUCH CLASS FOR TORIC VARIETIES KAMIL RYCHLEWICZ Abstract. The central object of investigation of this paper is the Hirzebruch class, a deformation of the Todd class, given by Hirzebruch (for smooth vari- eties) in his celebrated book [11]. The generalization for singular varieties is due to Brasselet-Sch¨urmann-Yokura. Following the work of Weber, we inves- tigate its equivariant version for (possibly singular) toric varieties. The local decomposition of the Hirzebruch class to the fixed points of the torus action and a formula for the local class in terms of the defining fan are mentioned. After this review part (sections 3–7), we prove the positivity of local Hirze- bruch classes for all toric varieties (Theorem 8.5), thus proving false the alleged counterexample given by Weber. 1. Acknowledgments This paper is an abbreviation of the author’s Master’s Thesis written at Faculty of Mathematics, Informatics and Mechanics of University of Warsaw under the su- pervision of Andrzej Weber. The author owes many thanks to the supervisor, for introducing him to the topic and stating the main problem, for pointing the im- portant parts of the general theory and for the priceless support regarding editorial matters. 2. Introduction The Todd class, which appears in the formulations of the celebrated Hirzebruch- Riemann-Roch theorem, and more general Grothendieck-Riemann-Roch theorem, is originally defined for smooth complete varieties (or schemes) only. In [2] Baum, Fulton and MacPherson gave a generalization for singular varieties, which in general is forced to lie in homology instead of cohomology.
    [Show full text]
  • Parallel Transport Along Seifert Manifolds and Fractional Monodromy Martynchuk, N.; Efstathiou, K
    University of Groningen Parallel Transport along Seifert Manifolds and Fractional Monodromy Martynchuk, N.; Efstathiou, K. Published in: Communications in Mathematical Physics DOI: 10.1007/s00220-017-2988-5 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Martynchuk, N., & Efstathiou, K. (2017). Parallel Transport along Seifert Manifolds and Fractional Monodromy. Communications in Mathematical Physics, 356(2), 427-449. https://doi.org/10.1007/s00220- 017-2988-5 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 27-09-2021 Commun. Math. Phys. 356, 427–449 (2017) Communications in Digital Object Identifier (DOI) 10.1007/s00220-017-2988-5 Mathematical Physics Parallel Transport Along Seifert Manifolds and Fractional Monodromy N. Martynchuk , K.
    [Show full text]
  • Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory
    Two Exotic Holonomies in Dimension Four, Path Geometries, and Twistor Theory by Robert L. Bryant* Table of Contents §0. Introduction §1. The Holonomy of a Torsion-Free Connection §2. The Structure Equations of H3-andG3-structures §3. The Existence Theorems §4. Path Geometries and Exotic Holonomy §5. Twistor Theory and Exotic Holonomy §6. Epilogue §0. Introduction Since its introduction by Elie´ Cartan, the holonomy of a connection has played an important role in differential geometry. One of the best known results concerning hol- onomy is Berger’s classification of the possible holonomies of Levi-Civita connections of Riemannian metrics. Since the appearance of Berger [1955], much work has been done to refine his listofpossible Riemannian holonomies. See the recent works by Besse [1987]or Salamon [1989]foruseful historical surveys and applications of holonomy to Riemannian and algebraic geometry. Less well known is that, at the same time, Berger also classified the possible pseudo- Riemannian holonomies which act irreducibly on each tangent space. The intervening years have not completely resolved the question of whether all of the subgroups of the general linear group on his pseudo-Riemannian list actually occur as holonomy groups of pseudo-Riemannian metrics, but, as of this writing, only one class of examples on his list remains in doubt, namely SO∗(2p) ⊂ GL(4p)forp ≥ 3. Perhaps the least-known aspect of Berger’s work on holonomy concerns his list of the possible irreducibly-acting holonomy groups of torsion-free affine connections. (Torsion- free connections are the natural generalization of Levi-Civita connections in the metric case.) Part of the reason for this relative obscurity is that affine geometry is not as well known or widely usedasRiemannian geometry and global results are generally lacking.
    [Show full text]
  • Proper Affine Actions and Geodesic Flows of Hyperbolic Surfaces
    ANNALS OF MATHEMATICS Proper affine actions and geodesic flows of hyperbolic surfaces By William M. Goldman, Franc¸ois Labourie, and Gregory Margulis SECOND SERIES, VOL. 170, NO. 3 November, 2009 anmaah Annals of Mathematics, 170 (2009), 1051–1083 Proper affine actions and geodesic flows of hyperbolic surfaces By WILLIAM M. GOLDMAN, FRANÇOIS LABOURIE, and GREGORY MARGULIS Abstract 2 Let 0 O.2; 1/ be a Schottky group, and let † H =0 be the corresponding D hyperbolic surface. Let Ꮿ.†/ denote the space of unit length geodesic currents 1 on †. The cohomology group H .0; V/ parametrizes equivalence classes of affine deformations u of 0 acting on an irreducible representation V of O.2; 1/. We 1 define a continuous biaffine map ‰ Ꮿ.†/ H .0; V/ R which is linear on 1 W ! the vector space H .0; V/. An affine deformation u acts properly if and only if ‰.; Œu/ 0 for all Ꮿ.†/. Consequently the set of proper affine actions ¤ 2 whose linear part is a Schottky group identifies with a bundle of open convex cones 1 in H .0; V/ over the Fricke-Teichmüller space of †. Introduction 1. Hyperbolic geometry 2. Affine geometry 3. Flat bundles associated to affine deformations 4. Sections and subbundles 5. Proper -actions and proper R-actions 6. Labourie’s diffusion of Margulis’s invariant 7. Nonproper deformations 8. Proper deformations References Goldman gratefully acknowledges partial support from National Science Foundation grants DMS- 0103889, DMS-0405605, DMS-070781, the Mathematical Sciences Research Institute and the Oswald Veblen Fund at the Insitute for Advanced Study, and a Semester Research Award from the General Research Board of the University of Maryland.
    [Show full text]
  • J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This Course Is an Introduction to the Geometry of Smooth Curves and Surf
    J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This course is an introduction to the geometry of smooth if the velocity never vanishes). Then the speed is a (smooth) curves and surfaces in Euclidean space Rn (in particular for positive function of t. (The cusped curve β above is not regular n = 2; 3). The local shape of a curve or surface is described at t = 0; the other examples given are regular.) in terms of its curvatures. Many of the big theorems in the DE The lengthR [ : Länge] of a smooth curve α is defined as subject – such as the Gauss–Bonnet theorem, a highlight at the j j len(α) = I α˙(t) dt. (For a closed curve, of course, we should end of the semester – deal with integrals of curvature. Some integrate from 0 to T instead of over the whole real line.) For of these integrals are topological constants, unchanged under any subinterval [a; b] ⊂ I, we see that deformation of the original curve or surface. Z b Z b We will usually describe particular curves and surfaces jα˙(t)j dt ≥ α˙(t) dt = α(b) − α(a) : locally via parametrizations, rather than, say, as level sets. a a Whereas in algebraic geometry, the unit circle is typically be described as the level set x2 + y2 = 1, we might instead This simply means that the length of any curve is at least the parametrize it as (cos t; sin t). straight-line distance between its endpoints. Of course, by Euclidean space [DE: euklidischer Raum] The length of an arbitrary curve can be defined (following n we mean the vector space R 3 x = (x1;:::; xn), equipped Jordan) as its total variation: with with the standard inner product or scalar product [DE: P Xn Skalarproduktp ] ha; bi = a · b := aibi and its associated norm len(α):= TV(α):= sup α(ti) − α(ti−1) : jaj := ha; ai.
    [Show full text]
  • Differential Geometry: Curvature and Holonomy Austin Christian
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-5-2015 Differential Geometry: Curvature and Holonomy Austin Christian Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Mathematics Commons Recommended Citation Christian, Austin, "Differential Geometry: Curvature and Holonomy" (2015). Math Theses. Paper 5. http://hdl.handle.net/10950/266 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. DIFFERENTIAL GEOMETRY: CURVATURE AND HOLONOMY by AUSTIN CHRISTIAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics David Milan, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler May 2015 c Copyright by Austin Christian 2015 All rights reserved Acknowledgments There are a number of people that have contributed to this project, whether or not they were aware of their contribution. For taking me on as a student and learning differential geometry with me, I am deeply indebted to my advisor, David Milan. Without himself being a geometer, he has helped me to develop an invaluable intuition for the field, and the freedom he has afforded me to study things that I find interesting has given me ample room to grow. For introducing me to differential geometry in the first place, I owe a great deal of thanks to my undergraduate advisor, Robert Huff; our many fruitful conversations, mathematical and otherwise, con- tinue to affect my approach to mathematics.
    [Show full text]
  • The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable Pdes
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 13 (2017), 003, 44 pages The Profinite Dimensional Manifold Structure of Formal Solution Spaces of Formally Integrable PDEs Batu GUNEYSU¨ y and Markus J. PFLAUM z y Institut f¨urMathematik, Humboldt-Universit¨at,Rudower Chaussee 25, 12489 Berlin, Germany E-mail: [email protected] z Department of Mathematics, University of Colorado, Boulder CO 80309, USA E-mail: markus.pfl[email protected] URL: http://math.colorado.edu/~pflaum/ Received March 30, 2016, in final form January 05, 2017; Published online January 10, 2017 https://doi.org/10.3842/SIGMA.2017.003 Abstract. In this paper, we study the formal solution space of a nonlinear PDE in a fiber bundle. To this end, we start with foundational material and introduce the notion of a pfd structure to build up a new concept of profinite dimensional manifolds. We show that the infinite jet space of the fiber bundle is a profinite dimensional manifold in a natural way. The formal solution space of the nonlinear PDE then is a subspace of this jet space, and inherits from it the structure of a profinite dimensional manifold, if the PDE is formally integrable. We apply our concept to scalar PDEs and prove a new criterion for formal inte- grability of such PDEs. In particular, this result entails that the Euler{Lagrange equation of a relativistic scalar field with a polynomial self-interaction is formally integrable. Key words: profinite dimensional manifolds; jet bundles; geometric PDEs; formal integra- bility; scalar fields 2010 Mathematics Subject Classification: 58A05; 58A20; 35A30 1 Introduction Even though it appears to be unsolvable in general, the problem to describe the moduli space of solutions of a particular nonlinear PDE has led to powerful new results in geometric analysis and mathematical physics.
    [Show full text]
  • Arxiv:2009.09697V1 [Math.AG] 21 Sep 2020 Btuto Hoy Uhcasswr Endfrcmlxan Complex for [ Defined in Mo Were Tian a Classes Given Such Fundamental Classes
    VIRTUAL EQUIVARIANT GROTHENDIECK-RIEMANN-ROCH FORMULA CHARANYA RAVI AND BHAMIDI SREEDHAR Abstract. For a G-scheme X with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of Fantechi-G¨ottsche ([FG10]) to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over C with proper actions. Contents 1. Introduction 1 2. Preliminaries 5 2.1. Notations and conventions 5 2.2. Equivariant Chow groups 7 2.3. Equivariant Riemann-Roch theorem 7 2.4. Perfect obstruction theories and virtual classes 8 3. Virtual classes and the equivariant Riemann-Roch map 11 3.1. Induced perfect obstruction theory 11 3.2. Virtual equivariant Riemann-Roch formula 15 4. Virtual structure sheaf and the Atiyah-Segal map 18 4.1. Atiyah-Segal isomorphism 18 4.2. Morita equivalence 21 4.3. Virtual structure sheaf on the inertia scheme 23 References 26 1. Introduction As several moduli spaces that one encounters in algebraic geometry have a well- arXiv:2009.09697v1 [math.AG] 21 Sep 2020 defined expected dimension, one is interested in constructing a fundamental class of the expected dimension in its Chow group. Interesting numerical invariants like Gromov-Witten invariants and Donaldson-Thomas invariants are obtained by inte- grating certain cohomology classes over such a fundamental class. This motivated the construction of virtual fundamental classes. Given a moduli space with a perfect obstruction theory, such classes were defined for complex analytic spaces by Li and Tian in [LT98] and in the algebraic sense for Deligne-Mumford stacks by Behrend and Fantechi in [BF97].
    [Show full text]
  • Geometric Control of Mechanical Systems Modeling, Analysis, and Design for Simple Mechanical Control Systems
    Francesco Bullo and Andrew D. Lewis Geometric Control of Mechanical Systems Modeling, Analysis, and Design for Simple Mechanical Control Systems – Supplementary Material – August 1, 2014 Contents S1 Tangent and cotangent bundle geometry ................. S1 S1.1 Some things Hamiltonian.......................... ..... S1 S1.1.1 Differential forms............................. .. S1 S1.1.2 Symplectic manifolds .......................... S5 S1.1.3 Hamiltonian vector fields ....................... S6 S1.2 Tangent and cotangent lifts of vector fields .......... ..... S7 S1.2.1 More about the tangent lift ...................... S7 S1.2.2 The cotangent lift of a vector field ................ S8 S1.2.3 Joint properties of the tangent and cotangent lift . S9 S1.2.4 The cotangent lift of the vertical lift ............ S11 S1.2.5 The canonical involution of TTQ ................. S12 S1.2.6 The canonical endomorphism of the tangent bundle . S13 S1.3 Ehresmann connections induced by an affine connection . S13 S1.3.1 Motivating remarks............................ S13 S1.3.2 More about vector and fiber bundles .............. S15 S1.3.3 Ehresmann connections ......................... S17 S1.3.4 Linear connections and linear vector fields on vector bundles ....................................... S18 S1.3.5 The Ehresmann connection on πTM : TM M associated with a second-order vector field→ on TM . S20 S1.3.6 The Ehresmann connection on πTQ : TQ Q associated with an affine connection on Q→.......... S21 ∗ S1.3.7 The Ehresmann connection on πT∗Q : T Q Q associated with an affine connection on Q ..........→ S23 S1.3.8 The Ehresmann connection on πTTQ : TTQ TQ associated with an affine connection on Q ..........→ S23 ∗ S1.3.9 The Ehresmann connection on πT∗TQ : T TQ TQ associated with an affine connection on Q ..........→ S25 ∗ S1.3.10 Representations of ST and ST ..................
    [Show full text]